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Abstract: Land reclamation of previously mined regions has been incorporated in the mining process as 

awareness of environmental protection has grown. In this study, we used the open-pit coal mine Oslomej in R. 

N. Macedonia to demonstrate the activities related to the monitoring process of the study area.   

We combined the Google Earth Engine (GEE) computing platform with the Landsat time-series data, 

Normalized Difference Vegetation Index (NDVI), Random Forest (RF) algorithm, and the LandTrendr 

algorithm to monitor the mining impacts, land reclamation, and the solar farm growth of the coalfield region 

between 1984 and 2021.  

The data from the sequential Landsat archive that was used to construct the spatiotemporal variability of the 

NDVI over the Oslomej mine site (1984-2021) and the pixel-based trajectories from the LandTrendr algorithm 

were used to achieve accurate measurements and analysis of vegetation disturbances.   

The different land use/land cover (LULC) classes herbaceous, water, mine, bare land, and solar farm in the 

Oslomej coalfield area were identified, and the effects of LULC changes on the mining environment were 

discussed. The RF classification algorithm was capable of separating these LULC classes with accuracies 

exceeding 90 %. We also validated our results using random sample points, field knowledge, imagery, and 

Google Earth. 

Our methodology, which is based on GEE, effectively captured information on mining, reclamation, and solar 

farm change, providing annual data (maps and change attributes) that can help local planners, policymakers, 

and environmentalists to better understand environmental influences connected to the ongoing conversion of 

the mining areas. 

Keywords: coal mine, NDVI, LandTrendr algorithm, Google Earth engine, restoration of vegetation, solar 

farm 
 

 

1. Introduction 

 

Mineral resources are in higher demand as a result of rapid economic and social growth [1]. Due to 

various human activities, the Earth's surface has changed dramatically. Sustainable mining has become a global 

priority, owing to the growing acceptance of mine closure as a means of returning land to a usable state after 

mining, such as for agriculture and tourism [2]. Abandoned mines are often the result of evasive mining closure 

methods, posing a serious hazard to human health, environmental stability, and agricultural operations. 

Pollution, ecological deterioration, and biodiversity loss have all been observed in mining sites around the 

world, thwarting sustainable development goals [3, 4, 5]. These activities have a variety of damaging 

environmental consequences, and many governments demand that mining-affected regions be restored [6, 7]. 

More recently, the R. N. Macedonia government passed the Law on Mineral Raw Materials (No.136/12 

from 2012), requiring mining companies to rehabilitate their sites once operations had ceased. 
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In some areas of R. N. Macedonia, land-cover changes around large surface mines have already harmed 

the environment. Both sustainable and green mining necessitate ongoing monitoring of these changes in order 

to determine the long-term effects on the environment [8, 9, 10]. Remote sensing has emerged as the most 

effective and impartial approach for tackling this problem. It provides comprehensive coverage of the mining 

area and enables repeated observation using the United States Geological Survey (USGS) publicly available 

Landsat archive [11, 12, 13]. The spatial and spectral features in Landsat imagery can be used to map diverse 

types of vegetation using a variety of vegetation indices. 

Recent research on tracking land change has moved their attention to a multi-temporal analysis utilizing 

the entire Landsat archive, which has images with continuous acquisitions spanning more than 40 years [14, 

15, 16, 17, 18]. Examples include forestry applications and dynamic monitoring of quarries utilizing a 

combination of remotely sensed datasets and various vegetation indices. 

For example, Hansen et al. [19] used Landsat data to map global forest loss and gain from 2000 to 2012 

at a spatial resolution of 30 m, and the results show a consistent and pertinent record of forest change. Kennedy 

et al. [20] used a deep temporal stack of Landsat images from 1984 to 2004 and a conceptual framework for 

change detection to track the dynamics of forest disturbance with distinctive temporal signatures in spectral 

space. 

Vegetation indices have been employed in numerous studies to quantify the surface disturbance caused 

by coal mining. For instance, a time series NDVI has been utilized to monitor the process of mining-related 

land degradation and recovery [21, 22]. Xiao et al. [23] mapped mining disturbances to grassland and land 

recovery in open-pit mining region between 2003 and 2019 using the GEE platform, time-series Landsat data, 

and the LandTrendr method. Furthermore, He et al. [24] created a dynamic map for the water restoration and 

subsidence ponding years in mining landscapes in China's eastern plain using Landsat imagery and GEE. In 

addition, some studies [25, 26] explored the different varieties of mine vegetation, as well as the relationship 

between mine vegetation growth and the surrounding soil and heavy metals, as well as the mine's ecological 

restoration. Recently, GEE [27] with its tremendous cloud computing ability, facilitated the temporal uses of 

the Landsat data archive, such as monitoring of mining boundaries, vegetation removal and land reclamation. 

The main restoration initiative after mining operations ceased is to replant flora such as grasses, bushes, 

and trees in the mined sites, although other management options include converting the mined regions into 

solar power stations.  

In this research, we analyzed the areal expansion of the Oslomej mine in R. N. Macedonia for over 36 

years and demonstrated the restoration of the region into vegetation and solar farm, using remote sensing 

techniques. Our study demonstrates the value of freely available data and algorithms in conjunction with a 

GEE cloud-based computing platform. The methodology described in this study enables efficient extraction 

of the spatio-temporal processes of mining activities and reclamation, thus providing valuable data for 

sustainable mining production and land reclamation. Overall, we anticipate that users will be inspired to 

replicate our methodology, particularly in developing countries where it is of key importance to monitor the 

post-mining processes. 

 

2. Materials and methodology 

 

2.1. Study area 

This study was carried out at the Oslomej coal mine, located in the western part of the R. N. Macedonia, 

near the village Oslomej, municipality of Kichevo (Figure 1). It is located in the Kichevo Valley, 5 km from 

the city of Kichevo. The mine site, which is 6.3 km2, underwent significant change from 1980 to 2021 when it 

was in operation. From a geomorphological point of view, the area of the Oslomej deposit has an altitude of 

650 - 700 m with a slightly wavy shape. To the west of the exploitation field are several hilly mountain peaks 

with an altitude of 700 to 900 m.  

The Oslomej basin is filled with Pliocene sediments lying on the Paleozoic rocks and is represented by 

gravel, sands, clays, and a productive series represented by gray clays, sands, and coal seams. In the deeper 

layers of the Pliocene sediments, coal seams with a thickness of 5-12 m have been found. The average thickness 

of the waste rock over the coal seams for open-pit exploitation is around 40 m.  

The study area is located in the warm continental zone in which a modified moderate continental climate 

prevails, which is conditioned by the presence of mountain massifs with an altitude above 1000 m.  

The average annual air temperature is 10.7 °C with an average annual maximum air amplitude of 20.8 °C. 

The average annual relative humidity is 73 %. 
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Figure 1. Location map of the study area 

 

2.2. Overview of the methodology 

Our approach is premised on the fact that abrupt changes in vegetation will occur as a result of open-pit 

mining and reclamation activities, as illustrated by the trajectory of the vegetation indices in Figure 2 [28, 29]. 

Monitoring of the open-pit mining progress was studied using time series analysis to detect breakpoints in the 

trajectories, indicating abrupt changes. Figure 3 displays the methodological framework used for this study.  
 

 
Figure 2. NDVI trajectory for predating, during, and postdating mining disturbances and restoration status 

 

Using the JavaScript code editor from the GEE cloud computing platform, we accessed freely available 

Landsat scene collections from 1984 to 2021. The JavaScript code editor, which permits parallel computing 

and intensive data processing, was used to filter, and cloud mask those Landsat 5, 7, and 8 images at a 

resolution of 30 m.  

Furthermore, the images had already been orthorectified and corrected for Level 1 Precision Terrain 

(L1TP) which satisfies both radiometric and geometric standards and is considered to be of the highest quality.  

The conducted literature review shows that the NDVI is the most accurate indicator for identifying mine-

induced vegetation changes [30, 31, 32, 33, 34]. For this purpose, we computed annual mean composites of 

this index for the collection of images from 1984 to 2021, to gain an overall understanding of the mine 

disturbance and recovery patterns. It is important to note that NDVI values were calculated as an average for 
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the entire Oslomej mine site. This is due to the fact that many mining companies do not always carry out 

rehabilitation initiatives simultaneously throughout the whole mining area. As a result, the overall recovery is 

taken into account by averaging the annual NDVI for the entire mining region. The equation for calculating 

NDVI is as follows: [35]:  
 

NDVI =
ρNIR − ρNIR

ρRed + ρNIR
                                                                                   (1) 

where ρNIR and ρNIR are the surface reflection values in the near-infrared and red range of the 

electromagnetic spectrum, respectively. The NDVI ranges from -1 to 1, with negative values reflecting a lack 

of vegetation and positive values denoting areas with vegetation. 

We applied the RF classifier to Landsat images in GEE to classify the mine areas in order to fulfill the 

stated goals of this study. The classified maps of the years 1984, 1989, 1994, 1999, 2004, 2009, 2014, 2019, 

2020 and 2021 were produced with the appropriate LULC classes. The study also provides the spatial 

distribution, area statistics, and the magnitude of change in different LULC categories during the selected 

years. 

In this study, we also used the GEE platform to run the LandTrendr algorithm that can extract time-

series images data obtained by Landsat sensors. This algorithm can process each pixel’s time series to simplify 

their spatiotemporal trajectory from 1984 to 2021. To show how different areas of the mine are reclaimed, we 

used the LandTrendr algorithm to evaluate patterns of disturbance and recovery in selected portions of the 

mine site. 

Finally, the method's accuracy was determined. The GEE platform was used for the majority of 

operations. Maps were generated and visualized in Qgis. 
 

 
Figure 3. Overview of the research methodology 

 

2.2.1. Monitoring of disturbance and reclamation years with LandTrendr 

We employed the LandTrendr algorithm created by Kennedy et al. [36] that employs an iterative 

calculation that combines continuous breakpoint assessment and fitting based on the time series trajectory of 

a single 30 m × 30 m Landsat image pixel. The algorithm, which runs on the GEE platform, creates cloud-free 

mosaics from highly dense images and extracts pixel-by-pixel land surface disturbance pattern trajectories.  
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Each pixel's input consists of the date and an annual time series of one spectral band or index. The 

processing method for selecting the best model involves removing noise-induced spikes (outliers), identifying 

potential vertices (breakpoints), fitting trajectories, and determining the optimal number of segments. The 

NDVI index was used in the LandTrendr algorithm to capture the progress of vegetation restoration and 

disturbance caused by mining [37, 38, 39, 40]. LandTrendr calculates a collection of vertices that connect 

distinctive segments in NDVI time series at each pixel to identify disturbance events and patterns for deferent 

stages of mining.  

Because mining involves the complete removal of forests, the NDVI curve drops dramatically when 

mining begins. The period of active mining and the duration of mining can be characterized by low NDVI 

values (<0.1). When mining is followed by the restoration progress, the NDVI curve steadily rises. The 

unaltered forested areas, whose NDVI values are typically high, are regions with no active mining operations. 

 

2.2.2. Classification method details and accuracy assessment 

RF classification algorithm with the “Classifier.randomforest” function available in the GEE library was 

used to classify the Landsat satellite images.  

Due to its excellent performance compared to other classifiers across many datasets, RF is the most 

well-known ensemble learning technique for classification. It divides the data into many decision trees and 

predicts the class using a majority vote, while also requiring shorter training time [41].  

The images were classified into five major classes – herbaceous, water, mine, bare land, and solar farm. 

Prior to the supervised classification of the images, the training dataset was carefully selected to provide a 

general pattern of the LULC classes. Classes that are incorrectly defined by the training data have an impact 

on the entire supervised classification process and result in incorrect classification. In order to prevent that, 

100 sample points for each class were chosen and scattered around the mine's research area.  

To determine classification accuracy, the sample sets were randomly divided into 70 % for training and 

30 % for validation. From the resulting matrix, we derived a set of accuracy evaluation metrics extracted from 

the remote sensing images.  

Following that, we created a confusion matrix to measure each category's overall accuracy (𝑂𝐴), 

producer accuracy (𝑃𝐴), user accuracy (𝑈𝐴) and kappa statistics (𝐾𝑐) [42].  

A table that shows the connection between the classification product and the reference data is called a 

confusion matrix. As a commission error metric, the UA indicates at what probability a pixel classified in a 

certain class is represented by that class on the ground. As an omission error metric, PA indicates how well 

training pixels of a given class are classified. To calculate the 𝑂𝐴, the sum of correctly classified pixels was 

divided by the total number of sampled pixels. The equations used are as follows [42]: 
 

𝑃𝐴 =
𝑛𝑖𝑖

𝑛𝑖𝑐𝑜𝑙
                                                                                   (2) 

𝑈𝐴 =
𝑛𝑖𝑖

𝑛𝑖𝑟𝑜𝑤
                                                                                 (3) 

𝑂𝐴 =
1

𝑁
∑ 𝑛𝑖𝑖

𝑟

𝑖=1

                                                                             (4) 

𝐾𝑐 = ∑ 𝑛𝑖𝑖 − ∑
𝑛𝑖𝑐𝑜𝑙𝑛𝑖𝑟𝑜𝑤

𝑁2
− ∑ 𝑛𝑖𝑐𝑜𝑙𝑛𝑖𝑟𝑜𝑤                                       (5)

𝑟

𝑖=1

𝑟

𝑖=1

𝑟

𝑖=1

 

 

where 𝑟 denotes the number of rows, 𝑛𝑖𝑖 is the number of pixels that were correctly classified in a given class, 

𝑛𝑖𝑐𝑜𝑙 is the column (reference data) and 𝑛𝑖𝑟𝑜𝑤 is the row (predicted classes) total, and 𝑁 is the total number of 

pixels in the confusion matrix. 

 

2.3. Change detection 

The changes in the classes between 1984 and 2021 were determined using the LULC classification 

results. The net change and percent change of the LULC classes between the years 1984 and 1989, 1989 and 

1994, 1994 and 1999, 1999 and 2004, 2004 and 2009, 2009 and 2014, 2014 and 2019, 2019 and 2020, and 

2020 and 2021 were calculated using the LULC area distribution results. 
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To calculate the percentage change (%), present and previous LULC areal extent were compared using 

the following formula: 
 

Percentage change (%) =
LULC area (present) − LULC area (previous)

LULC area (previous)
∗ 100                       (6) 

 

3. Results and discussion 

 

3.1. Spatio-temporal progression of mine-induced disturbance and restoration over Oslomej mine between 

1984-2021 

Oslomej mine with an annual production of 1.2 x 106 t of coal started operating in 1980. This deposit is 

divided into two areas with the river Temnica, as follows: 

• “Oslomej-East”, with exploitation from 1980-2007. 

• “Oslomej-West” with exploitation from 2007-2019. 

The coal mining in “Oslomej – West” is a continuation of the exploitation after the completion of the 

activities in “Oslomej – East”. In order to maintain that continuity, the river Temnica was dislocated with the 

construction of a regulated riverbed, which now passes in the area of the used mine “Oslomej-East”. 

High temporal detail analyses of the mining and restoration patterns over the Oslomej mine site have 

been done for the first time. 

Figure 4 shows the chronological variability of NDVI that represent activities related to mining and 

restoration over the Oslomej mine between 1984 and 2021. 

Although exploitation at the Oslomej mine began in 1980, our analysis starts in 1984 because that is the 

starting operation year for the Landsat 5 satellite.  

We chose not to select data for 2012 to avoid the impact of the missing scan line data in Enhanced 

Thematic Mapper (ETC) images, which was present due to the scan line corrector failure of Landsat 7.  

The images from 1984 to 2021 or 36 years (excluding the year 2012) of coverage were all put through the 

workflow that we previously explained in order to create the mine time series.  

We started this analysis in the year 1984 to observe progressions of the mining activities in the “Oslomej-

East” area of the open-pit mine. 

From 1984 to 1990, the appearance of considerable mining activities was notable, with reduced NDVI 

values that were noticeable over the northern part of the “Oslomej-East” area of the open-pit mine (Figure 4). 

From 1991 to 2000, the continuous decline of NDVI signified progressions of mining activities that are 

slowly shifting south in the “Oslomej-East” area. During this period, slight changes in the positive direction 

of NDVI values are noticed in the northern part of the “Oslomej-East” area, which marks the beginning of the 

reclamation of this previously excavated part. 

From 2001 to 2006, the exploitation of the central part of the mine is evident, with the start of preparatory 

work for the opening the “Oslomej-West” area of the open-pit mine. 

2007-2008, mark the beginning of the exploitation in the “Oslomej-West” area which is evident by the 

reduced NDVI values of the northern part of the mine. 

From 2009 to 2018, there is a progression of the mine to the south in the “Oslomej-West” area. What we 

can notice from the analysis of this period is that in parallel with the progression of the mine, the reclamation 

of the previously excavated parts begins, which is proven by the NDVI values greater than 0.4. Also, the 

formation of Lake Oslomej is evident in the southern part of the “Oslomej-West” area, after the year 2013 

(Figure 4, Figure 10). 

The year 2019 marks the end of exploitation in the “Oslomej-West” area of the open-pit mine. From the 

analysis made for the year 2019, it can be concluded that “Oslomej-East” area is completely reclaimed which 

is evident by the high NDVI values (in some cases greater than 0.6). Also from the analyses, high values of 

NDVI are noticed in the northern part of the “Oslomej-West” area, which means that this part also has been 

successfully reclaimed. 

In 2020, no major disturbances were recorded in the NDVI values, which means that there are no major 

activities in the mine area. 
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Figure 4. Spatio-temporal variability of NDVI over the Oslomej mine for the period from 1984 to 2021 

 

The year 2021 marks the beginnings of the implementation of the project for photovoltaic power plants 

in the area of the former open-pit mine “Oslomej”. The project was developed in accordance with the Energy 

Development Strategy of the Government of R. N. Macedonia, based on the European Green Agreement, to 

transform the production of electricity and increase the use of renewable energy sources at the expense of fossil 

fuels. The 10 MW “Oslomej 1” photovoltaic power plant is the first example of an energy transition in 

Southeast Europe in which electricity will be generated from the sun through panels placed on an old, depleted 

coal mine. The goal of this project is the construction of two more solar farms (Oslomej 2 and 3) in the area of 

the former coal mine with a total installed capacity of 120 MW. From the analysis made for year 2021, it is 

evident the preparatory work followed by low values of NDVI in the northern part of the “Oslomej-East”, 

which indicates the construction activities related to the construction of this solar farm (“Oslomej 1”). 
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Figure 5 shows the time series analysis for the year 2021, in which is clearly evident the construction of 

the solar farm. 

 

Figure 5. Landsat imagery and NDVI maps of the study area showing the construction of the solar farm in 2021 

 

From Figure 5 can be concluded that the preparatory works and the construction process of the solar 

farm are clearly visible from the RGB compositions, while in the NDVI compositions there is a noticeable low 

value (0-0.2) which indicates a lack of vegetation. In order to be able to clearly distinguish the area on which 

the photovoltaic panels are installed, it is necessary to make an additional classification with RF classification 

algorithm. 

 

3.2. Spatio-temporal dynamics profile of disturbance and recovery at different sites over the Oslomej mine 

By carefully analysing the entire NDVI time-series pattern at several sites over the Oslomej Mine using 

the LandTrendr algorithm, we enhanced the above analysis to provide a thorough picture of the disturbance 

and recovery dynamics from 1984 to 2021. Four sites in the active mining area had their unique pixel 

trajectories analysed. The spatio-temporal NDVI mapping of the mining disturbance and reclamation years for 

the four site-specific pixels with a resolution of 30x30 m are shown in Figures 6-9.  Besides the spatiotemporal 

NDVI mapping shown on the figures, we also included a high-resolution Google Earth image and RGB 

Landsat composites of selected years for visual analyses. 

From Figure 6, it is clear that exploitation in site 1 which is located in the northern part of the “Oslomej-

East” area started before 1984.  As would be expected, lower NDVI values (<0.2) are noticeable throughout 

the mining operation until a substantial increase of NDVI values (>0.4) in 1998 when the rehabilitation began. 

High NDVI values that are equated with the reclamation process are observed until 2019 when the land 

preparatory and construction activities related to solar farm “Oslomej 1” began. 

 

 

Figure 6. True colour images and temporal NDVI trajectory for site 1 (spectral values for the pixel 30 x 30 m) for the 

period 1984 to 2021. Lower NDVI values indicate mining, while higher values represent vegetation 
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Mining operations at site 2 which is in the southern part of the “Oslomej-East” area began in 1994 as 

evidenced by decline in the NDVI signal shown in Figure 7. Mining activities are present in this area from 

1994 to 2005. After 2005 we have a slight increase in NDVI values that indicate that the reclamation process 

has begun. In 2021 the area is completely reclaimed which can be seen from the RGB Landsat composite as 

well as the high NDVI value (>0.45) related to the location. 

 

 

Figure 7. True colour images and temporal NDVI trajectory for site 2 (spectral values for the pixel 30 x 30 m) for the 

period 1984 to 2021. Lower NDVI values indicate mining, while higher values represent vegetation 

 

On Site 3, which is situated in the northern portion of the "Oslomej-West" region, there have been brief 

disturbances in the past (1984-2002) shown in Figure 8. These could be caused by anthropogenic and natural 

factors but are definitely not from mining. From 2003 to 2014, mining activities at Site 3 clearly showed a 

disruption pattern, with the NDVI declining from ~0.5 to 0.15 and remaining low until 2014, when a significant 

recovery from 2015-2016 to 0.5 occurred, indicating the start of the reclamation process. The high NDVI 

values that are followed in the coming years until 2021 indicate a fully reclaimed area. 

 

 

Figure 8. True colour images and temporal NDVI trajectory for site 3 (spectral values for the pixel 30 x 30 m) for the 

period 1984 to 2021. Lower NDVI values indicate mining, while higher values represent vegetation 

 

Site 4 in the southern portion of the "Oslomej-West" area (Figure 9) displayed an NDVI pattern that was 

relatively consistent from 1984 to 2012 with a small but discernible decline in 1988. As can be seen from 

Figure 9, the tendency of NDVI to form a U-shaped pattern from 2012 to 2021 is apparent. In both the pre-and 

post-mining phases of its lifespan, higher NDVI values are predominant, with the lowest values occurring at 

the culmination of the mining activities from 2013 to 2018. The increase in NDVI from 0.11 in 2018 to 0.41 

in 2021 shows that rehabilitation started as soon as mining activities were completed (Figure 9). 
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Figure 9. True colour images and temporal NDVI trajectory for site 4 (spectral values for the pixel 30 x 30 m) for the 

period 1984 to 2021. Lower NDVI values indicate mining, while higher values represent vegetation 

 

3.3. Assessment of areal extent and change of LULC 

LULC maps for the years 1984, 1989, 1994, 1999, 2004, 2009, 2014, 2019, 2020 and 2021 were 

produced after editing and finalization. In the study region, there were five main types of land cover identified: 

herbaceous, water, mine, bare land, and solar farm. The areas of each class in hectares were extracted and used 

for statistical analysis. Figure 10 shows the LULC maps of the research area for ten distinct time periods. 

Spatial distribution and area statistics with the percentages of the area covered by each LULC categories 

are shown in Table 1. The magnitude of change for each LULC category over a 5-year time span from 1984 

to 2021 is depicted in Table 2. 
 

 

Figure 10. The maps depicting the LULC changes in the Oslomej coal field area for ten different time periods  

from 1984 to 2021 

Table 1. LULC classes areal distribution across the Oslomej coal mine (expressed in hectares;  

percentages are indicated by values in parenthesis) 

LULC 

classes 

1984 1989 1994 1999 2004 2009 2014 2019 2020 2021 

Herbaceous 301.3 

(47.6) 

275.8 

(43.6) 

183.4 

(29.0) 

283.1 

(44.7) 

299.7 

(47.3) 

362.3 

(57.2) 

274.4 

(43.3) 

265.7 

(42.0) 

322.2 

(50.9) 

392.5 

(62.0) 

Mine 143.1 

(22.6) 

224.3 

(35.4) 

238.1 

(37.6) 

204.4 

(32.3) 

139.2 

(22.0) 

126.5 

(20.0) 

92.4 

(14.6) 

67.63 

(10.7) 

53.3 

(8.4) 

48.2 

(7.6) 

Bare land 188.6 

(29.8) 

132.9 

(21.0) 

211.5 

(33.4) 

145.6 

(23.0) 

194.1 

(30.7) 

144.3 

(22.8) 

225 

(35.5) 

256.7 

(40.6) 

209.9 

(33.2) 

148.5 

(23.5) 

Water 0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

41.18 

(6.5) 

43 

(6.8) 

47.7 

(7.5) 

31.7 

(5.0) 

Solar farm 0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

11.9 

(1.9) 
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Table 2. Net change in areal extent of LULC classes  

(expressed in hectares; percentages are indicated by values in parenthesis). 

LULC 

classes 

1984- 

1989 

1989-

1994 

1994-

1999 

1999-

2004 

2004-

2009 

2009-

2014 

2014-

2019 

2019-

2020 

2020-

2021 

Herbaceous -25.5 

(-8.5) 

-92.4 

(-33.5) 

99.7 

(54.4) 

16.6 

(5.9) 

62.6 

(20.9) 

-87.9 

(-24.3) 

-8.7 

(-3.2) 

56.5 

(21.3) 

70.3 

(21.8) 

Mine 81.2 

(56.7) 

13.8 

(6.2) 

-33.7 

(-14.2) 

-65.2 

(-31.9) 

-12.7 

(-9.1) 

-34.1 

(-27.0) 

-24.77 

(-26.8) 

-14.33 

(-21.2) 

-5.1 

(-9.6) 

Bare land -55.7 

(-29.5) 

78.6 

(59.1) 

-65.9 

(-31.2) 

48.5 

(33.3) 

-49.8 

(-25.7) 

80.7 

(55.9) 

31.7 

(14.1) 

-46.8 

(-18.2) 

-61.4 

(-29.3) 

Water 0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

41.18 

(/) 

1.82 

(4.4) 

4.7 

(10.9) 

-16 

(-33.5) 

Solar farm 0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

0 

(0) 

11.9 

(/) 

 

It is observed that the herbaceous cover has decreased from 301.3 hectares (47.6 %) in the year 1984 to 

275.8 hectares (43.6 %) in the year 1989, and further decreased to 183.4 hectares (29 %) by the year 1994. The 

decrease in the herbaceous cover is due to the expansion of the mine pits. The herbaceous cover was 283.1 

hectares (44.7 %) in the year 1999, which gradually increased to 299.7 hectares (47.3 %), 362.3 hectares (57.2 

%), in the year 2004, 2009 respectively. It again decreases to 274.4 hectares (43.3 %) in the year 2014 and 

265.7 hectares (42.0 %) in the year 2019. The years 2020 and 2021 show an increase from 322.2 hectares (50.9 

%) to 392.5 hectares (62.0) showing a net increase of 70.3 hectares (21.8 %) (Tables 1 and 2).  

The coal mining area in the Oslomej mine that had spread over 143.1 hectares (22.6 %) in 1984, 

increased to 224.3 hectares (35.4 %) in 1989 and again it increased to 238.1 hectares (37.6) in the year 1994. 

The mine cover was 204.4 hectares (32.3 %) in the year 1999 which gradually decreased to 139.2 hectares (22 

%), 126.5 hectares (20.0 %), 92.4 hectares (14.6 %), 67.63 hectares (10.7 %), 53.3 hectares (8.4 %), 48.2 

hectares (7.6 %), in the year 2004, 2009, 2014, 2019, 2020, 2021 respectively. 

The land cover category of barren land decreased from 188.6 hectares (29.8 %) in the year 1984 to 132.9 

hectares (21 %) in the year 1989. However, barren land increased to 211.5 hectares (33.4 %) in the year 1994 

which gradually decreased to 145.6 hectares (23 %) in 1999. In the following periods we have a slight increase 

and decrease of the barren land as follows: 194.1 hectares (30.7 %) in 2004, decrease to 144.3 hectares (22.8 

%) in 2009, increased to 225 hectares (35.5 %) in 2014, and 256.7 hectares (40.6 %) in 2019, slightly decreased 

to 209.9 hectares (33.2 %) in 2020 and further decreased to 148.5 hectares (23.5 %) in 2021. 

The water body of the study area appears in 2014 and shows a fairly stable trend covering an area of 

41.18 hectares (6.5 %) and 43 hectares (6.8 %) in the year 2014 and 2019 respectively. However, the total area 

of the water body for a duration of one year has decreased from 47.7 hectares (7.5 %) in the year 2020 to 31.7 

hectares (5 %) in the year 2021 showing a net decrease of -16 hectares (-33.5 %) (Tables 1 and 2). 

The land cover category of solar farm appears in 2021 with an area of 11.9 hectares (1.9 %) which means 

that in this period is constructed the solar farm “Oslomej 1” with an installed capacity of 10 MW. 

 

3.4. Accuracy Assessment 

 

3.4.1. Accuracy Assessment for Initial Classification 

We now examine the degree to what extent our classification method distinguished the LULC classes 

within the Oslomej mine site. The average UA of the classified images of 1984, 1989, 1994, 1999, 2004, 2009, 

2014, 2019, 2020 and 2021 were found to be 0.95, 0.92, 0.96, 0.87, 0.9, 0.89, 0.9, 0.9, 0.88 and 0.89 

respectively (Figure 11). The average PA of the classified images of 1984, 1989, 1994, 1999, 2004, 2009, 

2014, 2019, 2020 and 2021 were found to be 0.95, 0.91, 0.95, 0.86, 0.9, 0.89, 0.9, 0.9, 0.88 and 0.86 

respectively (Figure 11). Overall classification accuracy for the analysed classified images from the years 

1984, 1989, 1994, 1999, 2004, 2009, 2014, 2019, 2020 and 2021 were found to be 0.95, 0.92, 0.96, 0.88, 0.9, 

0.9, 0.9, 0.9, 0.9 and 0.86, respectively, whereas the kappa statistics for the classed images from the same years 

were 0.93, 0.88, 0.94, 0.82, 0.86, 0.85, 0.87, 0.87, 0.86, 0.82, respectively (Figure 11). These accuracy levels 

are acceptable and comparable with related studies [43, 44, 45]. 
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Figure 11. Overview of accuracy assessment for initial classification for selected years 

 

Each of the maps created by this classification was compared to the ground reference data by taking into 

account the random sample points, field knowledge, imagery, and Google Earth in order to evaluate the 

accuracy of the classification findings. Figure 12 shows these comparative results only for the year 2021. 

 
Figure 12. Field comparison of the classification results. a) Classification map of the research area for 12.11.2021.  

b) Google Earth image form the study area for 01.11.2021 c) Field images from the solar farm “Oslomej 1”.  

d) Field images from the Oslomej Lake 

 

3.4.2. Accuracy Assessment for LandTrendr 

Overall, the LandTrendr algorithm seems to be a useful tool for gathering data on the dynamics of 

historical disturbance and recovery at surface mining sites. Aside from disruptions brought on by mining 

activities, LandTrendr can capture partial disturbances associated with anthropogenic factors and drought 

stress. 

The spectral signal may be impacted by a wide range of factors; thus, validation is necessary to 

determine the causes of any decline in NDVI values. 

The images themselves are the most trustworthy source for assessment when there are no independent 

validation data available. 

In our case, Google Earth historical imagery and Landsat RGB composites served as a crucial aid for 

interpreting the land cover. 
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Because of the contrast between the brighter patches suggesting active mining and the forested areas, 

the disturbance years linked with the mined "bare" areas on Google Earth high-resolution images and the 

Landsat RGB composites were easily distinguished. 

This validation process was performed and repeated at each of the four mine locations over the study 

period. Where the Google Earth high-resolution images were not available, we used the Landsat RGB 

composites. 

We visually interpreted each of the site-specific pixels by superimposing the images with the 

LandTrendr map in the Qgis environment. We determined whether the chosen sites had been rehabilitated after 

mining activities by methodically scrutinizing the images. This helped to separate mine-related disturbances 

from those caused by other activities. 

Following this step, we compare the trajectory analysis by inspecting the Landsat NDVI composites 

(Figure 4) along with the NDVI time-series pattern for the chosen mine site-specific pixels (Figure 6-9). The 

accuracy of an analysis is determined by how closely the result compares to the reference data (high-resolution 

imagery from Google Earth, NDVI composites, and RGB composites from Landsat). 

Our validation results demonstrate that the year of disturbance and recovery detection provided by 

Landtrendr algorithm is comparable to the time of detection in Google Earth high-resolution imagery, Landsat 

NDVI composites and Landsat RGB composites as can be seen from Figures (4, 6-9 and 12). 

 

4. Conclusions 

 

In this study, we examined the annual change in the Oslomej coal mine in R. N. Macedonia using long 

time-series data from the Landsat archive. An effective method based on an NDVI, RF classification, and 

LandTrendr algorithm was used to obtain a 36-year annual monitoring result from 1984 to 2021 in a surface 

coal mining area. 

The objective of this study is to use the multiple-year NDVI to track changes in the mining area and the 

variation of restoration vegetation at the Oslomej coal mine. Our findings show decreasing NDVI trend around 

mining activities, followed by an increase that coincided with the end of exploitation and the apparent efforts 

at restoration in the mining area. 

Five major LULC classes labelled as herbaceous, water, mine, bare land and solar farm have been clearly 

identified from the Oslomej coal mining area. The RF classification algorithm was capable of separating the 

LULC classes within the affected area with accuracies exceeding 90 %. The study also provides the spatial 

distribution, area statistics and the magnitude of change in different LULC categories during the time period 

from 1984 to 2021. 

The LandTrendr trajectory analysis clearly identified patterns of mine disturbance over the course of the 

research period, the duration of active mining, and the progress of restoration. 

We demonstrate that the methodology presented in this study executed through GEE can efficiently and 

precisely determine the annual extent of surface mining, restoration vegetation status and solar farm growth in 

the selected study area. 

This study attempted to offer an effective methodology for the mining authorities and the institutions 

from the government to get inexpensive information that is easily accessible for characterizing and monitoring 

the disturbance and recovery patterns in mining regions. Additionally, this study also offers data support and 

analyses for mining development supervision and environmental protection. We also provide a foundation for 

further research on significant ecological disturbances. Remote sensing images can be used to observe 

phenomena such as urbanization, forest loss, agriculture, or changes in land areas, and analyses such as the 

one we describe here show how simple it is to identify the trends behind those big data. 

Our results and discussions point to the fact that there are positive examples of successful vegetation 

restoration and transformation of mining areas into solar farms such as the example with the former Oslomej 

mine. 

The presented methodology in this study is fairly adaptable because it may be used to analyze various 

situations of land surface change and should yield equally trustworthy results. Additionally, it is easily 

adaptable to various regions, such as those in countries with limited resources. 
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