

GOCE DELCEV UNIVERSITY – STIP, FACULTY OF AGRICULTURE DEPARTMENT FOR PLANT AND ENVIRONMENTAL PROTECTION, REPUBLIC OF NORTH MACEDONIA

IMPACT OF DISEASE SEVERITY ON INFECTED BUNCHES UPON A YIELD OF GRAPE VARIETY VRANEC, CAUSED BY PLASMOPARA VITICOLA (BERK. & M.A. CURTIS) BERL. & DE TONI.

Bojkov Gligor*, Arsov Emilija, Mitrev Sasa

3rd INTERNATIONAL MEETING AGRISCIENCE & PRACTICE (ASP 2023)

INTRODUCTION

In 2022, a forecasting model of yield loss caused by *Plasmopara viticola* was applied to the black grape variety Vranec to predict yield loss before executing grape harvesting, with the adoption of "Image J" software.

63,2%

23,1%

MATERIAL AND METHODS

The research aimed to determine grape yield loss upon infection development of *P.viticola* on bunches and consequently to create a yield loss forecasting model.

The research was conducted, in a vineyard located at Smilica, near Kavadarci, Republic of North Macedonia. A double Guyot pruning method in the vineyard was applied.

Two different plots were compared: A-Control canopy, where the bunches were sprayed only once with a contact fungicide Folpet to prevent yield losses, and B-Standard fungicides treatment, which followed the usual spray schedule during the growing season.

In the A variant (control canopies), 167 bunches were scanned, with the 'image J' software platform. Although, in the B variant (standard fungicides treatment), the results obtained from bunches were not statistically significant because there was no significant level of the disease.

VARIANTS AND CALCULATIONS

- **Model description:**
- 1) Quantitative measurements
- $DI = \sum x/N$
- DI-Disease Incidence
- x- Number of diseased bunches
- N- Total number of units assessed
- Disease Severity- Use on software assessment platform "Image J" of diseased leaves and bunches.
- Measurement of temperature during precipitation days

MATERIAL AND METHODS

Tm = (Tda - Tmin) / (Tmax - Tmin)
Tm-temperature coefficient
Tmin-minimum temperature;
Tmax-maximum temperature;
Tda-daily average temperature
Measurement of rainfall (mm/m2)
2) Statistical Analysis

RESULTS AND DISCUSSION

Regression		
Multiple R	0,717225	
R Square	0,514411	
Adjusted R		
Square	0,460457	
Standard Erro	or 0,212211	
Observations	21	
ANOVA		
F Sig	gnificance F	
9,5342	0,0015	
	Coefficients	P-value
Intercept	1,250373	0,00413
Rainfall	0,361155	0,00312
Temperature	-1,24537	0,0364

Regression Model Determining Disease Incidence on Bunches

Infulence of Temperature and Precipitation Upon Disease Incidence on Bunches

• Rainfall • Temperature

 $\gamma = \beta 0 + \beta 1 x_1 + \beta 2 x_2 = 82\%$ $\gamma \pm t \times \frac{SE}{\sqrt{n}}$ (Confidence interval) $\gamma = 72 \text{ to } 92\%$

RESULTS AND DISCUSSION

Yield Loss Forecast Model Caused by *Plasmopara viticola* –Model 1

Disease Severity Progress in Control Canopies

RESULTS AND DISCUSSION

Yield Loss Forecast Model Caused by *Plasmopara viticola*-Model 2

Quantitative Effect of Bunches Damage- Direct Yield Loss in Control Plot

CONCLUSIONS

Table 1. Overview of prediction model results comparedto the actual situation on the field

Yield Loss Forecast Model			Actual situation on the field				
Control	Results in	%	%	Control	%	%	Standard
canopies	kg/per		predicted	canopies		yield	fungicides
(theoretical	vine		yield loss			loss	treatment
assumptions)				Results in			Results in
				kg/per vine			kg/per vine
Model 1	1,43	33,3	66,7	1,6	37,2	62,7	4,3
Model 2	1,37 to	31,8 to	63,2-68,1				
	1,58	36,7					

Recomendence

If the average daily temperature ranges from 16.3 to 28.6 C, and the precipitation is equal to or higher than 8 L/m2 in that case, the beginning of infection of the bunches by expected.

GOCE DELCEV UNIVERSITY – STIP, FACULTY OF AGRICULTURE DEPARTMENT FOR PLANT AND ENVIRONMENTAL PROTECTION, REPUBLIC OF NORTH MACEDONIA

THANKS FOR YOUR ATTENTION

3rd INTERNATIONAL MEETING AGRISCIENCE & PRACTICE (ASP 2023)

Bojkov Gligor, Arsov Emilija, Mitrev Sasa

