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ABSTRACT 

Recently, mathematical models are used to describe epidemic disease spread. Epidemic disease transmission 

outbreaks are modeled among Markov chain in order to monitor and control epidemic spreads. In this paper SIS 

(Susceptible- Infections- Susceptible) and SIR (Susceptive- Infectious- Recovered) models with discrete Markov 

chain are represented. These models are developed to see how the number of infected individuals changes over time. 

In this paper a review of a discrete model of Markov chain for describing epidemic spread is represented. The aim of 

this review is to explain the formulation of SIR and SIS epidemic models for the spread of infectious disease and to 

estimate transmission rate and recovery rates.  
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1 Introduction 

Epidemiology studies the cause, distribution and control of disease in a given population or region (city, state or 

globally). Mathematical models are used to understand disease outbreaks and spread, predict future occurrence of 

events and the effecton the population. By analyzing these mathematical models certain measures can be taken in 

order the disease to be controlled. In this paper, depending on the dependence between susceptible, infected and 

recovered individuals, two types of mathematical models are considered.  

The Susceptible- Infected- Susceptible (SIS) model divides the population into two subgroups: susceptible and 

infected individuals. This model, presumes that recovered individuals from the population do not have permanent 

immunity and immediately may and can become infectious again. The results for stochastic SIS model in [1] show 

normal distribution nature of the quasi- stationary distribution when the population size is large and the reproduction 

number is greater than 1. In [2] transmission parameter is considered to be function of the population size. 

The Susceptible- Infected- Recovered (SIR) model divides the population into three subgroups: susceptible, infected 

and removed/ recovered (dead, immunity) individuals. In this model a susceptible individual that has been infected, 

recovers the infection and obtains permanent immunity. The main aim of this model is to predict the trajectory of 

mailto:natasa.stojkovik@ugd.edu.mk
mailto:limonka.lazarova@ugd.edu.mk
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epidemic transmission as transitions are made from one to another subgroups. This model was developed by [3]. More 

complex SIR models are obtained from [3] by making more assumption and more parameters areconsidered [5, 6].  

 

 

2 SIS Epidemic Model 

 

In discrete- time stochastic SIS epidemic model, shown on figure 1, susceptible individual (S) becomes infected (I) 

but after recovery does not develop immunity and can immediately become infected again, 𝑆 → 𝐼 → 𝑆. The first 

assumption in this model is that newborns aren’t born infected and are placed in susceptible subgroups which means 

that there is not vertical transmissions. Secondly, infected individuals are infectious and can pass the infection to other 

individuals from susceptible subgroup. Thirdly, the total population size remains constant over time. This means that 

the number of births is equal to number of deaths at any time stamp,𝑁 = 𝑆(𝑡) + 𝐼(𝑡).  

 

Figure 1: Markov chain of transition in SIS epidemic model 

 

The SIS epidemic model is formulated using discrete time Markov chain. Let with𝑆(𝑡) and𝐼(𝑡)are denoted random 

discrete variables at time 𝑡 ∈ 𝑇 = {0, ∆𝑡, 2∆𝑡, . . } with 𝑆(𝑡), 𝐼(𝑡) ∈ {0,1,2,… , 𝑁}. Because the total population at any 

time is assumed to be constant follows: 

𝑑𝑁

𝑑𝑡
=
𝑑𝑆(𝑡)

𝑑𝑡
+
𝑑𝐼(𝑡)

𝑑𝑡
= 0 

By choosing enough small time steps can be assumed that at most one transmission occurs during each time step. For 

small enough time step ∆𝑡 and for 𝐼(𝑡) = 𝑖 only one of the following states can occur: 

𝑖
∆𝑡
→ 𝑖 + 1,    𝑖

∆𝑡
→ 𝑖 − 1,     𝑖

∆𝑡
→ 𝑖 

These means that at every time change, one new individual may get infected, recover and become susceptible again 

or there may not be change in the number of infectious individuals in the population. The number of susceptible 

individuals decreases if a new individuals get infected. A recovery of infected individuals’part of the population 

means that the infection subgroup decreases and susceptible subgroup increases, but the total population remains 

constant. Several factors affected the transmission of infection disease such as contact transmission, pathogen factors, 

environmental factor, clime etc. The transmission and recovery rates of the population are denoted as 𝛽 > 0 and 𝛾 >

0, respectively. The transmission rate β does not change with population size and transmission rate remains constant 

even as the number of infected individuals increases. The numbernewly infectedsusceptible individuals at time step t 

is given as: 

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
 

The number of infectious individuals that become susceptible depends on the number of infected individuals in a 

population and is determined by the recovery rate. The rate of infected individuals that become susceptible at any 

time t is given by 𝛾𝐼(𝑡). Time changes of susceptible subgroup is defined as: 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
+ 𝛾𝐼(𝑡) 

The probability of transiting from 𝑖 to 𝑖 + 1 is: 
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𝑝𝑖+1←𝑖(∆𝑡) =
𝛽𝑖(𝑁 − 𝑖)

𝑁
∆𝑡 

where 𝑆 = 𝑁 − 𝐼. The number of individuals recovering at time 𝑡 is given by 𝛾𝐼(𝑡) and for every recovery the changes 

of the infectious subgroup is: 

𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝛾𝐼(𝑡) 

The probability of transiting from 𝑖 to 𝑖 − 1 is: 

𝑝𝑖−1←𝑖(∆𝑡) = 𝛾𝑖∆𝑡 

The sum of probabilities of all possible transitions states must be equal to one. Thus, the probability that the number 

of infection subgroup remains unchanged after a time step is: 

𝑝𝑖←𝑖(∆𝑡) = 1 − [
𝛽𝑖(𝑁 − 𝑖)

𝑁
+ 𝛾𝑖] ∆𝑡 

For simplification 𝑏(𝑖) =
𝛽𝑖(𝑁−1)

𝑁
 and 𝑑(𝑖) = 𝛾𝑖. In order transition probability to be between 0 and 1, the time step∆𝑡 

should be sufficiently small enough so that following condition is satisfied: 

𝑚𝑎𝑥𝑖 = {[𝑏(𝑖) + 𝑑(𝑖)]∆𝑡} ≤ 1 

The transition matrix 𝑃(∆𝑡)that gives the probabilities of transitioning from one state to another in one time step is 

defined as follows: 

(

 
 
 
 
 

1 𝑑(1)∆𝑡 0

0 1 − [𝑏(1) + 𝑑(1)]∆𝑡 𝑑(2)∆𝑡

0 𝑏(1)∆𝑡 1 − [𝑏(2) + 𝑑(2)]∆𝑡
0 0 𝑏(2)∆𝑡
⋮ ⋮ ⋮
0 0 0
0 0 0
0 0 0

… 0 0
… 0 0
… 0 0
… 0 0
⋱ ⋮ ⋮
… 𝑑(𝑁 − 1)∆𝑡 0

… 1 − [𝑏(𝑁 − 1) + 𝑑(𝑁 − 1)]∆𝑡 𝑑(𝑁)∆𝑡
… 𝑏(𝑁 − 1)∆𝑡 1 − 𝑑(𝑁)∆𝑡)

 
 
 
 
 

 

 

The state 𝑝00 = 1 is an absorbing state of the transition matrixthat denotes the probability that the epidemic will die- 

off. If transitions from 𝑖 to 𝑗 and from j to 𝑖 are possible than𝑖 and j are part of same communicating class.  The state 

𝑖 = 0 forms a communicating class and another communicating class is formedforstates 𝑖 > 0. In the class when𝑖 >

0 the probability of transitioning between any two states in the population is positive, and also the probability of 

transitioning from any one of the states out of the class to 𝑖 = 0 is positive.  

 

3 SIR Epidemic Model 

 

In the discrete- time stochastic SIR model, shown on figure 2, the total population is assumed to be constant and 

divided into three subgroups: susceptible, infected and recovered. Let 𝑆 = (𝑡), 𝐼(𝑡) and 𝑅(𝑡)are random numbers that 

denotes the number of susceptible, infected and recovered (immune) individuals at time 𝑡 ∈ 𝑇 = {0, ∆𝑡, 2∆𝑡, . . }, 

respectively. The total population at any time is 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡). The assumption in this model is that there 

is no latent period, which means that infected individuals are also infectious.  
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Figure 2: Markov chain of transition in SIR epidemic model 

 

The population size is constant at any time, so that follows: 

𝑑𝑁

𝑑𝑡
=
𝑑𝑆(𝑡)

𝑑𝑡
+
𝑑𝐼(𝑡)

𝑑𝑡
+
𝑑𝑅(𝑡)

𝑑𝑡
= 0 

In order dimension of the system to be reduced, the number of recovered individuals is computed by means of 

susceptible and infected subgroups as: 

𝑅(𝑡) = 𝑁 − 𝑆(𝑡) − 𝐼(𝑡) 

The other assumption is that at most one transition can occur during each time step if the time steps are sufficient 

small enough. The process is bivariate because the recovered subgroup depends on susceptible and infectious 

subgroups so that for time step ∆𝑡only one of the following transitions can occur:  

(𝑠, 𝑖)
∆𝑡
→ (𝑠 − 1, 𝑖 + 1),    (𝑠, 𝑖)

∆𝑡
→ (𝑠, 𝑖 − 1),     (𝑠, 𝑖)

∆𝑡
→ (𝑠, 𝑖) 

Only one individual from the population may get infected, recover from the infection and not becoming susceptible 

again or there may not be any changes of the number of infectious individuals for every time step. When new infection 

occurs in the population, the number of susceptible individuals decreases while the number of infection individuals 

increases.  

For discrete time Markov chain SIR model, the change of susceptible subgroup at time 𝑡 is defined as: 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
 

Because it is presumed the recovered individuals develop immunity, the susceptible individuals are transiting to 

infection subgroup with no individual returning to the susceptible subgroup. This means that over time the number 

the susceptible individuals in the population decreases andthe probability of new infection is defined as: 

𝑝(𝑠−1,𝑖+1)←(𝑠,𝑖)(∆𝑡) =
𝛽𝑠𝑖

𝑁
∆𝑡 

Infected individuals are recovering and transiting to the recovery subgroup, so thusthe time change of infection 

subgroup at time 𝑡 is defined as: 

𝑑𝐼(𝑡)

𝑑𝑡
=
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝛾𝐼(𝑡) 

 

Recovery is transition from state (𝑠, 𝑖) to state(𝑠, 𝑖 − 1)with probability: 

𝑝(𝑠,𝑖−1)←(𝑠,𝑖)(∆𝑡) = 𝛾𝑖∆𝑡 

The total population size is constant so that each death is accompanied by a birth. Thus, the probability that the number 

of infectious individuals remains unchanged after one time step is: 

𝑝(𝑠,𝑖)←(𝑠,𝑖)(∆𝑡) = 1 − [
𝛽𝑠𝑖

𝑁
+ 𝛾] ∆𝑡 

The transition matrix for SIR epidemic model cannot be expressed in a simple form, but there is a single absorbing 

state at the origin for 𝑠 = 0 and 𝑖 = 0.  

 

4 Conclusion 

SIS and SIR epidemic models are most simple mathematical models that are used analyzing the spread of infectious 

diseases. Markov chains are important tool for mathematical modeling of epidemiology results. The mathematical 
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models which are based on Markov chains can be used for prediction of spreading diseases and for prediction on 

outcomes of taking measures for stopping the spread of infections. On the other hand, binominal epidemics models 

as Greenwood model and Reed- Frost model can be used for estimate duration size of the epidemic. In the future, the 

authors will consider more complex mathematical models like SEIR, SEIR+D for prediction of epidemiological 

process in their research.  
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