Using ChatGPT tfor numerical
solution O

r

ordinary

first and second order
ifferential equations

Saso Koceski, Natasa Koceska, Limonka Koceva Lazarova, Marija
Miteva, Biljana Zlatanovska

Faculty of Computer

Science, University Goce Delcev Stip

FMNS, Blagoevgrad,
Bulgaria 14 - 18 June, 2023

Introduction

Differential equations play a crucial role in engineering and science as they describe a wide range of
natural phenomena and physical processes.

These equations are used to model and predict the behavior of complex systems.

They are used in various fields:

* In mechanics - used to describe the motion of particles and systems of particles, to describe the
behavior of fluids in motion, they are also used to describe mechanical vibrations and in many other

fields.
* In electrical engineering - used to model and predict the behavior of electrical systems

* In chemistry - used to describe the rates of chemical reactions, which is important in the design of
chemical processes and the production of materials.

 In biology - used to model the behavior of biological systems, such as the growth of populations and
the spread of diseases.

Introduction

Differential equations can be classified into several types based on their order, linearity, and dependence
on the independent variable.

An ordinary differential equation of the n-th order is of the form
dy d*y d3 dar
F< y d°y d’y y) — 0o

x'y'dx'dxz'dx?’""'dx"

Its general solution contains n arbitrary constants and is of the form

) (x, V,C1,Cpy wers cn) =0

To obtain its particular solution, n conditions must be given so that the constants c,, ¢,, ¢n can be
determined. If these conditions are prescribed at one point only, then the differential equation together
with the conditions constitute an initial value problem of the n-th order. If the conditions are prescribed at
two or more points, then the problem is termed as boundary value problem.

For the purpose of this research, we will be focused on ordinary differential equations of first and second
order.

Problem statement

Although various analytical methods for finding general solutions of ordinary differential equations of first
and second order exists, it is still challenging mathematical problem that requires significant human effort.

However, the latest development of Artificial Intelligence (Al) and models capable of mimicking human
behavior and improving over time, have already shown their strength and capabillities in finding creative
solutions to multiple problems in various fields.

Therefore, in our research, we have conducted an empirical study to validate the performances and
capabilities of OpenAl’s large language models, by using the free version of its ChatGPT chat-bot
application for finding numerical solution of differential equations of first and second order.

Moreover, we have evaluated the capabilities of ChatGPT for generating numerical solution for one specific
problem (Newton'’s law of cooling states) and refining the solution to satisfy our specific requirements.

What is GPT-3 and its architecture

GPT-3 stands for - Generative Pre-trained Transformer version 3. It is an auto-regressive language model
that uses deep learning to produce human-like text.

- Generative — a statistical model for creating new data based on the relationship between variables in a
data set.

- Pre-trained - a model that has been previously trained on a large data set.

- Transformer - neural network architecture presented in 2017. A deep learning model adapted to work
with sequential data.

What is GPT-3 and its architecture

Language model

» Machine learning model - represents the language domain

» Base - representation of a word in the form of a vector of numbers
» contain important words;
» suitable for computers;

» we can calculate similarity (distance).

e [050451, 0.68607 , -0.59517 , 0.022801, 0.60046 , -0.13498 , .0.08813, 047377 , 061798, -0.31012 , -0.076666, 1.493 , -0.034189, -0.98173 , 0.68229, 0.81722,
k ' n g - -0.51874 , -0.31503 , -0.55809 , 0.66421 , 0.1961 , -0.13495 , -0.11476, -0.30344, 041177, -2.223 , -1.0756 , -1.0783 , -0.34354 , 0.33505 , 1.9927 , -0.04234 , -0.64319,
071125, 049159, 0.16754, 0.34344, -0.25663 , -0.8523 , 0,661 , 0.40102 , 1.1685 , -1.0137 , -0.21585 , -0.15155 , 0.78321 , -0.91241 , -1.6106 , -0.64426 , -0.51042 |

16

- 05 06% 06 0023 06 013 0088 047 062 031 IO??IODH 068 082 052 032 456 066 02 013 011 03 041 II-'!-I' 034 I{]Dﬂ 464 071 043 017 034 026 085 017 04 II{I?I 415 Q78 I 464 051 -GU

aQ 1 2 3 4 5 & 7] 1 1] 1 12 13 bt 5 16 7 18 it}] a 2 B # =] 7 ®m -} £ a1 2 £) k2 = 7 = 0 @ 4l @ 4 “ & % a1 B E

—16

What is GPT-3 and its architecture

Language model

» Machine learning model - represents the language domain

» Base - representation of a word in the form of a vector of numbers
» contain important words;
» suitable for computers;

» we can calculate similarity (distance).

king — man + woman ~= queen

model .most_similar({positive=["king","woman"], negative=["man"])

klng I I I I I [('queen’', 0.8523603677749634),
('throne', 0.7664333581924438),
man ('prince’', 0.7592144012451172),
('daughter', 0.7473883032798767),
woman II I I ('elizabeth', 0.7460219860076904),
{'princess', 0.7424570322036743),
. ('kingdom', 0.7337411642074585),
klﬂg man+woman I I ('monarch', 0.721449077129364),
('eldest', 0.7184862494468689),
queen ('widow', 0.7099430561065674)]

What is GPT-3 and its architecture

GPT-3:

» ENCODER - from the input data it generates its vector representation

» DECODER - from the vector form it generates the output sequence

—c vz -

4.[

Encoder

J‘{ [0.35, 0.22, 0.95] }—»[

Decoder

]_.

{-l:‘uqco]

What is GPT-3 and its architecture

Training datasets:

Dataset (0 [TE111 {147 Weight in Description
training mix

Common crawl (filtered) 410 billion 60% data obtained from 8 years web
crawling (PB)

WebText2 19 billion 22% text from web pages linked by
Reddit posts with 3+ votes

Books1 12 billion 8% Book collection

Books?2 55 billion 8% Book collection

Wikipedia 3 billion 3% Text from Wikipedia

What is GPT-3 and its architecture

Training process:

Unsupervised Pre-training
("\ Correct output (label):

Input (features) a robot must -

I Output (Prediction) exterminate I

I No, should have been - I

l Calculate error l

Goals of this research

In our research we were interested to discover the frequency of correct answers and explanations of
ChatGPT to the problems defined in our dataset.

To investigate this, we have created a dataset composed of 215 differential equations extracted from
various academic books and textbooks [1-10], as well as our own written differential equations that could

not be found in any of the previous sources.

The structure of the input dataset is given in the Table 1 bellow.

Type of equation Number of equations in
the dataset

First order differential equations 110

Second order differential equations 105

Methodology

Initial problems dataset (n=215)

In this research we have created an initial dataset composed of 215

ordinary differential equations extracted from various academic |

books and textbooks [1-10], as well as our own written differential " Content validation and dataset
equations that could not be found in any of the previous sources. s refinement

Then domain experts have reviewed the initial dataset and validated Final problems dataset (n=100)
its content. After the revision the problems dataset was reduced to

100 equations (50 of them were first order and other 50 second , .

order equations. Conversation with ChatGPT

\ 4

The structure of the final problems dataset is given in the Table Obtained answers from ChatGPT
bellow.
[Answers validation by 3 domain
L experts
the dataset .
First order linear homogeneous differential Average final score

equations

Second order linear homogeneous differential) v
equations Answer comparison and conclusions

Methodology

Then the problems were given as input to ChatGPT in a single Initial problems dataset (n=215)

conversation.

\ 4

Content validation and dataset
L refinement

Obtained answers from ChatGPT were graded by 3 independent

domain experts using grades from 1-5 Likert scale. .
Final problems dataset (n=100)

Final score for every problem was obtained as an average of the v
obtained three answers. Conversation with ChatGPT

\ 4

Each conversation with ChatGPT contained the following elements: Obtained answers from ChatGPT

\ 4

1) Definition of the equation, definition of the initial conditions " Answers validation by 3 domain

L experts

2) Requirement to write the numerical solution using particular v
method, plot the solution and find the value of y at given points. Average final score

\ 4

Answer comparison and conclusions

Methodology

oy U e N

Notes on Diffy Qs - Differential Equations for Engineers, by Jifi Lebl, 2022, Amazon KDP edition ISBN-13:978-1-
70623-023-6

Differential Equations, Jeffrey R.Chasnov, 2021, Hong Kong University of Science and Technology
ELEMENTARY DIFFERENTIAL EQUATIONS, William F. Trench, 2013, Brooks/Cole Thomson Learning
DIFFERENTIAL EQUATIONS AND LINEAR ALGEBRA, Gilbert Strang, Wellesley - Cambridge Press, MIT, 2022
Ordinary Differential Equations, Gabriel Nagy, Michigan State University Press, 2021

Fundamentals of Differential Equations, R. Kent Nagle, Edward B. Saff, Arthur David Snider, Pearson Education, Feb
28,2012

ORDINARY DIFFERENTIAL EQUATIONS - An Elementary Textbook for Students of Mathematics, Engineering, and the
Sciences, Morris Tenenbaum, Harry Pollard, Dover Publications, 1963

Numerical Methods for Scientists and Engineers, R. W. Hamming, Dover Publications; 2nd Revised ed. Edition, 1987

Python Programming And Numerical Methods: A Guide For Engineers And Scientists, Alexandre Bayen, Qingkai
Kong, and Timmy Siauw, Elsevier Science, Dec 15, 2020

10. Numerical Python - A Practical Techniques Approach for Industry, Robert Johansson, Apress, 2015

Methodology

For numerical solution of the ordinary differential equation of first and second order the following
methods were applied:

 Euler’s method

» Taylor's series method
 Picard’s method

* Runge-Kutta method

* Milne's method

» Adams-Bashforth method

Regardless of the method used, ChatGPT was asked to generate programming code in Python
programming language. Once the solution was generated, the programming code was simply copied and
pasted in Google Collaboratory where it was executed (and eventually debugged).

Methodology

ChatGPT is trained with reinforcement learning through human feedback and reward models that rank the
best responses. This feedback helps augment ChatGPT with machine learning to improve future responses.

One way to get the best results from ChatGPT is to assign it a role. This is a fantastic method of getting
more appropriate responses to your prompts. Asking ChatGPT a question will always produce a response
of some sort, but its relevance might not be suited to your requirements.

Therefore, before starting of our experimental interactive session we have assigned it a role and tried to
test its initial theoretical knowledge about one specific subject.

S Please act as mathematician and expert in numerical analysis. Can you please list me the
methods for step-by-step methods for numerical solution of first and second order ordinary

differential equations with a short explanation for each?

Methodology

And here’s the result we obtained:

6. Finite Difference Methods: Finite difference methods approximate derivatives using

Certainly! Here are some common step-by-step methods for the numerical solution of first s difference equations. They discretize the domain and replace the derivatives with
and second-order ordinary differential equations: difference approximations. Finite difference methods can be applied to both first and
second-order ordinary differential equations and are commonly used in numerical

1. Euler's Method: Euler's method is a simple and straightforward method for solving first- e
order ordinary differential equations. It approximates the derivative using a forward = Tl e s s T T T R TR T T SIS R S PO T T e
e e e differential equation as a power series expansion around a given point. By truncating the
limited accuracy and can exhibit significant error accumulation. series and using a finite number of terms, a numerical approximation of the solution can

2. Improved Euler's Method (Heun's Method): This method improves upon Euler's method be obtained. Taylor series methods provide high accuracy but can be computationally
by using a midpoint estimate of the derivative to update the solution. It reduces the error demanding.

compared to Euler's method but is still a first-order method.

3. Runge-Kutta Methods: Runge-Kutta methods are a family of numerical methods that These methods vary in terms of accuracy, stability, and computational complexity. The

iteratively approximate the solution of ordinary differential equations. The most choice of method depends on the specific characteristics of the differential equation, such

commonly used is the fourth-order Runge-Kutta method (RK4). It involves calculating as order, linearity, stiffness, and any specific requirements for accuracy and efficiency.

several intermediate slopes to estimate the derivative and update the solution. RK4
offers higher accuracy compared to Euler's and improved Euler's methods.
4. Adams-Bashforth Methods: Adams-Bashforth methods are explicit multi-step methods
‘S Regenerate response
for solving first-order ordinary differential equations. They use previous solution values to
estimate the derivative and predict future solution values. The accuracy of these methods
Send a message.
increases with the number of steps used.

Evaluation

All equations were introduced to ChatGPT in the same session (one after another), and for each equation
numerical solution using different method was generated. One such conversation is presented bellow:

B Can you please provide me with a python code for numerical solution of the following
differential equation y'=x"2*y-1, with initial condition y(0) =1. Please use the Runge-Kutta
method. Plot the solution at the end. Please find the values y(01) and y(0.2) print them and
plot them on the graph

Certainly! Here's a Python code that uses the Runge-Kutta method to numerically solve the
given differential equation y' = x*2*y - 1, with the initial condition y(0) = 1. It then plots the

solution and evaluates y atx =01and x=0.2.

numpy np
matplotlib.pyplot plt

(x, y):

XD %y -

(h, x0, y0, x_end):
x_values = np.arange(x0, x_end + h, h)
y_values = np.zeros{len(x_values))
y_values[0] = y0O

y = y_values[i]

ki h * f(x, y)

k2 h * f(x + h/2, y + k1/2)
k3 = h * f{x + h/2, y + k2/2)
k4 = h * £f(x + h,

y_values[i+i] = y ‘D Regenerate response [ESRNEES

Evaluation

(x}
" i t
N ° import numpy as np

The result was evaluated in Google Colaboratory b T i saporiin ypia a5 ot

def f(x, y):
return x¥*¥2 * y - 1

|:+ }'{B.l] = 2.92231 def runge_kutta(h, x@, y@, x_end):
}'{B.Z] = @.88227 x_values = np.arange(x®, x_end + h, h)
y_values = np.zeros{len(x_values))
. . f ~ ¢ =
Numerical Solution of y'=x"2*%y-1 y_values(e] = yo
= for i in range({len(x_values) - 1):
1000 1 —— Numerical Solution % = x_values[i]
- y = y_walues[i]
® Interpolated Points R
0.975 4 KZ = h * £(x + h/2, y + k1/2)
K3 =h * f{x + h/2, v + k2/2)
k& =h * f(x + h, y + k3)
0.950 4 y_values[i+1] = y + (k1 + 2%k2 + 2*k3 + k4) / 6
return x_values, y_ walues
0.925 4 # Parameters
h = @.@1
¥ =8
= 0.900 7 o = 1
x end = 8.2
0.875 - # Solve the differential equation
N ¥_values, y_valuss = runge_kuttalh, x@, v@, x_end)
Evaluate y at x = 8.1 and x = 8.2
0.850 1 y_at_@1 = np.interp(@.1, x values, y walues)
y_at_82 = np.interp(@.2, x_values, y_values)
print(f"y(0.1) = {y _at @1:.5f}")
0.825 4 print(f"y(8.2) = {y_at @2:.5f}")
Plot the solution
0.B00 4 plt.plot{x_values, y_values, label="Numericzl Soluticn')
) plt.scatter{[8.1, 8.2], [v_at_©1, y at_82], color="red', label='Interpolated Points'}

! ! ! ! y ! ! g ! plt.xlabel("x"'}
0.000 0.025 0050 0075 0100 0125 0150 0175 0200 plt.ylabel('y')
% plt.title("MNumerical Solution of y'=x"2%y-1")
plt.legend()
plt.grid{True}

< plt.show)

Results

Evaluation results for first order ODE

B culer M Taylor's series [l Picard [Runge-kKutta [l Milne [l Adams-Bashforth

g

Average mark
L

Method type

Results

Evaluation results for second order ODE

B culer M Taylor's series M Picard [Runge-Kutta [Milne [Adams-Bashforth

m=y

P

Average mark
L

Method type

Results

We were also interested in evaluating the ChatGPT capabilities for analytical and numerical solution of
some well-known engineering problems. We took Newton's Law on cooling states as an example.

Can you please explain me the Newton's law on cooling states?

The conversation is given in the following:

Certainly! Newton's Law of Cooling describes the rate at which the temperature of an object
changes when it is in contact with a surrounding medium of a different temperature. It states
that the rate of change of the temperature of an object is proportional to the temperature

difference between the object and its surroundings.
Mathematically, the law can be expressed as:

dT/dt = -k(T - Ts)

Where:

* dT/dt is the rate of change of temperature with respect to time (how fast the temperature
is changing),

* Tisthe temperature of the object at any given time,

* Tsis the temperature of the surrounding medium (often called the ambient temperature),

* kisthe cooling constant or the heat transfer coefficient, which depends on factors like
the material and surface area of the object, and the properties of the surrounding

medium.

According to Mewton's Law of Cooling, the rate of change of temperature (dT/dt) is directly
proportional to the temperature difference (T - Ts) between the object and its surroundings.

The negative sign indicates that the temperature of the object decreases over time.

In simpler terms, if an object is hotter than its surroundings, it will lose heat to the
surroundings, and its temperature will decrease. The rate at which this cooling occurs
depends on the temperature difference between the object and the surroundings, as well as

other factors influencing heat trar
> Regenerate response

Results

The bot was asked for analytical solution of the ODE first:

Can you please find me the generic solution of the differential equation describing Newton's
law of cooling states dT/dt = -k(T - Ts)?

Certainly! The differential equation describing Newton's Law of Cooling is:
dT/dt = -k(T - Ts)

To find the generic solution of this differential equation, we can rearrange it and separate the

variables:

dT/(T-Ts) =-kdt

Now, we integrate both sides of the equation:

JdTAT-Ts)=-k [dt

The integral on the left side can be solved using natural logarithms:
InIT-Ts[=-kt+C

Here, C is the constant of integration. Now, we can exponentiate both sides to eliminate the

logarithm:

IT-Tsl=e~(-kt +C) < Regenerate response

Using the absolute value notation, we can split this equation into two cases:

1 (T-Ts)=e(-kt +C)if (T >Ts)
2. «(T-Ts)=e*(-kt+C)if (T < Ts)

Next, we can simplify these equations by absorbing the constant C into ancther constant.

Let's call this new constant A:

1. (T-Ts)=Ae(-kt) if (T > Ts)
2. (T -Ts) = Ae(-kt) if (T < Ts)

We can further rearrange these equations to solve for T:

1. T=Ae-kt) + Tsif (T >Ts)
2. T=Ts-Ae*(-kt) if (T <Ts)

These are the generic solutions to the differential equation describing Newton's Law of
Cooling. The constant A represents the initial condition or the difference between the initial
temperature of the object and the ambient temperature. It can be determined based on the

specific problem or initial conditions provided.

Results

And then the numerical solution, for specific initial condition, ambient temperature and cooling constant,
was generated and plotted.

import numpy as np = . .
- T Solution - Newton's Law of Cooling

from scipy.integrate import odeint

Temperature

def newtons_law_cooling(T, t, k, Ts):
return -k * (T - Ts) 4 -

Constants and initial conditions
k=8.2
Ts 2.8
T® -1.8
2 .

N
LI
U
U

NNNNNNNNNN NN

LR
U I
U

NNNNNNNNNN VNS

R I I

LT U U T T T T T T L T T N A

Time points for evaluation
t = np.linspace(-5, 5, 21)

LR IR T I I

LT U T T T T U T T T T A A A A

L T O T N

NMONNNNYNN NN NV VbR

Solve the differential equation
solution = cdeint(newtons_law_cooling, T@, t, args=(k, Ts))

LI TR T T T N N

Temperature
=]
NNNNNNNNNN NNV bR

Plotting the slope field

T, tt = np.meshgrid(np.linspace(-5, 5, 21), np.linspace(-5, 5, 21))
dy = newtons_law_cooling(T, tt, k, Ts)

dx = np.onesEdet.shape, =2 1
dyu = 4¥dy/np.sqrt{da**2+dy**3) H H H

P e gy e e Just a single intervention was

H!E- !gu EE !g!!‘!— \SJ E
plt.quiver(tt, T, dxu, dyu, angles="xy') made on the proposed
plt.xlabel(' Time") —4 -

plt.ylabel('Temperature’) - solution in order to normalize
plt.title("Slope Field - Mewton's Law of Cooling™)

NNNNNNNNNN NNV Vbbb
NNNNNNNYNNN N VNN Vbbb
NMNNNNNNYNNN VNV bbb
NNNNNNNNNN NNV bbb

W oW W OW Y
NN W N NN WY
ONONONON NN %N
NN N N Y Y Y
NN NN N Y Y
OMONONON W NN WY LY
OOWON NN W NN Ny)
NRNNNNY Y NN VL)
NN ONON W NNV YL
OWONMOWON NN W NN L
MRNNNYNY Y NN VL)

gt e the potential field vectors

plt.plot(t, solution)
plt.xlabel(' Tima") Time
plt.ylabel(' Temperature")

plt.title("Solution - Mewton's Law of Cooling")

plt.legend([' Temperature'])

plt.show(}

|
£

|
td
=
B
o

Conclusion

O Based on our findings, ChatGPT is capable of providing numerical solution to both first and second
order differential equations with an average mark of around 4 and accuracy of about 80%

O There was no significant difference in the application's capability to solve both types of ODE’s.

0 ChatGPT showed strong conceptual understanding of the subject and capability to provide
even analytical solution of first and second order ODE

d In the future, with further improvement, ChatGPT-like programs may be used for academic purposes.

Thank you for your attention

Q&A?

