
BALKAN JOURNAL
OF APPLIED MATHEMATICS

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF MACEDONIA
FACULTY OF COMPUTER SCIENCE

ISSN 2545-479X print
ISSN 2545-4803 on line

ISSN 2545-479X print
ISSN 2545-4803 on line

BALKAN JOURNAL
OF APPLIED MATHEMATICS

AND INFORMATICS

(BJAMI)

GOCE DELCEV UNIVERSITY - STIP, REPUBLIC OF MACEDONIA
FACULTY OF COMPUTER SCIENCE

ISSN 2545-479X print
ISSN 2545-4803 on line

Managing editor
Biljana Zlatanovska Ph.D.

Editor in chief
Zoran Zdravev Ph.D.

Technical editor
Slave Dimitrov

Address of the editorial office
Goce Delcev University – Stip
Faculty of philology
Krste Misirkov 10-A
PO box 201, 2000 Štip,
R. of Macedonia

AIMS AND SCOPE:
BJAMI publishes original research articles in the areas of applied mathematics and informatics.

Topics:
1. Computer science;
2. Computer and software engineering;
3. Information technology;
4. Computer security;
5. Electrical engineering;
6. Telecommunication;
7. Mathematics and its applications;
8. Articles of interdisciplinary of computer and information sciences with education,

economics, environmental, health, and engineering.

BALKAN JOURNAL
OF APPLIED MATHEMATICS AND INFORMATICS (BJAMI), Vol 1

 ISSN 2545-479X print
ISSN 2545-4803 on line
Vol. 1, No. 1, Year 2018

EDITORIAL BOARD

Adelina Plamenova Aleksieva-Petrova, Technical University – Sofia,
Faculty of Computer Systems and Control, Sofia, Bulgaria

Lyudmila Stoyanova, Technical University - Sofia , Faculty of computer systems and control,
Department – Programming and computer technologies, Bulgaria

Zlatko Georgiev Varbanov, Department of Mathematics and Informatics,
Veliko Tarnovo University, Bulgaria

Snezana Scepanovic, Faculty for Information Technology,
University “Mediterranean”, Podgorica, Montenegro

 Daniela Veleva Minkovska, Faculty of Computer Systems and Technologies,
Technical University, Sofia, Bulgaria

 Stefka Hristova Bouyuklieva, Department of Algebra and Geometry,
Faculty of Mathematics and Informatics, Veliko Tarnovo University, Bulgaria

Vesselin Velichkov, University of Luxembourg, Faculty of Sciences,
Technology and Communication (FSTC), Luxembourg

Isabel Maria Baltazar Simões de Carvalho, Instituto Superior Técnico,
Technical University of Lisbon, Portugal

Predrag S. Stanimirović, University of Niš, Faculty of Sciences and Mathematics,
Department of Mathematics and Informatics, Niš, Serbia

Shcherbacov Victor, Institute of Mathematics and Computer Science,
Academy of Sciences of Moldova, Moldova

Pedro Ricardo Morais Inácio, Department of Computer Science,
Universidade da Beira Interior, Portugal

Sanja Panovska, GFZ German Research Centre for Geosciences, Germany
Georgi Tuparov, Technical University of Sofia Bulgaria

Dijana Karuovic, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
Ivanka Georgieva, South-West University, Blagoevgrad, Bulgaria

Georgi Stojanov, Computer Science, Mathematics, and Environmental Science Department
The American University of Paris, France

Iliya Guerguiev Bouyukliev, Institute of Mathematics and Informatics,
Bulgarian Academy of Sciences, Bulgaria

 Riste Škrekovski, FAMNIT, University of Primorska, Koper, Slovenia
 Stela Zhelezova, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Bulgaria
 Katerina Taskova, Computational Biology and Data Mining Group,

Faculty of Biology, Johannes Gutenberg-Universität Mainz (JGU), Mainz, Germany.
 Dragana Glušac, Tehnical Faculty “Mihajlo Pupin”, Zrenjanin, Serbia
 Cveta Martinovska-Bande, Faculty of Computer Science, UGD, Macedonia
 Blagoj Delipetrov, Faculty of Computer Science, UGD, Macedonia
 Zoran Zdravev, Faculty of Computer Science, UGD, Macedonia
 Aleksandra Mileva, Faculty of Computer Science, UGD, Macedonia
 Igor Stojanovik, Faculty of Computer Science, UGD, Macedonia
 Saso Koceski, Faculty of Computer Science, UGD, Macedonia
 Natasa Koceska, Faculty of Computer Science, UGD, Macedonia
 Aleksandar Krstev, Faculty of Computer Science, UGD, Macedonia
 Biljana Zlatanovska, Faculty of Computer Science, UGD, Macedonia
 Natasa Stojkovik, Faculty of Computer Science, UGD, Macedonia
 Done Stojanov, Faculty of Computer Science, UGD, Macedonia
 Limonka Koceva Lazarova, Faculty of Computer Science, UGD, Macedonia
 Tatjana Atanasova Pacemska, Faculty of Electrical Engineering, UGD, Macedonia

5

C O N T E N T

Aleksandar, Velinov, Vlado, Gicev
PRACTICAL APPLICATION OF SIMPLEX METHOD FOR SOLVING
LINEAR PROGRAMMING PROBLEMS .. 7

Biserka Petrovska , Igor Stojanovic , Tatjana Atanasova Pachemska
CLASSIFICATION OF SMALL DATA SETS OF IMAGES WITH
TRANSFER LEARNING IN CONVOLUTIONAL NEURAL NETWORKS 17

Done Stojanov
WEB SERVICE BASED GENOMIC DATA RETRIEVAL ... 25

Aleksandra Mileva, Vesna Dimitrova
SOME GENERALIZATIONS OF RECURSIVE DERIVATES
OF k-ary OPERATIONS .. 31

Diana Kirilova Nedelcheva
SOME FIXED POINT RESULTS FOR CONTRACTION
SET - VALUED MAPPINGS IN CONE METRIC SPACES .. 39

Aleksandar Krstev, Dejan Krstev, Boris Krstev, Sladzana Velinovska
DATA ANALYSIS AND STRUCTURAL EQUATION MODELLING
FOR DIRECT FOREIGN INVESTMENT FROM LOCAL POPULATION 49

Maja Srebrenova Miteva, Limonka Koceva Lazarova
NOTION FOR CONNECTEDNESS AND PATH CONNECTEDNESS IN
SOME TYPE OF TOPOLOGICAL SPACES ... 55

The Appendix

Aleksandra Stojanova , Mirjana Kocaleva , Natasha Stojkovikj , Dusan Bikov ,
Marija Ljubenovska , Savetka Zdravevska , Biljana Zlatanovska , Marija Miteva ,
Limonka Koceva Lazarova
OPTIMIZATION MODELS FOR SHEDULING IN KINDERGARTEN
AND HEALTHCARE CENTES .. 65

Maja Kukuseva Paneva, Biljana Citkuseva Dimitrovska, Jasmina Veta Buralieva,
Elena Karamazova, Tatjana Atanasova Pacemska
PROPOSED QUEUING MODEL M/M/3 WITH INFINITE WAITING
LINE IN A SUPERMARKET .. 73

Maja Mijajlovikj1, Sara Srebrenkoska, Marija Chekerovska, Svetlana Risteska,
Vineta Srebrenkoska
APPLICATION OF TAGUCHI METHOD IN PRODUCTION OF SAMPLES
PREDICTING PROPERTIES OF POLYMER COMPOSITES .. 79

Sara Srebrenkoska, Silvana Zhezhova, Sanja Risteski, Marija Chekerovska
Vineta Srebrenkoska Svetlana Risteska
APPLICATION OF FACTORIAL EXPERIMENTAL DESIGN IN
PREDICTING PROPERTIES OF POLYMER COMPOSITES ... 85

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri,
Milena Veneva , Aleksandra Risteska
COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT
FOR ELBOWS. PRACTICALLY ORIENTATED ALGORITHM .. 89

63

In all of this example, we saw that the notations of connectedness and path connectedness are in relation i.e.
if some space is connected then we can find a path connection in that if the space is locally Euclidean1. In a metric
space, the concept of connectedness it is difficult to estimate definite but understanding for it is to take just like a
‘hole part’. Path connectedness is almost the same thing in metric space. So, depends of the dimension of the
Euclidean space we can find relation between connectedness and path connectedness.

 Example 3.4. If  ,X d be a connected metric space. Assume that each point of X has an open set U such

that x U and U is path connected. Than X is path connected.

 Example 3.5. If A be a connected subset in nR and 0  . Then it is clear that for  - neighborhood of

A defined by     : n
AU A x R d x    is path connected.

4. Concluding remarks

In particular, spaces that are connected cannot be always path connected too. These notions are in the
relation if the topology space has some properties. In this paper are represented some examples in which it can be
easily seen that there are some connected topology spaces which can be path connected also. The conclusion from
all of these is: if we are working with a metric space or we have a locally Euclidean space we can find a connected
space in which also we can find a path between some pair of points. Metric spaces are interesting for work, because
they are not so abstract and can be represented geometrically, so the concept of connectedness this space take like a
‘hole part’ and concept of path connectedness is easier to see there. Implication of connectedness to path
connectedness can be shown if the space for working is metric (Euclidean). Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are
given in metric space and for that this implication can be true.

5. References
1. Sekutkovski N., TOPOLOGY, University of Kiril and Metodij, Faculty of natural science, Skopje, 2002,

pg. 61 - 67
2. Mendelson B., INTRODUCTION IN TOPOLOGY, 3rd Edition, Dover Publication,INC., New York, 1975,

pg. 137, pg. 164
3. Mankres J.R., TOPOLOGY, 2nd Edition, Copyright Ars lumina, Skopje, 2011, pg. 155
4. Korner T.W., METRIC AND TOPOLOGY SPACE, Faculty Board Schedules, 2015 , pg. 25-39
5. Conrad K., SPACES THAT ARE CONNECTED BUT NOT PATH CONNECTED, expository paper, Math

Dept. UConn,pg. 5
6. Kumaresan S., TOPOLOGY OF METRIC SPACE, Alpha science international, Harrow, 2005, pg. 106, pg.

115, pg. 117-119
7. Sutherland W.A., INTRODICTION TO METRIC AND TOPOLOGICAL SPACES, Second edition, Oxford,

New York, 2009, pg. 116-117

A topological space X is called locally Euclidean if there is a non negative integer n such that every point in X has a
neighbourhood which is homeomorphic to the Euclidean space with specific dimension.

In all of this example, we saw that the notations of connectedness and path connectedness are in relation i.e.
if some space is connected then we can find a path connection in that if the space is locally Euclidean1. In a metric
space, the concept of connectedness it is difficult to estimate definite but understanding for it is to take just like a
‘hole part’. Path connectedness is almost the same thing in metric space. So, depends of the dimension of the
Euclidean space we can find relation between connectedness and path connectedness.

 Example 3.4. If  ,X d be a connected metric space. Assume that each point of X has an open set U such

that x U and U is path connected. Than X is path connected.

 Example 3.5. If A be a connected subset in nR and 0  . Then it is clear that for  - neighborhood of

A defined by     : n
AU A x R d x    is path connected.

4. Concluding remarks

In particular, spaces that are connected cannot be always path connected too. These notions are in the
relation if the topology space has some properties. In this paper are represented some examples in which it can be
easily seen that there are some connected topology spaces which can be path connected also. The conclusion from
all of these is: if we are working with a metric space or we have a locally Euclidean space we can find a connected
space in which also we can find a path between some pair of points. Metric spaces are interesting for work, because
they are not so abstract and can be represented geometrically, so the concept of connectedness this space take like a
‘hole part’ and concept of path connectedness is easier to see there. Implication of connectedness to path
connectedness can be shown if the space for working is metric (Euclidean). Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are
given in metric space and for that this implication can be true.

5. References
1. Sekutkovski N., TOPOLOGY, University of Kiril and Metodij, Faculty of natural science, Skopje, 2002,

pg. 61 - 67
2. Mendelson B., INTRODUCTION IN TOPOLOGY, 3rd Edition, Dover Publication,INC., New York, 1975,

pg. 137, pg. 164
3. Mankres J.R., TOPOLOGY, 2nd Edition, Copyright Ars lumina, Skopje, 2011, pg. 155
4. Korner T.W., METRIC AND TOPOLOGY SPACE, Faculty Board Schedules, 2015 , pg. 25-39
5. Conrad K., SPACES THAT ARE CONNECTED BUT NOT PATH CONNECTED, expository paper, Math

Dept. UConn,pg. 5
6. Kumaresan S., TOPOLOGY OF METRIC SPACE, Alpha science international, Harrow, 2005, pg. 106, pg.

115, pg. 117-119
7. Sutherland W.A., INTRODICTION TO METRIC AND TOPOLOGICAL SPACES, Second edition, Oxford,

New York, 2009, pg. 116-117

A topological space X is called locally Euclidean if there is a non negative integer n such that every point in X has a
neighbourhood which is homeomorphic to the Euclidean space with specific dimension.

In all of this example, we saw that the notations of connectedness and path connectedness are in relation i.e.
if some space is connected then we can find a path connection in that if the space is locally Euclidean1. In a metric
space, the concept of connectedness it is difficult to estimate definite but understanding for it is to take just like a
‘hole part’. Path connectedness is almost the same thing in metric space. So, depends of the dimension of the
Euclidean space we can find relation between connectedness and path connectedness.

 Example 3.4. If  ,X d be a connected metric space. Assume that each point of X has an open set U such

that x U and U is path connected. Than X is path connected.

 Example 3.5. If A be a connected subset in nR and 0  . Then it is clear that for  - neighborhood of

A defined by     : n
AU A x R d x    is path connected.

4. Concluding remarks

In particular, spaces that are connected cannot be always path connected too. These notions are in the
relation if the topology space has some properties. In this paper are represented some examples in which it can be
easily seen that there are some connected topology spaces which can be path connected also. The conclusion from
all of these is: if we are working with a metric space or we have a locally Euclidean space we can find a connected
space in which also we can find a path between some pair of points. Metric spaces are interesting for work, because
they are not so abstract and can be represented geometrically, so the concept of connectedness this space take like a
‘hole part’ and concept of path connectedness is easier to see there. Implication of connectedness to path
connectedness can be shown if the space for working is metric (Euclidean). Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are
given in metric space and for that this implication can be true.

5. References
1. Sekutkovski N., TOPOLOGY, University of Kiril and Metodij, Faculty of natural science, Skopje, 2002,

pg. 61 - 67
2. Mendelson B., INTRODUCTION IN TOPOLOGY, 3rd Edition, Dover Publication,INC., New York, 1975,

pg. 137, pg. 164
3. Mankres J.R., TOPOLOGY, 2nd Edition, Copyright Ars lumina, Skopje, 2011, pg. 155
4. Korner T.W., METRIC AND TOPOLOGY SPACE, Faculty Board Schedules, 2015 , pg. 25-39
5. Conrad K., SPACES THAT ARE CONNECTED BUT NOT PATH CONNECTED, expository paper, Math

Dept. UConn,pg. 5
6. Kumaresan S., TOPOLOGY OF METRIC SPACE, Alpha science international, Harrow, 2005, pg. 106, pg.

115, pg. 117-119
7. Sutherland W.A., INTRODICTION TO METRIC AND TOPOLOGICAL SPACES, Second edition, Oxford,

New York, 2009, pg. 116-117

A topological space X is called locally Euclidean if there is a non negative integer n such that every point in X has a
neighbourhood which is homeomorphic to the Euclidean space with specific dimension.

The Appendix of the first number of Balkan Journal of Applied Mathematics and Informatics,
is devoted to the reports of the First Modelling Week in Macedonia, which was held in Stip,
12-16 February 2018.

The First Modelling Week in Macedonia was organized by Faculty of Computer Science -
Department of Mathematics and Statistics, Faculty of Electrical Engineering and Faculty of
Technology with the support of the TD 1409 MI-NET Cost Action. The aims of the Modelling
Week were: widening, broadening and sharing knowledge relevant to the Action’s objectives
through working on modern and actual problems which can be solved with mathematics and
mathematical modelling.

The Modelling Week was organized under auspices of Prof. Blazo Boev, Rector of the Goce
Delcev University, Stip, Macedonia.

The Program Committee of the First Modelling Week were:

1. Vineta Srebrenkoska, PhD – Macedonia
2. Tatjana Atanasova – Pachemska, PhD – Macedonia
3. Poul G. Hjorth, PhD – Denmark
4. Wojciech Okrasinski, PhD – Poland
5. Joerg Elzenbach, PhD – Germany
6. Gregoris Makrides, PhD – Cyprus
7. Biljana Jolevska – Tuneska, PhD – Macedonia
8. Limonka Koceva Lazarova, PhD - Macedonia

In the First Modelling Week in Macedonia participated 34 participants from Macedonia,
Bulgaria, Portugal and Denmark. The Modelling Week was aimed towards Masters, PhD
students, Early Career Investigators (up to 8 years after their PhD). All the participants were
split in three groups in order to solve the three problems which were set:

Problem 1 - Scheduling in kindergarten, proposed by Limonka Koceva Lazarova

Problem 2 - Determining the optimal number of cash boxes to increase the efficiency of the
customer service and determining the way of storage of products in the warehouse. How to
manage stocks in the warehouse, proposed by Tatjana Atanasova – Pachemska.

Problem 3 - Optimization of the industrial processes for production of advanced polymer
composites by implementation of the full factorial experimental design, proposed by Vineta
Srebrenkoska.

The third problem was split in three subproblems.

All of the solutions are presented in form of reports in this appendix.

Thanks for the editors of the Balkan Journal of Applied Mathematics and Informatics, about
their support for publishing of the results from The First Modelling Week in Macedonia.

89

and (5), the fiber content of the composites can be calculated and then the appropriate fiber/matrix ratio will be used
in fabrication of the composites. Also, yfn and ytn i.e. values of tensile or flexural strengths, can be calculated for a
given fiber content (x1 factor). In both above cases the mixing temperature has to be fixed at 185oC for the most
favorable outcome.

4. Conclusion

In the frame of this paper full factorial experimental design was applied to predict the mechanical properties of

the polymer composites. The important entries that influence on the improved solution were defined. For the range
of the mixing temperature and fiber/resin ratio the experimental measurements of the tensile and flexure strength of
composite pipes were carried out by implementing the 22 full factorial experimental design. A correlation equations
were established for tensile and flexure strength as a function of the fiber content and mixing temperature and of the
interaction between them. Namely, it was created the regression equitation which the best describes the process. It
was observed that if the study domain is precisely established (narrow enough), the factorial experimental design
can be employed in order to give good approximation of the response. It was made verification of the model i.e. the
adequacy of the regression equation and it was found that the model is adequate and can be accepted and further
used.

Acknowledgment

This work was successfully finished during the First Modelling Week in Macedonia supported by a grant of
COST Action Mathematics for industry network FD 1409 programme.

5. References

[1] Hunter, W. Hunter S. (2005). Statistics for Experimenters: Design, innovation and discovery: John Wiley and Sons, New York, book.
[2] Dean, A. Voss, D. (1999). Design and Analysis of Experiments: Springer-Verlag, New York, book.
[3] Montgomery, D. (2001). Design and Analysis of Experiments, 5th Edition: John Wiley & Sons, book.
[4] Goupy, J. Creighton, L. (2007). Introduction to Design of Experiments: SAS Publishing, book.
[5] Oksman, K. (2000). Mechanical properties of natural fibre mat reinforced thermoplastics: Appl. Comp. Mat., Vol. 7, pp.403-414.
[6] Bogoeva–Gaceva, G. Avella, M. Malinconico, M. Buzarovska, A. Grozdanov, A. Gentile, G. Errico, M. (2007). Natural fiber

ecocomposites: Polym. Compos., Vol. 28 (1), pp. 98–107.

1

COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS.
PRACTICALLY ORIENTATED ALGORITHM

Igor Dimovski1, Ice Gjumandeloski2, Filip Kochoski2, Mahendra Paipuri3, Milena Veneva4 , Aleksandra Risteska5

1Department of Mathematics, Institute for Advanced Composites and Robotics, Prilep, Macedonia

igord@iacr.edu.mk
2Institute for Advanced Composites and Robotics, Prilep, Macedonia

ice_gjumandeloski@yahoo.com, filip.kocho@gmail.com
3Departamento de Engenharia Civil, Arquitectura e Georrecursos, Instituto Superior Técnico, Lisboa

mahendra.paipuri@gmail.com
4Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria

milena.p.veneva@gmail.com
5Faculty of Computer science, Goce Delcev University, Stip, Macedonia

 aleksandra.risteska@ugd.edu.mk

Abstract: Filament winding is one of the most used automated techniques for manufacturing of composite
objects with different open-end or closed-end structures. Mathematical model for covering an elbow
mandrel with composite material is considered. The nature of the comprising equations is elaborated in
detail. A practically orientated algorithm for filament winding for elbows is formulated and its open-source
implementations in Python and MATLAB are presented. The results from the constructed algorithm are
presented and discussed.
Keywords: filament winding for elbows, tape placement for elbows, practical algorithm, open-source, CAD.

1. Introduction and problem statement
Filament winding is one of the most used automated techniques for manufacturing of composite objects with
different open-end or closed-end structures. The process consists of winding glass fiber or carbon fiber strands,
impregnated in a bath with a resin, kept under tension over a rotating spindle mandrel. Figure 1 shows the
filament winding of an elbow. Typically, the tension is in the range from 1.1 to 4.4 N [1]. The pattern and the
angle of the fiber winding are controlled from a delivery (or feed) eye on a carriage. Once the coverage has
achieved a desired thickness, the resin is cured and then the mandrel can be or can be not extracted, depending
on the shape and the application of the object. A video which shows how filament winding works can be seen
here: [ArcoIndustries]. (2013, April 24). Fiberglass Elbow Filament Winding Demo 1 [Video File]. Retrieved
from https://www.youtube.com/watch?v=0f63pfHNK6U. There are four types of filament winding according to
the winding angle – hoop, helical, circumferential, and polar.

Objects with cross sections with very small acute angles cannot be filament wound [1]. Strategies for
filament winding for different shapes exist in the literature, e.g.:

• elbow – [2], [3];
• toroidal – [4];
• T-shaped – [5];
• generalization – [6].

 Other than filament winding can be applied for various set of shapes, among the advantages of the
technique are also its economics, since the fiber and the resin are used in their lowest cost form and the fiber is

UDK: 004.942:[620.22-021.385:621.77

90

2

continuous over the entire path. Another upside comes from the fact that the process can be automated which
results in cost savings in the case of large production volumes.
 There exist different CAD/CAM software solutions for filament winding for different shapes, e.g.
Mikrosam Winding Expert [7] or Cadfil® - Filament Winding Software & Technology [8] (some other software
solutions for filament winding, as well as their upsides and downsides are listed in [9]), but they are not
distributed free of charge.
 There is a need of an user-friendly formulated algorithm (it is not the case in most of the ones
available in the literature) and an open-source implementation of the algorithm for filament winding for
elbows and so this was the problem we needed to solve during the First Modelling Week in Macedonia. As a
first step an algorithm is proposed to cover the entire elbow with tapes without considering the dwell1.

Figure 1. (Example of filament winding of an elbow part.)2

If we have done a solution of the problem that includes dwelling, we would need to be aware of the geodesic
curvature [2] and the normal curvature [6] of the path that make the slippage coefficient [2]:

 (1)

and we must keep where is the coefficient of friction between the fibers and the mandrel. Our
algorithm can be extended to add dwelling to the problem.
 In our solution, we have chosen to have a geodesic path, i.e. of the fibers (tape), so we can use a
certain number of tapes to make a layer, with all tapes from the layer going in the same direction.

1 Dwell is the amount of mandrel rotation with no carriage movement at the start and at the end of the filament winding.
2 The picture was taken as a screenshot from [ArcoIndustries]. (2013, April 24). Fiberglass Elbow Filament Winding Demo 1
[Video File]. Retrieved from https://www.youtube.com/watch?v=0f63pfHNK6U

3

 At the end of the First Modelling Week in Macedonia our team gave a talk on the problem which was
assigned to us, as well as our solution. The presentation can be found on ResearchGate:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abbf6624cde269658661549
 The aim and the main contribution of this note is to give some clarification on the origin of the
formulae needed for mathematical modelling of tape placement for elbow with the concepts of differential
geometry and following [2], as well as to formulate a practically orientated algorithm. Finally, MATLAB and
Python implementations of the algorithm are provided.
 The layout of the paper is as follows: in Section 2, we introduce the mathematical model and the
practically orientated algorithm. Section 3 presents the source code of the algorithm implemented in MATLAB
and Python. In Section 4 we state and discuss the results. In the final Section 5 some concluding remarks and
notes for future work are listed. Afterwards, the acknowledgments and the references follow.

2. Mathematical model and algorithm

2.1 Choice of coordinate system and building a representation of the elbow

Figure 2. (The elbow in a coordinate system.)

An orthogonal coordinate system is chosen (see Figure 2). The surface of the elbow in a coordinate
system (planes with constant passing through the torus’s axis) [10] can be parameterized as a surface of
revolution. Then, the formulae that represent the surface of the elbow with respect to , are:

(2)

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska

91

2

continuous over the entire path. Another upside comes from the fact that the process can be automated which
results in cost savings in the case of large production volumes.
 There exist different CAD/CAM software solutions for filament winding for different shapes, e.g.
Mikrosam Winding Expert [7] or Cadfil® - Filament Winding Software & Technology [8] (some other software
solutions for filament winding, as well as their upsides and downsides are listed in [9]), but they are not
distributed free of charge.
 There is a need of an user-friendly formulated algorithm (it is not the case in most of the ones
available in the literature) and an open-source implementation of the algorithm for filament winding for
elbows and so this was the problem we needed to solve during the First Modelling Week in Macedonia. As a
first step an algorithm is proposed to cover the entire elbow with tapes without considering the dwell1.

Figure 1. (Example of filament winding of an elbow part.)2

If we have done a solution of the problem that includes dwelling, we would need to be aware of the geodesic
curvature [2] and the normal curvature [6] of the path that make the slippage coefficient [2]:

 (1)

and we must keep where is the coefficient of friction between the fibers and the mandrel. Our
algorithm can be extended to add dwelling to the problem.
 In our solution, we have chosen to have a geodesic path, i.e. of the fibers (tape), so we can use a
certain number of tapes to make a layer, with all tapes from the layer going in the same direction.

1 Dwell is the amount of mandrel rotation with no carriage movement at the start and at the end of the filament winding.
2 The picture was taken as a screenshot from [ArcoIndustries]. (2013, April 24). Fiberglass Elbow Filament Winding Demo 1
[Video File]. Retrieved from https://www.youtube.com/watch?v=0f63pfHNK6U

3

 At the end of the First Modelling Week in Macedonia our team gave a talk on the problem which was
assigned to us, as well as our solution. The presentation can be found on ResearchGate:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abbf6624cde269658661549
 The aim and the main contribution of this note is to give some clarification on the origin of the
formulae needed for mathematical modelling of tape placement for elbow with the concepts of differential
geometry and following [2], as well as to formulate a practically orientated algorithm. Finally, MATLAB and
Python implementations of the algorithm are provided.
 The layout of the paper is as follows: in Section 2, we introduce the mathematical model and the
practically orientated algorithm. Section 3 presents the source code of the algorithm implemented in MATLAB
and Python. In Section 4 we state and discuss the results. In the final Section 5 some concluding remarks and
notes for future work are listed. Afterwards, the acknowledgments and the references follow.

2. Mathematical model and algorithm

2.1 Choice of coordinate system and building a representation of the elbow

Figure 2. (The elbow in a coordinate system.)

An orthogonal coordinate system is chosen (see Figure 2). The surface of the elbow in a coordinate
system (planes with constant passing through the torus’s axis) [10] can be parameterized as a surface of
revolution. Then, the formulae that represent the surface of the elbow with respect to , are:

(2)

COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS.
PRACTICALLY ORIENTATED ALGORITHM

92

4

where and are constants of the elbow – the distance from the center of the tube (the origin of the
coordinate system) to the center of the torus (major radius) and the radius of the tube (minor radius),
respectively; and are surface-defining parameters of the elbow – toroidal and poloidal directions,
respectively (see Figure 3 and
Figure 4). Without loss of generality, we consider the case when .
 The coefficients of the first fundamental form of are (see [11], [12]):

 (3)

 (4)

 (5)

From it follows that the coordinate system is orthogonal and hence Liouville’s formula for the
geodesic curvature [13] can be applied:

 (6)

Figure 3. (Parameters of the elbow.)

5

Figure 4. (Parameters of the elbow.)

In the case of an elbow, Eq. (7) follows:

 (7)

2.2 Defining the winding angle
The winding angle is measured in the plane formed by the unit vectors and , i.e. direction of course with
path ; is a design constant that represents the initial value of the angle when .

2.3 Assumption for geodesic curves
Following [2], if , then from Eq. (7) it follows that:

(8)

The length of a curve on the surface in meridional direction and parallel direction are given by (see [6]):

 (9)

 (10)

The latter two formulae follow from the definition of the coefficients of the first fundamental form (Eq. (3), (4),
and (5)). Then, if follows that (see Figure 5):

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska

93

4

where and are constants of the elbow – the distance from the center of the tube (the origin of the
coordinate system) to the center of the torus (major radius) and the radius of the tube (minor radius),
respectively; and are surface-defining parameters of the elbow – toroidal and poloidal directions,
respectively (see Figure 3 and
Figure 4). Without loss of generality, we consider the case when .
 The coefficients of the first fundamental form of are (see [11], [12]):

 (3)

 (4)

 (5)

From it follows that the coordinate system is orthogonal and hence Liouville’s formula for the
geodesic curvature [13] can be applied:

 (6)

Figure 3. (Parameters of the elbow.)

5

Figure 4. (Parameters of the elbow.)

In the case of an elbow, Eq. (7) follows:

 (7)

2.2 Defining the winding angle
The winding angle is measured in the plane formed by the unit vectors and , i.e. direction of course with
path ; is a design constant that represents the initial value of the angle when .

2.3 Assumption for geodesic curves
Following [2], if , then from Eq. (7) it follows that:

(8)

The length of a curve on the surface in meridional direction and parallel direction are given by (see [6]):

 (9)

 (10)

The latter two formulae follow from the definition of the coefficients of the first fundamental form (Eq. (3), (4),
and (5)). Then, if follows that (see Figure 5):

COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS.
PRACTICALLY ORIENTATED ALGORITHM

94

6

(11)

Figure 5. (Winding angle.)

Now, if the formula for the part length (see [11], [12]) is written and Eq. (11) is substituted in it, it follows:

(12)

Eq. (8), (11) and (12) form the system which determines the geodesics of the elbow. Eliminating the arc length s
from this system of differential equations, we have:

 (13)

(14)3

Integrating Eq. (13) and determining the constant of integration taking into account the initial condition (see
Section 2.2), we have:

 (15)

Substituting with Eq. (15) into Eq. (14), it follows that:

(16)

2.4 Defining criterion

3 One should note that the minus to the right-hand side of the equality sign in [2], Eq. (1.8) is a typo.

7

So as to be able to define a stopping criterion which will tell us when the entire surface is going to be covered,
the following formulae are considered:

(17)

(18)

(19)

where Eq. (18) gives the number of needed tapes so as the whole surface of the elbow to be
completely covered. The tapes should be placed uniformly, starting at , moving with a step

 given by Eq. (19), with a period which is given by Eq. (17).

2.5 The idea
Because we needed number of tapes to cover the surface, our idea for their position is to have the base line,
i.e. to pass at point described by , and so to have every i-th line to pass at point described
by . With this considerations, we need to find where the line should start from, and where it
will end (see Figure 6). This can be easily done if we split this subproblem into two parts 1) going from the
middle to the end, and 2) going from the start to the middle. To that purpose, we need to find the correct
starting and ending angles. Since we know that the starting and the ending angles for for each line i are

 and , respectively, the next thing we should do is to find the appropriate angles

 and . To that purpose, we use the following formulae:

(20)

(21)

(22)

(23)

In Eq. (21) and Eq. (23), we can see that the angles and that we need to compute can be found
as limits of the integrals. To extract their values we used the bisection method (see [14], [15], [16]), also known
as the dichotomy method. The bisection method is a technique for finding a real-valued root of a continuous
function, defined in a closed interval for which endings it is known that the function values have opposite
signs, by successively narrowing the range of values inside which the root is known to exist using interval
halving. The existence of a root follows from Bolzano’s theorem [17]. The bisection method is known to be
slowly convergent (see [14], [15]), but here we were not looking for a performance.

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska

95

6

(11)

Figure 5. (Winding angle.)

Now, if the formula for the part length (see [11], [12]) is written and Eq. (11) is substituted in it, it follows:

(12)

Eq. (8), (11) and (12) form the system which determines the geodesics of the elbow. Eliminating the arc length s
from this system of differential equations, we have:

 (13)

(14)3

Integrating Eq. (13) and determining the constant of integration taking into account the initial condition (see
Section 2.2), we have:

 (15)

Substituting with Eq. (15) into Eq. (14), it follows that:

(16)

2.4 Defining criterion

3 One should note that the minus to the right-hand side of the equality sign in [2], Eq. (1.8) is a typo.

6

(11)

Figure 5. (Winding angle.)

Now, if the formula for the part length (see [11], [12]) is written and Eq. (11) is substituted in it, it follows:

(12)

Eq. (8), (11) and (12) form the system which determines the geodesics of the elbow. Eliminating the arc length s
from this system of differential equations, we have:

 (13)

(14)3

Integrating Eq. (13) and determining the constant of integration taking into account the initial condition (see
Section 2.2), we have:

 (15)

Substituting with Eq. (15) into Eq. (14), it follows that:

(16)

2.4 Defining criterion

3 One should note that the minus to the right-hand side of the equality sign in [2], Eq. (1.8) is a typo.

7

So as to be able to define a stopping criterion which will tell us when the entire surface is going to be covered,
the following formulae are considered:

(17)

(18)

(19)

where Eq. (18) gives the number of needed tapes so as the whole surface of the elbow to be
completely covered. The tapes should be placed uniformly, starting at , moving with a step

 given by Eq. (19), with a period which is given by Eq. (17).

2.5 The idea
Because we needed number of tapes to cover the surface, our idea for their position is to have the base line,
i.e. to pass at point described by , and so to have every i-th line to pass at point described
by . With this considerations, we need to find where the line should start from, and where it
will end (see Figure 6). This can be easily done if we split this subproblem into two parts 1) going from the
middle to the end, and 2) going from the start to the middle. To that purpose, we need to find the correct
starting and ending angles. Since we know that the starting and the ending angles for for each line i are

 and , respectively, the next thing we should do is to find the appropriate angles

 and . To that purpose, we use the following formulae:

(20)

(21)

(22)

(23)

In Eq. (21) and Eq. (23), we can see that the angles and that we need to compute can be found
as limits of the integrals. To extract their values we used the bisection method (see [14], [15], [16]), also known
as the dichotomy method. The bisection method is a technique for finding a real-valued root of a continuous
function, defined in a closed interval for which endings it is known that the function values have opposite
signs, by successively narrowing the range of values inside which the root is known to exist using interval
halving. The existence of a root follows from Bolzano’s theorem [17]. The bisection method is known to be
slowly convergent (see [14], [15]), but here we were not looking for a performance.

COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS.
PRACTICALLY ORIENTATED ALGORITHM

96

8

Figure 6. (Representation of the angles and the angle intervals of)

Then, the classical fourth-order explicit Runge-Kutta method (see [15], [16]) was applied to the system
of ODEs which consists of Eq. (13) and Eq. (14). The classical fourth-order Runge-Kutta method is an explicit
method for numerical solving of an initial value problem or system where the integrand is calculated at four
intermediate stages within a time step. That is, the approximation of the solution in point n+1 is calculated as a
sum of the solution in point n plus the weighted sum of four addends, each of which is a product of the
subinterval size and the slope specified by the right-hand side of the differential equation. The total
accumulated error is on the order of , where h is the interval size.

The last thing we do so as to find the exact trajectory of the M number of lines is to numerically solve

the Eq. (16) for each line with , and

2.6 The algorithm
To sum up, the steps needed to be done so as an elbow to be tape covered are as follows:
a) compute (Eq. (17));
b) compute M (Eq. (18));
c) compute (Eq. (19));
d) compute , solving Eq. (21) and Eq. (23) by applying the fzero built-in function in
the first MATLAB implementation, and the bisection method in the Python implementation and in the second
MATLAB implementation;
e) solve Eq. (16) using the ode45 built-in function in the first MATLAB implementation or the classical fourth-
order explicit Runge-Kutta method in the Python implementation, and solve the system of ODEs (13)—(14)
with an initial condition in the second MATLAB implementation;
f) extract the necessary points;
g) plot.

9

3. Implementations
The algorithm described in Section 2.6 was implemented in MATLAB [18] and in Python [19] (Anaconda
(5.1.0): Py3.6 [20]). The source codes can be found on ResearchGate:

• MATLAB implementation – variant 1:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd30254cde260d15d5b55c

• MATLAB implementation – variant 2:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd3150b53d2f63c3c2cbfb

• Python implementation:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd31994cde260d15d5b58d
Here, we are going to present two of them.

 3.1 MATLAB implementation – variant 1

%%%
%
% Algorithm for tape placement for elbows.
%
%%%
%
% This source code is licensed under a Creative Commons Attribution 4.0
% International License.
%
%%%
format long
hold on
clc
clear
global R
global r
global alfa_0
%%%
% Test values and initial conditions:
%%%
R=20;
r=5;
w=1;
alfa_0 = 78*pi/180;
teta_span = 2*pi/3;
%%%
% f = d_theta/d_phi:
%%%
f = @(fi) (r.*(R+r).*cos(alfa_0))./((R+r.*cos(fi)).* ...

 sqrt((R+r.*cos(fi)).^2-((R+r)^2).*(cos(alfa_0)).^2));
%%%
% Compute teta_cycle (step a)):
%%%
teta_cycle = quadgk(f,0,2*pi);
%%%
% Compute M (step b)):
%%%
M = floor(((R+r)*teta_cycle*sin(alfa_0))/(w)) + 1;

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska

97

8

Figure 6. (Representation of the angles and the angle intervals of)

Then, the classical fourth-order explicit Runge-Kutta method (see [15], [16]) was applied to the system
of ODEs which consists of Eq. (13) and Eq. (14). The classical fourth-order Runge-Kutta method is an explicit
method for numerical solving of an initial value problem or system where the integrand is calculated at four
intermediate stages within a time step. That is, the approximation of the solution in point n+1 is calculated as a
sum of the solution in point n plus the weighted sum of four addends, each of which is a product of the
subinterval size and the slope specified by the right-hand side of the differential equation. The total
accumulated error is on the order of , where h is the interval size.

The last thing we do so as to find the exact trajectory of the M number of lines is to numerically solve

the Eq. (16) for each line with , and

2.6 The algorithm
To sum up, the steps needed to be done so as an elbow to be tape covered are as follows:
a) compute (Eq. (17));
b) compute M (Eq. (18));
c) compute (Eq. (19));
d) compute , solving Eq. (21) and Eq. (23) by applying the fzero built-in function in
the first MATLAB implementation, and the bisection method in the Python implementation and in the second
MATLAB implementation;
e) solve Eq. (16) using the ode45 built-in function in the first MATLAB implementation or the classical fourth-
order explicit Runge-Kutta method in the Python implementation, and solve the system of ODEs (13)—(14)
with an initial condition in the second MATLAB implementation;
f) extract the necessary points;
g) plot.

9

3. Implementations
The algorithm described in Section 2.6 was implemented in MATLAB [18] and in Python [19] (Anaconda
(5.1.0): Py3.6 [20]). The source codes can be found on ResearchGate:

• MATLAB implementation – variant 1:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd30254cde260d15d5b55c

• MATLAB implementation – variant 2:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd3150b53d2f63c3c2cbfb

• Python implementation:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd31994cde260d15d5b58d
Here, we are going to present two of them.

 3.1 MATLAB implementation – variant 1

%%%
%
% Algorithm for tape placement for elbows.
%
%%%
%
% This source code is licensed under a Creative Commons Attribution 4.0
% International License.
%
%%%
format long
hold on
clc
clear
global R
global r
global alfa_0
%%%
% Test values and initial conditions:
%%%
R=20;
r=5;
w=1;
alfa_0 = 78*pi/180;
teta_span = 2*pi/3;
%%%
% f = d_theta/d_phi:
%%%
f = @(fi) (r.*(R+r).*cos(alfa_0))./((R+r.*cos(fi)).* ...

 sqrt((R+r.*cos(fi)).^2-((R+r)^2).*(cos(alfa_0)).^2));
%%%
% Compute teta_cycle (step a)):
%%%
teta_cycle = quadgk(f,0,2*pi);
%%%
% Compute M (step b)):
%%%
M = floor(((R+r)*teta_cycle*sin(alfa_0))/(w)) + 1;

COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS.
PRACTICALLY ORIENTATED ALGORITHM

98

10

%%%
% Plot the torus:
%%%
fi_i = 0;
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4]);
options2 = odeset('RelTol',1e-8,'AbsTol',1e-8);

Teta=linspace(-teta_span/2,teta_span/2,100);
Fi=linspace(0,2*pi,100);
[TetaM,FiM]=meshgrid(Teta,Fi);
X=(R+r*cos(FiM)).*cos(TetaM);
Y=r*sin(FiM);
Z=(R+r*cos(FiM)).*sin(TetaM);

h=surf(X,Y,Z);
axis equal
axis([0 40 -20 20 -20 20])
set(h,'FaceColor','g','EdgeColor','g','FaceAlpha',0.5,'EdgeAlpha',0);
%%%
% Compute θ_i, (step c):
%%%
teta_part = teta_span*teta_cycle/2;

for i=1:M
 % Compute θ_i, (step c):
 tita(i) = (i-1)*teta_cycle/M;
 % Compute fi_i
 fun = @(fi_i) (quadgk(f,0,fi_i)-tita(i));
 FI_I(i) = fzero(fun, 0);
 % Compute fi_{-,i} and fi_{+,i} (step d):
 fun = @(fi_start) (quadgk(f,fi_start,0)-(teta_span/2 + i*teta_cycle/M));
 FI_START(i) = fzero(fun, 0);
 fun = @(fi_end) (quadgk(f,0,fi_end)-(teta_span/2 - i*teta_cycle/M));
 FI_END(i) = fzero(fun, 0);
 % (step e):
 [phi,theta] = ode45 (@(phi,theta) r*(R+r)*cos(alfa_0)/(R+r*cos(phi))/ ...
 sqrt((R+r*cos(phi))^2-((R+r)*cos(alfa_0))^2),[FI_START(i) FI_END(i)], ...
 -teta_span/2, options2);
 % (step g):
 plot3((R+r*cos(phi)).*cos(theta), r*sin(phi), ...
 (R+r*cos(phi)).*sin(theta), 'b', 'linewidth',2);
 plot3((R+r*cos(phi)).*cos(theta), -r*sin(phi), ...
 (R+r*cos(phi)).*sin(theta), 'r', 'linewidth',2);
 view([90,0,0])
 F(i) = getframe;
end

[FI_I' tita']
%%%
% Play the recorded movie frames:
%%%
movie(F,0)
%%%
% End
%%%

11

3.2 Python implementation

Algorithm for tape placement for elbows.

This source code is licensed under a Creative Commons Attribution 4.0
International License.

Importing the needed modules:

from sympy import *
from mpmath import *
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Function for extracting coordinates from nested lists of angles:

def xyz(R,r,ph,th):
 m = len(ph)
 s = len(ph[0])
 x = np.empty((m,s)) # numpy matrix
 y = np.empty((m,s))
 z = np.empty((m,s))
 for i in range(m):
 for j in range(s):
 x[i,j] = (R + r * cos(ph[i][j])) * cos(th[i][j])
 y[i,j] = r * sin(ph[i][j])
 z[i,j] = (R + r * cos(ph[i][j])) * sin(th[i][j])
 return (x,y,z)

Test values and initial conditions:

w = 0.5 # tape width
R = 20 # the distance from the center of the tube to the center of the torus
r = 5 # radius of the tube
alpha_0 = 78*pi/180 # initial winding angle
theta_span = 2*pi/3 # span angle of the elbow

f = d_theta/d_phi:

f = lambda phi : r * (R + r) * cos(alpha_0) / (R+r*cos(phi)) \
 /sqrt((R + r * cos(phi))**2 - (R + r)**2 * cos(alpha_0)**2)

Compute theta_cycle (step a)):

theta_cycle = N(quad(f,[0,float(2 * pi)]))

Compute M (step b)):

M = int(floor((R + r) * theta_cycle * sin(alpha_0) / w) + 1)

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska

99

10

%%%
% Plot the torus:
%%%
fi_i = 0;
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4]);
options2 = odeset('RelTol',1e-8,'AbsTol',1e-8);

Teta=linspace(-teta_span/2,teta_span/2,100);
Fi=linspace(0,2*pi,100);
[TetaM,FiM]=meshgrid(Teta,Fi);
X=(R+r*cos(FiM)).*cos(TetaM);
Y=r*sin(FiM);
Z=(R+r*cos(FiM)).*sin(TetaM);

h=surf(X,Y,Z);
axis equal
axis([0 40 -20 20 -20 20])
set(h,'FaceColor','g','EdgeColor','g','FaceAlpha',0.5,'EdgeAlpha',0);
%%%
% Compute θ_i, (step c):
%%%
teta_part = teta_span*teta_cycle/2;

for i=1:M
 % Compute θ_i, (step c):
 tita(i) = (i-1)*teta_cycle/M;
 % Compute fi_i
 fun = @(fi_i) (quadgk(f,0,fi_i)-tita(i));
 FI_I(i) = fzero(fun, 0);
 % Compute fi_{-,i} and fi_{+,i} (step d):
 fun = @(fi_start) (quadgk(f,fi_start,0)-(teta_span/2 + i*teta_cycle/M));
 FI_START(i) = fzero(fun, 0);
 fun = @(fi_end) (quadgk(f,0,fi_end)-(teta_span/2 - i*teta_cycle/M));
 FI_END(i) = fzero(fun, 0);
 % (step e):
 [phi,theta] = ode45 (@(phi,theta) r*(R+r)*cos(alfa_0)/(R+r*cos(phi))/ ...
 sqrt((R+r*cos(phi))^2-((R+r)*cos(alfa_0))^2),[FI_START(i) FI_END(i)], ...
 -teta_span/2, options2);
 % (step g):
 plot3((R+r*cos(phi)).*cos(theta), r*sin(phi), ...
 (R+r*cos(phi)).*sin(theta), 'b', 'linewidth',2);
 plot3((R+r*cos(phi)).*cos(theta), -r*sin(phi), ...
 (R+r*cos(phi)).*sin(theta), 'r', 'linewidth',2);
 view([90,0,0])
 F(i) = getframe;
end

[FI_I' tita']
%%%
% Play the recorded movie frames:
%%%
movie(F,0)
%%%
% End
%%%

11

3.2 Python implementation

Algorithm for tape placement for elbows.

This source code is licensed under a Creative Commons Attribution 4.0
International License.

Importing the needed modules:

from sympy import *
from mpmath import *
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

Function for extracting coordinates from nested lists of angles:

def xyz(R,r,ph,th):
 m = len(ph)
 s = len(ph[0])
 x = np.empty((m,s)) # numpy matrix
 y = np.empty((m,s))
 z = np.empty((m,s))
 for i in range(m):
 for j in range(s):
 x[i,j] = (R + r * cos(ph[i][j])) * cos(th[i][j])
 y[i,j] = r * sin(ph[i][j])
 z[i,j] = (R + r * cos(ph[i][j])) * sin(th[i][j])
 return (x,y,z)

Test values and initial conditions:

w = 0.5 # tape width
R = 20 # the distance from the center of the tube to the center of the torus
r = 5 # radius of the tube
alpha_0 = 78*pi/180 # initial winding angle
theta_span = 2*pi/3 # span angle of the elbow

f = d_theta/d_phi:

f = lambda phi : r * (R + r) * cos(alpha_0) / (R+r*cos(phi)) \
 /sqrt((R + r * cos(phi))**2 - (R + r)**2 * cos(alpha_0)**2)

Compute theta_cycle (step a)):

theta_cycle = N(quad(f,[0,float(2 * pi)]))

Compute M (step b)):

M = int(floor((R + r) * theta_cycle * sin(alpha_0) / w) + 1)

COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS.
PRACTICALLY ORIENTATED ALGORITHM

100

12

Compute (step c)):

thetai = []
for i in range(M):
 thetai.append(N(theta_cycle * i / M))

Declarations of some needed variables:

theta_plus = theta_span/2
theta_minus = -theta_span/2

phi_minus = []
phi_minus_l = []
phi_minus_r = []
phi_plus = []
phi_plus_l = []
phi_plus_r = []

Initializing phi_minus[i] and phi_plus[i] value pairs for the
bisection method:

for i in range(M):
 phi_minus_l.append(2.0 * pi * (theta_minus - thetai[i])/theta_cycle - pi)
 phi_minus_r.append(phi_minus_l[i] + 2.0 * pi)
 phi_plus_l.append(2.0 * pi * (theta_plus - thetai[i])/theta_cycle - pi)
 phi_plus_r.append(phi_plus_l[i] + 2.0 * pi)

Solving the integral equation by bisection method (step d))
phi_minus[i]:

for i in range(M):
 t = True
 while(t):
 phi_minus_m = 0.5*(phi_minus_l[i] + phi_minus_r[i])
 f_minus_l = thetai[i] - theta_minus - N(quad(f,[phi_minus_l[i],0]))
 f_minus_r = thetai[i] - theta_minus - N(quad(f,[phi_minus_r[i],0]))
 f_minus_m = thetai[i] - theta_minus - N(quad(f,[phi_minus_m,0]))
 if sign(f_minus_l) == sign(f_minus_m):
 phi_minus_l[i] = phi_minus_m
 else:
 phi_minus_r[i] = phi_minus_m
 t = abs(f_minus_m) > 10**-10
 phi_minus.append(phi_minus_m)

Solving the integral equation by bisection method (step d))
phi_plus[i]:

for i in range(M):
 t = True
 while(t):
 phi_plus_m = 0.5 * (phi_plus_l[i] + phi_plus_r[i])
 f_plus_l = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_l[i]]))
 f_plus_r = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_r[i]]))
 f_plus_m = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_m]))

13

 if sign(f_plus_l) == sign(f_plus_m):
 phi_plus_l[i] = phi_plus_m
 else:
 phi_plus_r[i] = phi_plus_m
 t = abs(f_plus_m) > 10**-10
 phi_plus.append(phi_plus_m)

steps = 500
phi_span = zeros(M,1)
d_phi = zeros(M,1)
for i in range(M):
 # we have different angle spans for each line:
 phi_span[i,0] = phi_plus[i] - phi_minus[i]
 # we have different step size for each line:
 d_phi[i,0] = phi_span[i,0]/steps

PHI = []
for i in range(M):
 # nesting lists inside list:
 PHI.append([])
for i in range(M):
 for j in range(steps+1):
 # filling the lists with angles:
 PHI[i].append(phi_minus[i] + j * d_phi[i,0])

THETA = []
for i in range(M):
 # nesting lists inside list, each internal list starts with theta_minus:
 THETA.append([theta_minus])

4th-order Runge-Kutta for every line (step e)):

for i in range(M):
 for j in range(steps):
 k1 = f(PHI[i][j])
 k2 = f(PHI[i][j] + d_phi[i,0]/2)
 k3 = f(PHI[i][j] + d_phi[i,0]/2)
 k4 = f(PHI[i][j] + d_phi[i,0])
 # adding elements (angles) to nested list:
 THETA[i].append(THETA[i][j] + d_phi[i,0] * (k1 + 2*k2 + 2*k3 + k4)/6)
###
Extracting the coordinates of the points (step f)):

X,Y,Z = xyz(R,r,PHI,THETA)
###
Visualization of the tape placement (step g)):

fig = plt.figure(figsize=[16,16])
ax = fig.add_subplot(1,1,1,projection='3d')
for i in range(M):
 #right hand screw:
 ax.plot(X[i,:],Y[i,:],Z[i,:],color='#ff0000',linewidth=0.4)
 # left hand screw:
 ax.plot(X[i,:],Y[i,:],-Z[i,:],color='#0000ff',linewidth=0.4)
ax.set_xlim(-10,30)
ax.set_ylim(-20,20)
ax.set_zlim(-20,20)

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska

101

12

Compute (step c)):

thetai = []
for i in range(M):
 thetai.append(N(theta_cycle * i / M))

Declarations of some needed variables:

theta_plus = theta_span/2
theta_minus = -theta_span/2

phi_minus = []
phi_minus_l = []
phi_minus_r = []
phi_plus = []
phi_plus_l = []
phi_plus_r = []

Initializing phi_minus[i] and phi_plus[i] value pairs for the
bisection method:

for i in range(M):
 phi_minus_l.append(2.0 * pi * (theta_minus - thetai[i])/theta_cycle - pi)
 phi_minus_r.append(phi_minus_l[i] + 2.0 * pi)
 phi_plus_l.append(2.0 * pi * (theta_plus - thetai[i])/theta_cycle - pi)
 phi_plus_r.append(phi_plus_l[i] + 2.0 * pi)

Solving the integral equation by bisection method (step d))
phi_minus[i]:

for i in range(M):
 t = True
 while(t):
 phi_minus_m = 0.5*(phi_minus_l[i] + phi_minus_r[i])
 f_minus_l = thetai[i] - theta_minus - N(quad(f,[phi_minus_l[i],0]))
 f_minus_r = thetai[i] - theta_minus - N(quad(f,[phi_minus_r[i],0]))
 f_minus_m = thetai[i] - theta_minus - N(quad(f,[phi_minus_m,0]))
 if sign(f_minus_l) == sign(f_minus_m):
 phi_minus_l[i] = phi_minus_m
 else:
 phi_minus_r[i] = phi_minus_m
 t = abs(f_minus_m) > 10**-10
 phi_minus.append(phi_minus_m)

Solving the integral equation by bisection method (step d))
phi_plus[i]:

for i in range(M):
 t = True
 while(t):
 phi_plus_m = 0.5 * (phi_plus_l[i] + phi_plus_r[i])
 f_plus_l = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_l[i]]))
 f_plus_r = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_r[i]]))
 f_plus_m = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_m]))

13

 if sign(f_plus_l) == sign(f_plus_m):
 phi_plus_l[i] = phi_plus_m
 else:
 phi_plus_r[i] = phi_plus_m
 t = abs(f_plus_m) > 10**-10
 phi_plus.append(phi_plus_m)

steps = 500
phi_span = zeros(M,1)
d_phi = zeros(M,1)
for i in range(M):
 # we have different angle spans for each line:
 phi_span[i,0] = phi_plus[i] - phi_minus[i]
 # we have different step size for each line:
 d_phi[i,0] = phi_span[i,0]/steps

PHI = []
for i in range(M):
 # nesting lists inside list:
 PHI.append([])
for i in range(M):
 for j in range(steps+1):
 # filling the lists with angles:
 PHI[i].append(phi_minus[i] + j * d_phi[i,0])

THETA = []
for i in range(M):
 # nesting lists inside list, each internal list starts with theta_minus:
 THETA.append([theta_minus])

4th-order Runge-Kutta for every line (step e)):

for i in range(M):
 for j in range(steps):
 k1 = f(PHI[i][j])
 k2 = f(PHI[i][j] + d_phi[i,0]/2)
 k3 = f(PHI[i][j] + d_phi[i,0]/2)
 k4 = f(PHI[i][j] + d_phi[i,0])
 # adding elements (angles) to nested list:
 THETA[i].append(THETA[i][j] + d_phi[i,0] * (k1 + 2*k2 + 2*k3 + k4)/6)
###
Extracting the coordinates of the points (step f)):

X,Y,Z = xyz(R,r,PHI,THETA)
###
Visualization of the tape placement (step g)):

fig = plt.figure(figsize=[16,16])
ax = fig.add_subplot(1,1,1,projection='3d')
for i in range(M):
 #right hand screw:
 ax.plot(X[i,:],Y[i,:],Z[i,:],color='#ff0000',linewidth=0.4)
 # left hand screw:
 ax.plot(X[i,:],Y[i,:],-Z[i,:],color='#0000ff',linewidth=0.4)
ax.set_xlim(-10,30)
ax.set_ylim(-20,20)
ax.set_zlim(-20,20)

COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS.
PRACTICALLY ORIENTATED ALGORITHM

102

14

ax.xaxis.pane.fill=False
ax.yaxis.pane.fill=False
ax.zaxis.pane.fill=False
ax.xaxis.pane.set_edgecolor('white')
ax.yaxis.pane.set_edgecolor('white')
ax.zaxis.pane.set_edgecolor('white')
ax.view_init(10,225)
ax.grid(b = None)
plt.show()

End

4. Results and discussion
The following test values and initial conditions were used as input values for the algorithm:

 (23)

In this case, the number of needed tapes so as the whole surface of the elbow to be completely covered is

The results achieved with our algorithm can be seen in Figure 7 and Figure 8.

Figure 7. (Tape placement with two fibers.)

Figure 8. (Complete tape placement.)

The generated videos which show how the tape placement of an elbow works can be found on ResearchGate:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd33aab53d2f63c3c2cc6c
They were both generated using MATLAB (the second implementation).
 In the previous section we presented two implementations of the algorithm – in MATLAB and in
Python. Both of them have advantages and disadvantages. The former is better regarding the aspect that it relies
on built-in functions exclusively. This means that the user does not have to know the details about the applied
mathematical methods. In this sense, our code is encapsulated and hence more user-friendly. One huge

15

disadvantage is that the user needs to have a license so as to use MATLAB. On the other hand, the Python code
and Python as a whole are open-source. However, the user needs to be able to implement all the needed
methods themselves.

5. Concluding remarks and future work
In the process of solving this problem, we have tried different approaches for getting to the solution, so the
solution and its code presented in this paper was selected by our choice as the simplest, although it was not the
most efficient one. The solution as such is appropriate for tape laying, but not for filament winding, because we
have not included dwelling. The main goal of our presented solution was to make it and its code a good and
approachable introduction to filament winding and tape laying algorithms and the obstacles while delivering a
complete filament winding solution.

 Except the presented program codes in MATLAB and Python, we have made one more program code
in MATLAB which differs from the presented one in the approaches to the numerical solving of the equations.
The results from all three program codes are satisfactory. In future, we are going to try to implement dwelling
as well.

The whole project is available on ResearchGate:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm

Figures 2--6 in this paper have been generated using GeoGebra [21].

Acknowledgements The authors want to express their gratitude to the Cost Action TD1409 Grant.

References

[1] Mallick, P.K. (1993). Fiber-Reinforced Composites: Materials, Manufacturing, and Design. Taylor &
Francis, 2nd edition.

[2] Hai-sheng, L., You-dong, L. (2002). Computer Aided Filament Winding for Elbows: Journal of
Software, 13(4).

[3] Skjærholt, I. (2012). Integration Tools for Design and Process Control Of Filament Winding, Master
thesis, Norwegian University of Science and Technology, Institutt for produktutvikling og materialer.

[4] Lei, Z., Qin-Xiang, H., Qing-Qing, N. (2007). Pattern Design for Non-geodesic Winding Toroidal
Pressure Vessels, CD-ROM Proceedings of The Sixteenth International Conference on Composite
Materials.

[5] Seereeram, S. (1991). An All-geodesic Algorithm for Filament Winding of a T-shaped Form, IEEE
Transactions on Industrial Electronics, 38(6), pp. 484—490.

[6] Koussious, S. (2004). Filament Winding: a Unified Approach, PhD thesis report, Delft University Press,
Delft, ISBN 90-407-2551-9.

[7] Mikrosam A.D., 2008. MAW 20 FB5/1 and MAW 20 LS6/1 Winding Expert Module – S Manual.
http://mikrosam.com/new/article/en/winding-expert/.

[8] Cadfil® -- Filament Winding Software & Technology CADFIL-Elbow Winding.
http://www.cadfil.com/.

[9] Furtado, R. L. A. (2016). Filament Winding Simulation, Master thesis, University of Porto, Porto.
[10] Irons, M. The Curvature and Geodesics of the Torus,

http://www.rdrop.com/~half/math/torus/index.xhtml.

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska

103

14

ax.xaxis.pane.fill=False
ax.yaxis.pane.fill=False
ax.zaxis.pane.fill=False
ax.xaxis.pane.set_edgecolor('white')
ax.yaxis.pane.set_edgecolor('white')
ax.zaxis.pane.set_edgecolor('white')
ax.view_init(10,225)
ax.grid(b = None)
plt.show()

End

4. Results and discussion
The following test values and initial conditions were used as input values for the algorithm:

 (23)

In this case, the number of needed tapes so as the whole surface of the elbow to be completely covered is

The results achieved with our algorithm can be seen in Figure 7 and Figure 8.

Figure 7. (Tape placement with two fibers.)

Figure 8. (Complete tape placement.)

The generated videos which show how the tape placement of an elbow works can be found on ResearchGate:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd33aab53d2f63c3c2cc6c
They were both generated using MATLAB (the second implementation).
 In the previous section we presented two implementations of the algorithm – in MATLAB and in
Python. Both of them have advantages and disadvantages. The former is better regarding the aspect that it relies
on built-in functions exclusively. This means that the user does not have to know the details about the applied
mathematical methods. In this sense, our code is encapsulated and hence more user-friendly. One huge

15

disadvantage is that the user needs to have a license so as to use MATLAB. On the other hand, the Python code
and Python as a whole are open-source. However, the user needs to be able to implement all the needed
methods themselves.

5. Concluding remarks and future work
In the process of solving this problem, we have tried different approaches for getting to the solution, so the
solution and its code presented in this paper was selected by our choice as the simplest, although it was not the
most efficient one. The solution as such is appropriate for tape laying, but not for filament winding, because we
have not included dwelling. The main goal of our presented solution was to make it and its code a good and
approachable introduction to filament winding and tape laying algorithms and the obstacles while delivering a
complete filament winding solution.

 Except the presented program codes in MATLAB and Python, we have made one more program code
in MATLAB which differs from the presented one in the approaches to the numerical solving of the equations.
The results from all three program codes are satisfactory. In future, we are going to try to implement dwelling
as well.

The whole project is available on ResearchGate:
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm

Figures 2--6 in this paper have been generated using GeoGebra [21].

Acknowledgements The authors want to express their gratitude to the Cost Action TD1409 Grant.

References

[1] Mallick, P.K. (1993). Fiber-Reinforced Composites: Materials, Manufacturing, and Design. Taylor &
Francis, 2nd edition.

[2] Hai-sheng, L., You-dong, L. (2002). Computer Aided Filament Winding for Elbows: Journal of
Software, 13(4).

[3] Skjærholt, I. (2012). Integration Tools for Design and Process Control Of Filament Winding, Master
thesis, Norwegian University of Science and Technology, Institutt for produktutvikling og materialer.

[4] Lei, Z., Qin-Xiang, H., Qing-Qing, N. (2007). Pattern Design for Non-geodesic Winding Toroidal
Pressure Vessels, CD-ROM Proceedings of The Sixteenth International Conference on Composite
Materials.

[5] Seereeram, S. (1991). An All-geodesic Algorithm for Filament Winding of a T-shaped Form, IEEE
Transactions on Industrial Electronics, 38(6), pp. 484—490.

[6] Koussious, S. (2004). Filament Winding: a Unified Approach, PhD thesis report, Delft University Press,
Delft, ISBN 90-407-2551-9.

[7] Mikrosam A.D., 2008. MAW 20 FB5/1 and MAW 20 LS6/1 Winding Expert Module – S Manual.
http://mikrosam.com/new/article/en/winding-expert/.

[8] Cadfil® -- Filament Winding Software & Technology CADFIL-Elbow Winding.
http://www.cadfil.com/.

[9] Furtado, R. L. A. (2016). Filament Winding Simulation, Master thesis, University of Porto, Porto.
[10] Irons, M. The Curvature and Geodesics of the Torus,

http://www.rdrop.com/~half/math/torus/index.xhtml.

COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS.
PRACTICALLY ORIENTATED ALGORITHM

104

16

[11] Petkanchin, B. (1964). Diferencialna geometria, Nauka i izkustvo, Sofia, 2nd edition, 802 p. (in
Bulgarian).

[12] Ivanova-Karatopraklieva, I. (1994). Diferencialna geometria, Sofia University Press, Sofia, 432 p. (in
Bulgarian).

[13] Angenent, S. B., Liouville’s Formula in Math 561 — Differential Geometry (with special relativity).
Notes, http://www.math.wisc.edu/~angenent/561/.

[14] Demirovich, B. P., Maron, I. A., (1966). Osnovy vychislitelnoy matematiki, 3rd edn., Nauka, Moscow,
664 p. (in Russian).

[15] Samarskii, A., Goolin, A. (1989). Chislennye Metody, Nauka, Moscow, 432 p. (in Russian).
[16] Süli, E., Mayers, D. F. (2003). An Introduction to Numerical Analysis. Cambridge University Press, pp.

433.
[17] Apostol, T. M. (1967). Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to

Linear Algebra. Waltham, MA, Blaisdell, p. 143.
[18] MATLAB and Statistics Toolbox Release 2015, The MathWorks, Inc., Natick, Massachusetts, United

States, https://www.mathworks.com/.
[19] Python Core Team (2015). Python: A dynamic, open source programming language. Python Software

Foundation, https://www.python.org/.
[20] Anaconda Software Distribution. Computer software. Vers. 5.1.0. Anaconda, 2018.

https://anaconda.com.
[21] GeoGebra Classic 5.0.433.0-d 2018, http://www.geogebra.org.

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska

