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In all of this example, we saw that the notations of connectedness and path connectedness are in relation i.e. 
if some space is connected then we can find a path connection in that if the space is locally Euclidean1. In a metric 
space, the concept of connectedness it is difficult to estimate definite but understanding for it is to take just like a 
‘hole part’. Path connectedness is almost the same thing in metric space. So, depends of the dimension of the 
Euclidean space we can find relation between connectedness and path connectedness. 

 

 Example 3.4. If  ,X d  be a connected metric space. Assume that each point of X has an open set U such 

that x U  and U is path connected. Than X is path connected. 

 Example 3.5.  If A be a connected subset in nR  and 0  . Then it is clear that for   - neighborhood of 

A defined by     : n
AU A x R d x     is path connected. 

 

 

4. Concluding remarks 

In particular, spaces that are connected cannot be always path connected too. These notions are in the 
relation if the topology space has some properties. In this paper are represented some examples in which it can be 
easily seen that there are some connected topology spaces which can be path connected also. The conclusion from 
all of these is: if we are working with a metric space or we have a locally Euclidean space we can find a connected 
space in which also we can find a path between some pair of points. Metric spaces are interesting for work, because 
they are not so abstract and can be represented geometrically, so the concept of connectedness this space take like a 
‘hole part’ and concept of path connectedness is easier to see there. Implication of connectedness to path 
connectedness can be shown if the space for working is metric (Euclidean). Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are 
given in metric space and for that this implication can be true.  

 

 

 

 

5. References 
1. Sekutkovski N., TOPOLOGY, University of Kiril and Metodij, Faculty of natural science, Skopje, 2002, 

pg. 61 - 67 
2. Mendelson B., INTRODUCTION IN TOPOLOGY, 3rd Edition, Dover Publication,INC., New York, 1975, 

pg. 137, pg. 164 
3. Mankres J.R., TOPOLOGY, 2nd Edition, Copyright Ars lumina, Skopje, 2011, pg. 155 
4. Korner T.W., METRIC AND TOPOLOGY SPACE, Faculty Board Schedules, 2015 , pg. 25-39 
5. Conrad K., SPACES THAT ARE CONNECTED BUT NOT PATH CONNECTED, expository paper, Math 

Dept. UConn,pg. 5 
6. Kumaresan S., TOPOLOGY OF METRIC SPACE, Alpha science international, Harrow, 2005, pg. 106, pg. 

115, pg. 117-119 
7. Sutherland W.A., INTRODICTION TO METRIC AND TOPOLOGICAL SPACES, Second edition, Oxford, 

New York, 2009, pg. 116-117 

A topological space X is called locally Euclidean if there is a non negative integer n such that every point in X  has a 
neighbourhood which is homeomorphic to the Euclidean space with specific dimension.  

In all of this example, we saw that the notations of connectedness and path connectedness are in relation i.e. 
if some space is connected then we can find a path connection in that if the space is locally Euclidean1. In a metric 
space, the concept of connectedness it is difficult to estimate definite but understanding for it is to take just like a 
‘hole part’. Path connectedness is almost the same thing in metric space. So, depends of the dimension of the 
Euclidean space we can find relation between connectedness and path connectedness. 

 

 Example 3.4. If  ,X d  be a connected metric space. Assume that each point of X has an open set U such 

that x U  and U is path connected. Than X is path connected. 

 Example 3.5.  If A be a connected subset in nR  and 0  . Then it is clear that for   - neighborhood of 

A defined by     : n
AU A x R d x     is path connected. 

 

 

4. Concluding remarks 

In particular, spaces that are connected cannot be always path connected too. These notions are in the 
relation if the topology space has some properties. In this paper are represented some examples in which it can be 
easily seen that there are some connected topology spaces which can be path connected also. The conclusion from 
all of these is: if we are working with a metric space or we have a locally Euclidean space we can find a connected 
space in which also we can find a path between some pair of points. Metric spaces are interesting for work, because 
they are not so abstract and can be represented geometrically, so the concept of connectedness this space take like a 
‘hole part’ and concept of path connectedness is easier to see there. Implication of connectedness to path 
connectedness can be shown if the space for working is metric (Euclidean). Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are 
given in metric space and for that this implication can be true.  

 

 

 

 

5. References 
1. Sekutkovski N., TOPOLOGY, University of Kiril and Metodij, Faculty of natural science, Skopje, 2002, 

pg. 61 - 67 
2. Mendelson B., INTRODUCTION IN TOPOLOGY, 3rd Edition, Dover Publication,INC., New York, 1975, 

pg. 137, pg. 164 
3. Mankres J.R., TOPOLOGY, 2nd Edition, Copyright Ars lumina, Skopje, 2011, pg. 155 
4. Korner T.W., METRIC AND TOPOLOGY SPACE, Faculty Board Schedules, 2015 , pg. 25-39 
5. Conrad K., SPACES THAT ARE CONNECTED BUT NOT PATH CONNECTED, expository paper, Math 

Dept. UConn,pg. 5 
6. Kumaresan S., TOPOLOGY OF METRIC SPACE, Alpha science international, Harrow, 2005, pg. 106, pg. 

115, pg. 117-119 
7. Sutherland W.A., INTRODICTION TO METRIC AND TOPOLOGICAL SPACES, Second edition, Oxford, 

New York, 2009, pg. 116-117 

A topological space X is called locally Euclidean if there is a non negative integer n such that every point in X  has a 
neighbourhood which is homeomorphic to the Euclidean space with specific dimension.  

In all of this example, we saw that the notations of connectedness and path connectedness are in relation i.e. 
if some space is connected then we can find a path connection in that if the space is locally Euclidean1. In a metric 
space, the concept of connectedness it is difficult to estimate definite but understanding for it is to take just like a 
‘hole part’. Path connectedness is almost the same thing in metric space. So, depends of the dimension of the 
Euclidean space we can find relation between connectedness and path connectedness. 

 

 Example 3.4. If  ,X d  be a connected metric space. Assume that each point of X has an open set U such 

that x U  and U is path connected. Than X is path connected. 

 Example 3.5.  If A be a connected subset in nR  and 0  . Then it is clear that for   - neighborhood of 

A defined by     : n
AU A x R d x     is path connected. 

 

 

4. Concluding remarks 

In particular, spaces that are connected cannot be always path connected too. These notions are in the 
relation if the topology space has some properties. In this paper are represented some examples in which it can be 
easily seen that there are some connected topology spaces which can be path connected also. The conclusion from 
all of these is: if we are working with a metric space or we have a locally Euclidean space we can find a connected 
space in which also we can find a path between some pair of points. Metric spaces are interesting for work, because 
they are not so abstract and can be represented geometrically, so the concept of connectedness this space take like a 
‘hole part’ and concept of path connectedness is easier to see there. Implication of connectedness to path 
connectedness can be shown if the space for working is metric (Euclidean). Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are 
given in metric space and for that this implication can be true.  

 

 

 

 

5. References 
1. Sekutkovski N., TOPOLOGY, University of Kiril and Metodij, Faculty of natural science, Skopje, 2002, 

pg. 61 - 67 
2. Mendelson B., INTRODUCTION IN TOPOLOGY, 3rd Edition, Dover Publication,INC., New York, 1975, 

pg. 137, pg. 164 
3. Mankres J.R., TOPOLOGY, 2nd Edition, Copyright Ars lumina, Skopje, 2011, pg. 155 
4. Korner T.W., METRIC AND TOPOLOGY SPACE, Faculty Board Schedules, 2015 , pg. 25-39 
5. Conrad K., SPACES THAT ARE CONNECTED BUT NOT PATH CONNECTED, expository paper, Math 

Dept. UConn,pg. 5 
6. Kumaresan S., TOPOLOGY OF METRIC SPACE, Alpha science international, Harrow, 2005, pg. 106, pg. 

115, pg. 117-119 
7. Sutherland W.A., INTRODICTION TO METRIC AND TOPOLOGICAL SPACES, Second edition, Oxford, 

New York, 2009, pg. 116-117 

A topological space X is called locally Euclidean if there is a non negative integer n such that every point in X  has a 
neighbourhood which is homeomorphic to the Euclidean space with specific dimension.  

The Appendix of the first number of Balkan Journal of Applied Mathematics and Informatics, 
is devoted to the reports of the First Modelling Week in Macedonia, which was held in Stip, 
12-16 February 2018.  

The First Modelling Week in Macedonia was organized by Faculty of Computer Science - 
Department of Mathematics and Statistics, Faculty of Electrical Engineering and Faculty of 
Technology with the support of the TD 1409 MI-NET Cost Action. The aims of the Modelling 
Week were: widening, broadening and sharing knowledge relevant to the Action’s objectives 
through working on modern and actual problems which can be solved with mathematics and 
mathematical modelling. 

The Modelling Week was organized under auspices of Prof. Blazo Boev, Rector of the Goce 
Delcev University, Stip, Macedonia. 

The Program Committee of the First Modelling Week were: 

1.    Vineta Srebrenkoska, PhD – Macedonia 
2.    Tatjana Atanasova – Pachemska, PhD – Macedonia 
3.    Poul G. Hjorth, PhD – Denmark 
4.    Wojciech Okrasinski, PhD – Poland 
5.    Joerg Elzenbach, PhD – Germany 
6.    Gregoris Makrides, PhD – Cyprus 
7.    Biljana Jolevska – Tuneska, PhD – Macedonia 
8.    Limonka Koceva Lazarova, PhD - Macedonia 

In the First Modelling Week in Macedonia participated 34 participants from Macedonia, 
Bulgaria, Portugal and Denmark. The Modelling Week was aimed towards Masters, PhD 
students, Early Career Investigators (up to 8 years after their PhD). All the participants were 
split in three groups in order to solve the three problems which were set: 

Problem 1 - Scheduling in kindergarten, proposed by Limonka Koceva Lazarova 

Problem 2 - Determining the optimal number of cash boxes to increase the efficiency of the 
customer service and determining the way of storage of products in the warehouse. How to 
manage stocks in the warehouse, proposed by Tatjana Atanasova – Pachemska. 

Problem 3 - Optimization of the industrial processes for production of advanced polymer 
composites by implementation of the full factorial experimental design, proposed by Vineta 
Srebrenkoska. 

The third problem was split in three subproblems.  

All of the solutions are presented in form of reports in this appendix. 

Thanks for the editors of the Balkan Journal of Applied Mathematics and Informatics, about 
their support for publishing of the results from The First Modelling Week in Macedonia. 
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and (5), the fiber content of the composites can be calculated and then the appropriate fiber/matrix ratio will be used 
in fabrication of the composites. Also, yfn and ytn i.e. values of tensile or flexural strengths, can be calculated for a 
given fiber content (x1 factor). In both above cases the mixing temperature has to be fixed at 185oC for the most 
favorable outcome.  

 
4. Conclusion 
 
In the frame of this paper full factorial experimental design was applied to predict the mechanical properties of 

the polymer composites. The important entries that influence on the improved solution were defined. For the range 
of the mixing temperature and fiber/resin ratio the experimental measurements of the tensile and flexure strength of 
composite pipes were carried out by implementing the 22 full factorial experimental design. A correlation equations 
were established for tensile and flexure strength as a function of the fiber content and mixing temperature and of the 
interaction between them. Namely, it was created the regression equitation which the best describes the process. It 
was observed that if the study domain is precisely established (narrow enough), the factorial experimental design 
can be employed in order to give good approximation of the response. It was made verification of the model i.e. the 
adequacy of the regression equation and it was found that the model is adequate and can be accepted and further 
used. 
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Abstract: Filament winding is one of the most used automated techniques for manufacturing of composite 
objects with different open-end or closed-end structures. Mathematical model for covering an elbow 
mandrel with composite material is considered. The nature of the comprising equations is elaborated in 
detail. A practically orientated algorithm for filament winding for elbows is formulated and its open-source 
implementations in Python and MATLAB are presented. The results from the constructed algorithm are 
presented and discussed. 
Keywords: filament winding for elbows, tape placement for elbows, practical algorithm, open-source, CAD.  

 
 

1. Introduction and problem statement 
Filament winding is one of the most used automated techniques for manufacturing of composite objects with 
different open-end or closed-end structures. The process consists of winding glass fiber or carbon fiber strands, 
impregnated in a bath with a resin, kept under tension over a rotating spindle mandrel. Figure 1 shows the 
filament winding of an elbow. Typically, the tension is in the range from 1.1 to 4.4 N [1]. The pattern and the 
angle of the fiber winding are controlled from a delivery (or feed) eye on a carriage. Once the coverage has 
achieved a desired thickness, the resin is cured and then the mandrel can be or can be not extracted, depending 
on the shape and the application of the object. A video which shows how filament winding works can be seen 
here: [ArcoIndustries]. (2013, April 24). Fiberglass Elbow Filament Winding Demo 1 [Video File]. Retrieved 
from https://www.youtube.com/watch?v=0f63pfHNK6U. There are four types of filament winding according to 
the winding angle – hoop, helical, circumferential, and polar.  

Objects with cross sections with very small acute angles cannot be filament wound [1]. Strategies for 
filament winding for different shapes exist in the literature, e.g.:  

• elbow – [2], [3];  
• toroidal – [4];  
• T-shaped – [5];  
• generalization – [6].  

  Other than filament winding can be applied for various set of shapes, among the advantages of the 
technique are also its economics, since the fiber and the resin are used in their lowest cost form and the fiber is 

UDK: 004.942:[620.22-021.385:621.77
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2 
 

continuous over the entire path. Another upside comes from the fact that the process can be automated which 
results in cost savings in the case of large production volumes.           
  There exist different CAD/CAM software solutions for filament winding for different shapes, e.g. 
Mikrosam Winding Expert [7] or Cadfil® - Filament Winding Software & Technology [8] (some other software 
solutions for filament winding, as well as their upsides and downsides are listed in [9]), but they are not 
distributed free of charge. 
  There is a need of an user-friendly formulated algorithm (it is not the case in most of the ones 
available in the literature) and an open-source implementation of the algorithm for filament winding for 
elbows and so this was the problem we needed to solve during the First Modelling Week in Macedonia. As a 
first step an algorithm is proposed to cover the entire elbow with tapes without considering the dwell1. 
 

 
Figure 1. (Example of filament winding of an elbow part.)2 

If we have done a solution of the problem that includes dwelling, we would need to be aware of the geodesic 
curvature  [2] and the normal curvature [6] of the path that make the slippage coefficient [2]:  

  (1) 

and we must keep  where  is the coefficient of friction between the fibers and the mandrel. Our 
algorithm can be extended to add dwelling to the problem. 
 In our solution, we have chosen to have a geodesic path, i.e.  of the fibers (tape), so we can use a 
certain number of tapes to make a layer, with all tapes from the layer going in the same direction. 

                                                        
1 Dwell is the amount of mandrel rotation with no carriage movement at the start and at the end of the filament winding. 
2 The picture was taken as a screenshot from [ArcoIndustries]. (2013, April 24). Fiberglass Elbow Filament Winding Demo 1 
[Video File]. Retrieved from https://www.youtube.com/watch?v=0f63pfHNK6U 

3 
 

  At the end of the First Modelling Week in Macedonia our team gave a talk on the problem which was 
assigned to us, as well as our solution. The presentation can be found on ResearchGate: 
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abbf6624cde269658661549  
 The aim and the main contribution of this note is to give some clarification on the origin of the 
formulae needed for mathematical modelling of tape placement for elbow with the concepts of differential 
geometry and following [2], as well as to formulate a practically orientated algorithm. Finally, MATLAB and 
Python implementations of the algorithm are provided.  
  The layout of the paper is as follows: in Section 2, we introduce the mathematical model and the 
practically orientated algorithm. Section 3 presents the source code of the algorithm implemented in MATLAB 
and Python. In Section 4 we state and discuss the results. In the final Section 5 some concluding remarks and 
notes for future work are listed. Afterwards, the acknowledgments and the references follow.    
 

2. Mathematical model and algorithm 

2.1 Choice of coordinate system and building a representation of the elbow 

 
Figure 2. (The elbow in a coordinate system.) 

An orthogonal coordinate system is chosen (see Figure 2). The surface of the elbow in a  coordinate 
system (planes with constant  passing through the torus’s axis) [10] can be parameterized as a surface of 
revolution. Then, the formulae that represent the surface  of the elbow with respect to , are: 

 
 

(2) 

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska
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2 The picture was taken as a screenshot from [ArcoIndustries]. (2013, April 24). Fiberglass Elbow Filament Winding Demo 1 
[Video File]. Retrieved from https://www.youtube.com/watch?v=0f63pfHNK6U 
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  At the end of the First Modelling Week in Macedonia our team gave a talk on the problem which was 
assigned to us, as well as our solution. The presentation can be found on ResearchGate: 
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abbf6624cde269658661549  
 The aim and the main contribution of this note is to give some clarification on the origin of the 
formulae needed for mathematical modelling of tape placement for elbow with the concepts of differential 
geometry and following [2], as well as to formulate a practically orientated algorithm. Finally, MATLAB and 
Python implementations of the algorithm are provided.  
  The layout of the paper is as follows: in Section 2, we introduce the mathematical model and the 
practically orientated algorithm. Section 3 presents the source code of the algorithm implemented in MATLAB 
and Python. In Section 4 we state and discuss the results. In the final Section 5 some concluding remarks and 
notes for future work are listed. Afterwards, the acknowledgments and the references follow.    
 

2. Mathematical model and algorithm 

2.1 Choice of coordinate system and building a representation of the elbow 

 
Figure 2. (The elbow in a coordinate system.) 

An orthogonal coordinate system is chosen (see Figure 2). The surface of the elbow in a  coordinate 
system (planes with constant  passing through the torus’s axis) [10] can be parameterized as a surface of 
revolution. Then, the formulae that represent the surface  of the elbow with respect to , are: 
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where  and  are constants of the elbow – the distance from the center of the tube (the origin of the 
coordinate system) to the center of the torus (major radius) and the radius of the tube (minor radius), 
respectively;  and  are surface-defining parameters of the elbow – toroidal and poloidal directions, 
respectively (see Figure 3 and  
Figure 4). Without loss of generality, we consider the case when . 
  The coefficients of the first fundamental form of are (see [11], [12]):  

  (3) 

  (4) 

    (5) 

From  it follows that the coordinate system  is orthogonal and hence Liouville’s formula for the 
geodesic curvature [13] can be applied: 

 (6) 

 

 
Figure 3. (Parameters of the elbow.) 

5 
 

 
Figure 4. (Parameters of the elbow.) 

 
 
In the case of an elbow, Eq. (7) follows: 

  (7) 

2.2 Defining the winding angle   
The winding angle  is measured in the plane formed by the unit vectors  and , i.e. direction of course with 
path ;  is a design constant that represents the initial value of the angle  when . 

2.3 Assumption for geodesic curves  
Following [2], if , then from Eq. (7) it follows that: 

 
 

(8) 

The length of a curve on the surface in meridional direction and parallel direction are given by (see [6]): 

  (9) 

  (10) 

The latter two formulae follow from the definition of the coefficients of the first fundamental form (Eq. (3), (4), 
and (5)). Then, if follows that (see Figure 5): 

Igor Dimovski, Ice Gjumandeloski, Filip Kochoski, Mahendra Paipuri, Milena Veneva, Aleksandra Risteska



93

4 
 

where  and  are constants of the elbow – the distance from the center of the tube (the origin of the 
coordinate system) to the center of the torus (major radius) and the radius of the tube (minor radius), 
respectively;  and  are surface-defining parameters of the elbow – toroidal and poloidal directions, 
respectively (see Figure 3 and  
Figure 4). Without loss of generality, we consider the case when . 
  The coefficients of the first fundamental form of are (see [11], [12]):  

  (3) 

  (4) 

    (5) 

From  it follows that the coordinate system  is orthogonal and hence Liouville’s formula for the 
geodesic curvature [13] can be applied: 

 (6) 

 

 
Figure 3. (Parameters of the elbow.) 

5 
 

 
Figure 4. (Parameters of the elbow.) 

 
 
In the case of an elbow, Eq. (7) follows: 

  (7) 

2.2 Defining the winding angle   
The winding angle  is measured in the plane formed by the unit vectors  and , i.e. direction of course with 
path ;  is a design constant that represents the initial value of the angle  when . 

2.3 Assumption for geodesic curves  
Following [2], if , then from Eq. (7) it follows that: 

 
 

(8) 

The length of a curve on the surface in meridional direction and parallel direction are given by (see [6]): 

  (9) 

  (10) 

The latter two formulae follow from the definition of the coefficients of the first fundamental form (Eq. (3), (4), 
and (5)). Then, if follows that (see Figure 5): 

COMPUTER AIDED (FILAMENT WINDING) TAPE PLACEMENT FOR ELBOWS.
PRACTICALLY ORIENTATED ALGORITHM



94

6 
 

 
(11) 

 

Figure 5. (Winding angle.) 

Now, if the formula for the part length (see [11], [12]) is written and Eq. (11) is substituted in it, it follows: 

 
 

(12) 

Eq. (8), (11) and (12) form the system which determines the geodesics of the elbow. Eliminating the arc length s 
from this system of differential equations, we have: 

  (13) 

 
 

(14)3 

Integrating Eq. (13) and determining the constant of integration taking into account the initial condition (see 
Section 2.2), we have: 

 
 (15) 

Substituting with Eq. (15) into Eq. (14), it follows that: 

 

 

(16) 

2.4 Defining criterion 

                                                        
3 One should note that the minus to the right-hand side of the equality sign in [2], Eq. (1.8) is a typo. 
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So as to be able to define a stopping criterion which will tell us when the entire surface is going to be covered, 
the following formulae are considered: 

 
 

(17) 

 
 

(18) 

 
 

(19) 

where   Eq. (18) gives the number of needed tapes so as the whole surface of the elbow to be 
completely covered. The tapes should be placed uniformly, starting at , moving with a step 

 given by Eq. (19), with a period  which is given by Eq. (17).  

2.5 The idea 
Because we needed  number of tapes to cover the surface, our idea for their position is to have the base line, 
i.e.  to pass at point described by , and so to have every i-th line to pass at point described 
by . With this considerations, we need to find where the line should start from, and where it 
will end (see Figure 6). This can be easily done if we split this subproblem into two parts 1) going from the 
middle to the end, and 2) going from the start to the middle. To that purpose, we need to find the correct 
starting and ending angles. Since we know that the starting and the ending angles for  for each line i are 

 and           , respectively, the next thing we should do is to find the appropriate angles 

 and . To that purpose, we use the following formulae: 

 
 

(20) 

 

 

(21) 

 
 

(22) 

 

 

(23) 

In Eq. (21) and Eq. (23), we can see that the angles   and  that we need to compute can be found 
as limits of the integrals. To extract their values we used the bisection method (see [14], [15], [16]), also known 
as the dichotomy method. The bisection method is a technique for finding a real-valued root of a continuous 
function, defined in a closed interval for which endings it is known that the function values have opposite 
signs, by successively narrowing the range of values inside which the root is known to exist using interval 
halving. The existence of a root follows from Bolzano’s theorem [17]. The bisection method is known to be 
slowly convergent (see [14], [15]), but here we were not looking for a performance.  
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Figure 6. (Representation of the angles and the angle intervals of ) 

Then, the classical fourth-order explicit Runge-Kutta method (see [15], [16]) was applied to the system 
of ODEs which consists of Eq. (13) and Eq. (14). The classical fourth-order Runge-Kutta method is an explicit 
method for numerical solving of an initial value problem or system where the integrand is calculated at four 
intermediate stages within a time step. That is, the approximation of the solution in point n+1 is calculated as a 
sum of the solution in point n plus the weighted sum of four addends, each of which is a product of the 
subinterval size and the slope specified by the right-hand side of the differential equation. The total 
accumulated error is on the order of , where h is the interval size.  

The last thing we do so as to find the exact trajectory of the M number of lines is to numerically solve 

the Eq. (16) for each line  with  , and  

2.6 The algorithm  
To sum up, the steps needed to be done so as an elbow to be tape covered are as follows:  
a) compute  (Eq. (17)); 
b) compute M (Eq. (18)); 
c) compute  (Eq. (19)); 
d) compute  , solving Eq. (21) and Eq. (23) by applying the fzero built-in function in 
the first MATLAB implementation, and the bisection method in the Python implementation and in the second 
MATLAB implementation; 
e) solve Eq. (16) using the ode45 built-in function in the first MATLAB implementation or the classical fourth-
order explicit Runge-Kutta method in the Python implementation, and solve the system of ODEs (13)—(14) 
with an initial condition  in the second MATLAB implementation; 
f) extract the necessary points; 
g) plot. 
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3. Implementations 
The algorithm described in Section 2.6 was implemented in MATLAB [18] and in Python [19] (Anaconda 
(5.1.0): Py3.6 [20]). The source codes can be found on ResearchGate: 

• MATLAB implementation – variant 1: 
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd30254cde260d15d5b55c  

• MATLAB implementation – variant 2: 
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd3150b53d2f63c3c2cbfb  

• Python implementation: 
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd31994cde260d15d5b58d 
Here, we are going to present two of them.  

 3.1 MATLAB implementation – variant 1 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% Algorithm for tape placement for elbows. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
% This source code is licensed under a Creative Commons Attribution 4.0  
% International License. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
format long 
hold on 
clc 
clear 
global R 
global r 
global alfa_0 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Test values and initial conditions: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
R=20; 
r=5; 
w=1; 
alfa_0 = 78*pi/180; 
teta_span = 2*pi/3; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% f = d_theta/d_phi: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
f = @(fi) (r.*(R+r).*cos(alfa_0))./((R+r.*cos(fi)).* ... 

     sqrt((R+r.*cos(fi)).^2-((R+r)^2).*(cos(alfa_0)).^2)); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute teta_cycle (step a)): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
teta_cycle = quadgk(f,0,2*pi); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute M (step b)): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
M = floor(((R+r)*teta_cycle*sin(alfa_0))/(w)) + 1; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot the torus: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fi_i = 0; 
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4]); 
options2 = odeset('RelTol',1e-8,'AbsTol',1e-8); 
 
Teta=linspace(-teta_span/2,teta_span/2,100); 
Fi=linspace(0,2*pi,100); 
[TetaM,FiM]=meshgrid(Teta,Fi); 
X=(R+r*cos(FiM)).*cos(TetaM); 
Y=r*sin(FiM); 
Z=(R+r*cos(FiM)).*sin(TetaM); 
 
h=surf(X,Y,Z); 
axis equal 
axis([0 40 -20 20 -20 20]) 
set(h,'FaceColor','g','EdgeColor','g','FaceAlpha',0.5,'EdgeAlpha',0); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute θ_i, (step c): 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
teta_part = teta_span*teta_cycle/2; 
 
for i=1:M 
    % Compute θ_i, (step c): 
    tita(i) = (i-1)*teta_cycle/M; 
    % Compute fi_i 
    fun = @(fi_i) (quadgk(f,0,fi_i)-tita(i)); 
    FI_I(i) = fzero(fun, 0); 
    % Compute fi_{-,i} and fi_{+,i} (step d): 
    fun = @(fi_start) (quadgk(f,fi_start,0)-(teta_span/2 + i*teta_cycle/M)); 
    FI_START(i) = fzero(fun, 0); 
    fun = @(fi_end) (quadgk(f,0,fi_end)-(teta_span/2 - i*teta_cycle/M)); 
    FI_END(i) = fzero(fun, 0); 
    % (step e): 
    [phi,theta] = ode45 (@(phi,theta) r*(R+r)*cos(alfa_0)/(R+r*cos(phi))/ ... 
    sqrt((R+r*cos(phi))^2-((R+r)*cos(alfa_0))^2),[FI_START(i) FI_END(i)], ... 
    -teta_span/2, options2); 
    % (step g): 
    plot3((R+r*cos(phi)).*cos(theta), r*sin(phi), ...     
          (R+r*cos(phi)).*sin(theta), 'b', 'linewidth',2); 
    plot3((R+r*cos(phi)).*cos(theta), -r*sin(phi), ...  
          (R+r*cos(phi)).*sin(theta), 'r', 'linewidth',2); 
    view([90,0,0]) 
    F(i) = getframe; 
end 
 
[FI_I' tita'] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Play the recorded movie frames: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
movie(F,0) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% End 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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3.2 Python implementation 

############################################################################# 
# 
# Algorithm for tape placement for elbows. 
# 
############################################################################# 
# 
# This source code is licensed under a Creative Commons Attribution 4.0  
# International License. 
# 
############################################################################# 
# Importing the needed modules: 
############################################################################# 
from sympy import * 
from mpmath import * 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
############################################################################# 
# Function for extracting coordinates from nested lists of angles: 
############################################################################# 
def xyz(R,r,ph,th):  
    m = len(ph) 
    s = len(ph[0]) 
    x = np.empty((m,s)) # numpy matrix 
    y = np.empty((m,s)) 
    z = np.empty((m,s)) 
    for i in range(m): 
        for j in range(s): 
            x[i,j] = (R + r * cos(ph[i][j])) * cos(th[i][j]) 
            y[i,j] = r * sin(ph[i][j]) 
            z[i,j] = (R + r * cos(ph[i][j])) * sin(th[i][j]) 
    return (x,y,z) 
############################################################################# 
# Test values and initial conditions: 
############################################################################# 
w = 0.5 # tape width 
R = 20 # the distance from the center of the tube to the center of the torus 
r = 5 # radius of the tube 
alpha_0 = 78*pi/180 # initial winding angle 
theta_span = 2*pi/3 # span angle of the elbow 
 
############################################################################# 
# f = d_theta/d_phi: 
############################################################################# 
f = lambda phi : r * (R + r) * cos(alpha_0) / (R+r*cos(phi)) \ 
        /sqrt((R + r * cos(phi))**2 - (R + r)**2 * cos(alpha_0)**2) 
############################################################################# 
# Compute theta_cycle (step a)): 
############################################################################# 
theta_cycle = N(quad(f,[0,float(2 * pi)])) 
############################################################################# 
# Compute M (step b)): 
############################################################################# 
M = int(floor((R + r) * theta_cycle * sin(alpha_0) / w) + 1) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot the torus: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
fi_i = 0; 
options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4]); 
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Teta=linspace(-teta_span/2,teta_span/2,100); 
Fi=linspace(0,2*pi,100); 
[TetaM,FiM]=meshgrid(Teta,Fi); 
X=(R+r*cos(FiM)).*cos(TetaM); 
Y=r*sin(FiM); 
Z=(R+r*cos(FiM)).*sin(TetaM); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
teta_part = teta_span*teta_cycle/2; 
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# International License. 
# 
############################################################################# 
# Importing the needed modules: 
############################################################################# 
from sympy import * 
from mpmath import * 
import numpy as np 
import matplotlib.pyplot as plt 
from mpl_toolkits.mplot3d import Axes3D 
############################################################################# 
# Function for extracting coordinates from nested lists of angles: 
############################################################################# 
def xyz(R,r,ph,th):  
    m = len(ph) 
    s = len(ph[0]) 
    x = np.empty((m,s)) # numpy matrix 
    y = np.empty((m,s)) 
    z = np.empty((m,s)) 
    for i in range(m): 
        for j in range(s): 
            x[i,j] = (R + r * cos(ph[i][j])) * cos(th[i][j]) 
            y[i,j] = r * sin(ph[i][j]) 
            z[i,j] = (R + r * cos(ph[i][j])) * sin(th[i][j]) 
    return (x,y,z) 
############################################################################# 
# Test values and initial conditions: 
############################################################################# 
w = 0.5 # tape width 
R = 20 # the distance from the center of the tube to the center of the torus 
r = 5 # radius of the tube 
alpha_0 = 78*pi/180 # initial winding angle 
theta_span = 2*pi/3 # span angle of the elbow 
 
############################################################################# 
# f = d_theta/d_phi: 
############################################################################# 
f = lambda phi : r * (R + r) * cos(alpha_0) / (R+r*cos(phi)) \ 
        /sqrt((R + r * cos(phi))**2 - (R + r)**2 * cos(alpha_0)**2) 
############################################################################# 
# Compute theta_cycle (step a)): 
############################################################################# 
theta_cycle = N(quad(f,[0,float(2 * pi)])) 
############################################################################# 
# Compute M (step b)): 
############################################################################# 
M = int(floor((R + r) * theta_cycle * sin(alpha_0) / w) + 1) 
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############################################################################# 
# Compute  (step c)): 
############################################################################# 
thetai = [] 
for i in range(M): 
    thetai.append(N(theta_cycle * i / M)) 
############################################################################# 
# Declarations of some needed variables: 
############################################################################# 
theta_plus = theta_span/2 
theta_minus = -theta_span/2 
 
phi_minus = [] 
phi_minus_l = [] 
phi_minus_r = [] 
phi_plus = [] 
phi_plus_l = [] 
phi_plus_r = [] 
############################################################################# 
# Initializing phi_minus[i] and phi_plus[i] value pairs for the  
# bisection method: 
############################################################################# 
for i in range(M):  
    phi_minus_l.append(2.0 * pi * (theta_minus - thetai[i])/theta_cycle - pi) 
    phi_minus_r.append(phi_minus_l[i] + 2.0 * pi) 
    phi_plus_l.append(2.0 * pi * (theta_plus - thetai[i])/theta_cycle - pi) 
    phi_plus_r.append(phi_plus_l[i] + 2.0 * pi) 
 
 
############################################################################# 
# Solving the integral equation by bisection method (step d))  
# phi_minus[i]: 
############################################################################# 
for i in range(M):  
    t = True 
    while(t): 
        phi_minus_m = 0.5*(phi_minus_l[i] + phi_minus_r[i]) 
        f_minus_l = thetai[i] - theta_minus - N(quad(f,[phi_minus_l[i],0])) 
        f_minus_r = thetai[i] - theta_minus - N(quad(f,[phi_minus_r[i],0])) 
        f_minus_m = thetai[i] - theta_minus - N(quad(f,[phi_minus_m,0])) 
        if sign(f_minus_l) == sign(f_minus_m): 
            phi_minus_l[i] = phi_minus_m 
        else: 
            phi_minus_r[i] = phi_minus_m 
        t = abs(f_minus_m) > 10**-10 
    phi_minus.append(phi_minus_m) 
############################################################################# 
# Solving the integral equation by bisection method (step d)) 
# phi_plus[i]: 
############################################################################# 
for i in range(M):  
    t = True 
    while(t): 
        phi_plus_m = 0.5 * (phi_plus_l[i] + phi_plus_r[i]) 
        f_plus_l = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_l[i]])) 
        f_plus_r = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_r[i]])) 
        f_plus_m = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_m])) 
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        if sign(f_plus_l) == sign(f_plus_m): 
            phi_plus_l[i] = phi_plus_m 
        else: 
            phi_plus_r[i] = phi_plus_m 
        t = abs(f_plus_m) > 10**-10 
    phi_plus.append(phi_plus_m) 
 
steps = 500 
phi_span = zeros(M,1) 
d_phi = zeros(M,1) 
for i in range(M): 
    # we have different angle spans for each line: 
    phi_span[i,0] = phi_plus[i] - phi_minus[i]  
    # we have different step size for each line: 
    d_phi[i,0] = phi_span[i,0]/steps  
     
PHI = [] 
for i in range(M): 
    # nesting lists inside list: 
    PHI.append([])  
for i in range(M): 
    for j in range(steps+1): 
   # filling the lists with angles: 
        PHI[i].append(phi_minus[i] + j * d_phi[i,0])  
     
THETA = [] 
for i in range(M): 
    # nesting lists inside list, each internal list starts with theta_minus: 
    THETA.append([theta_minus])  
############################################################################# 
# 4th-order Runge-Kutta for every line (step e)): 
############################################################################# 
for i in range(M):   
    for j in range(steps): 
        k1 = f(PHI[i][j]) 
        k2 = f(PHI[i][j] + d_phi[i,0]/2) 
        k3 = f(PHI[i][j] + d_phi[i,0]/2) 
        k4 = f(PHI[i][j] + d_phi[i,0]) 
   # adding elements (angles) to nested list: 
        THETA[i].append(THETA[i][j] + d_phi[i,0] * (k1 + 2*k2 + 2*k3 + k4)/6)  
#############################################################################
# Extracting the coordinates of the points (step f)): 
############################################################################# 
X,Y,Z = xyz(R,r,PHI,THETA) 
#############################################################################
# Visualization of the tape placement (step g)): 
############################################################################# 
fig = plt.figure(figsize=[16,16]) 
ax  = fig.add_subplot(1,1,1,projection='3d') 
for i in range(M): 
    #right hand screw: 
    ax.plot(X[i,:],Y[i,:],Z[i,:],color='#ff0000',linewidth=0.4)  
    # left hand screw: 
    ax.plot(X[i,:],Y[i,:],-Z[i,:],color='#0000ff',linewidth=0.4)  
ax.set_xlim(-10,30) 
ax.set_ylim(-20,20) 
ax.set_zlim(-20,20) 
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############################################################################# 
# Compute  (step c)): 
############################################################################# 
thetai = [] 
for i in range(M): 
    thetai.append(N(theta_cycle * i / M)) 
############################################################################# 
# Declarations of some needed variables: 
############################################################################# 
theta_plus = theta_span/2 
theta_minus = -theta_span/2 
 
phi_minus = [] 
phi_minus_l = [] 
phi_minus_r = [] 
phi_plus = [] 
phi_plus_l = [] 
phi_plus_r = [] 
############################################################################# 
# Initializing phi_minus[i] and phi_plus[i] value pairs for the  
# bisection method: 
############################################################################# 
for i in range(M):  
    phi_minus_l.append(2.0 * pi * (theta_minus - thetai[i])/theta_cycle - pi) 
    phi_minus_r.append(phi_minus_l[i] + 2.0 * pi) 
    phi_plus_l.append(2.0 * pi * (theta_plus - thetai[i])/theta_cycle - pi) 
    phi_plus_r.append(phi_plus_l[i] + 2.0 * pi) 
 
 
############################################################################# 
# Solving the integral equation by bisection method (step d))  
# phi_minus[i]: 
############################################################################# 
for i in range(M):  
    t = True 
    while(t): 
        phi_minus_m = 0.5*(phi_minus_l[i] + phi_minus_r[i]) 
        f_minus_l = thetai[i] - theta_minus - N(quad(f,[phi_minus_l[i],0])) 
        f_minus_r = thetai[i] - theta_minus - N(quad(f,[phi_minus_r[i],0])) 
        f_minus_m = thetai[i] - theta_minus - N(quad(f,[phi_minus_m,0])) 
        if sign(f_minus_l) == sign(f_minus_m): 
            phi_minus_l[i] = phi_minus_m 
        else: 
            phi_minus_r[i] = phi_minus_m 
        t = abs(f_minus_m) > 10**-10 
    phi_minus.append(phi_minus_m) 
############################################################################# 
# Solving the integral equation by bisection method (step d)) 
# phi_plus[i]: 
############################################################################# 
for i in range(M):  
    t = True 
    while(t): 
        phi_plus_m = 0.5 * (phi_plus_l[i] + phi_plus_r[i]) 
        f_plus_l = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_l[i]])) 
        f_plus_r = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_r[i]])) 
        f_plus_m = theta_plus-thetai[i] - N(quad(f,[0,phi_plus_m])) 
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        if sign(f_plus_l) == sign(f_plus_m): 
            phi_plus_l[i] = phi_plus_m 
        else: 
            phi_plus_r[i] = phi_plus_m 
        t = abs(f_plus_m) > 10**-10 
    phi_plus.append(phi_plus_m) 
 
steps = 500 
phi_span = zeros(M,1) 
d_phi = zeros(M,1) 
for i in range(M): 
    # we have different angle spans for each line: 
    phi_span[i,0] = phi_plus[i] - phi_minus[i]  
    # we have different step size for each line: 
    d_phi[i,0] = phi_span[i,0]/steps  
     
PHI = [] 
for i in range(M): 
    # nesting lists inside list: 
    PHI.append([])  
for i in range(M): 
    for j in range(steps+1): 
   # filling the lists with angles: 
        PHI[i].append(phi_minus[i] + j * d_phi[i,0])  
     
THETA = [] 
for i in range(M): 
    # nesting lists inside list, each internal list starts with theta_minus: 
    THETA.append([theta_minus])  
############################################################################# 
# 4th-order Runge-Kutta for every line (step e)): 
############################################################################# 
for i in range(M):   
    for j in range(steps): 
        k1 = f(PHI[i][j]) 
        k2 = f(PHI[i][j] + d_phi[i,0]/2) 
        k3 = f(PHI[i][j] + d_phi[i,0]/2) 
        k4 = f(PHI[i][j] + d_phi[i,0]) 
   # adding elements (angles) to nested list: 
        THETA[i].append(THETA[i][j] + d_phi[i,0] * (k1 + 2*k2 + 2*k3 + k4)/6)  
#############################################################################
# Extracting the coordinates of the points (step f)): 
############################################################################# 
X,Y,Z = xyz(R,r,PHI,THETA) 
#############################################################################
# Visualization of the tape placement (step g)): 
############################################################################# 
fig = plt.figure(figsize=[16,16]) 
ax  = fig.add_subplot(1,1,1,projection='3d') 
for i in range(M): 
    #right hand screw: 
    ax.plot(X[i,:],Y[i,:],Z[i,:],color='#ff0000',linewidth=0.4)  
    # left hand screw: 
    ax.plot(X[i,:],Y[i,:],-Z[i,:],color='#0000ff',linewidth=0.4)  
ax.set_xlim(-10,30) 
ax.set_ylim(-20,20) 
ax.set_zlim(-20,20) 
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ax.xaxis.pane.fill=False 
ax.yaxis.pane.fill=False 
ax.zaxis.pane.fill=False 
ax.xaxis.pane.set_edgecolor('white') 
ax.yaxis.pane.set_edgecolor('white') 
ax.zaxis.pane.set_edgecolor('white') 
ax.view_init(10,225) 
ax.grid(b = None) 
plt.show() 
############################################################################# 
# End 
############################################################################# 

4. Results and discussion  
The following test values and initial conditions were used as input values for the algorithm: 

  (23) 

In this case, the number of needed tapes so as the whole surface of the elbow to be completely covered is 
  
The results achieved with our algorithm can be seen in Figure 7 and Figure 8.  

 
 

 

Figure 7. (Tape placement with two fibers.) 
 

Figure 8. (Complete tape placement.)

The generated videos which show how the tape placement of an elbow works can be found on ResearchGate: 
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm/update/5abd33aab53d2f63c3c2cc6c  
They were both generated using MATLAB (the second implementation). 
 In the previous section we presented two implementations of the algorithm – in MATLAB and in 
Python. Both of them have advantages and disadvantages. The former is better regarding the aspect that it relies 
on built-in functions exclusively. This means that the user does not have to know the details about the applied 
mathematical methods. In this sense, our code is encapsulated and hence more user-friendly. One huge 

15 
 

disadvantage is that the user needs to have a license so as to use MATLAB. On the other hand, the Python code 
and Python as a whole are open-source. However, the user needs to be able to implement all the needed 
methods themselves.     
 

5. Concluding remarks and future work 
In the process of solving this problem, we have tried different approaches for getting to the solution, so the 
solution and its code presented in this paper was selected by our choice as the simplest, although it was not the 
most efficient one. The solution as such is appropriate for tape laying, but not for filament winding, because we 
have not included dwelling. The main goal of our presented solution was to make it and its code a good and 
approachable introduction to filament winding and tape laying algorithms and the obstacles while delivering a 
complete filament winding solution. 

 Except the presented program codes in MATLAB and Python, we have made one more program code 
in MATLAB which differs from the presented one in the approaches to the numerical solving of the equations. 
The results from all three program codes are satisfactory. In future, we are going to try to implement dwelling 
as well. 

The whole project is available on ResearchGate: 
https://www.researchgate.net/project/Computer-Aided-Filament-Winding-Tape-Placement-for-Elbows-
Practically-Orientated-Algorithm  

Figures 2--6 in this paper have been generated using GeoGebra [21]. 
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