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Abstract: Detecting asbestos-containing roofs has been of great interest in the past few years as the
substance negatively affects human health and the environment. Different remote sensing data have
been successfully used for this purpose. However, RGB and thermal data have yet to be investigated.
This study aims to investigate the classification of asbestos-containing roofs using RGB and airborne
thermal data and state-of-the-art machine learning (ML) classification techniques. With the rapid
development of ML reflected in this study, we evaluate three classifiers: Random Forest (RF), Support
Vector Machine (SVM), and eXtreme Gradient Boosting (XGBoost). We have used several image
enhancement techniques to produce additional bands to improve the classification results. For feature
selection, we used the Boruta technique; based on the results, we have constructed four different
variations of the dataset. The results showed that the most important features for asbestos-containing
roof detection were the investigated spectral indices in this study. From a ML point of view, SVM
outperformed RF and XGBoost in the dataset using only the spectral indices, with a balanced accuracy
of 0.93. Our results showed that RGB bands could produce as accurate results as the multispectral
and hyperspectral data with the addition of spectral indices.

Keywords: remote sensing; GIS; machine learning; asbestos; roofs; buildings; Google Street View

1. Introduction

Asbestos is a family of minerals that includes chrysotile, amosite, crocidolite, tremolite,
anthophyllite, and actinolite [1]. Along with the range of applications in the past for thermal
and electrical insulation, cement pipe and sheets, flooring, gaskets, friction materials (e.g.,
brake pads and shoes), coating and compounds, plastics, textiles, paper, mastics, thread,
fibre jointing, and millboard [2], asbestos was commonly used as an addition in building
materials (roofs, insulation) during the second half of the 20th century [3,4]. It was later
discovered that asbestos is composed of tiny mineral fibers that are harmful to human
health and can lead to mesothelioma, lung cancer, and asbestosis when inhaled [5–8]. The
difficulty of preventing asbestos-related illnesses, such as asbestosis, mesothelioma, and
lung cancer [9], results from accidental exposure to unknown asbestos contaminations
in buildings, making the environment unavoidable [10]. Airborne exposure to asbestos
fibers occurs during mining, transportation, construction, and, most recently, the removal
and repair of existing asbestos-cement structures [11]. As a result, several European
countries have banned all asbestos-related products. The World Health Organization and
the International Labor Organization recommend eliminating all asbestos use (ILO and
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WHO 2007). Despite the negative effects, many buildings still use asbestos-containing roofs.
Asbestos was widely used in residential and industrial roof coverings between the 1970s
and 1990s because of its physical and chemical qualities [12]. However, it was banned in
many countries in the early 2000s [13].

There was widespread use of asbestos-containing roof coverings, such as corrugated
and flat sheets. Estimating the amount of asbestos–cement products in use is essential
for preserving both the environment and human health. It has been evaluated that in
some countries, for example, Poland, about 90% of them are used in roof coverings [14].
The European Union (EU) supported all Member States in developing strategies for their
domestic asbestos removal initiatives (Directive 2003/18/EC of the European Parliament
and of the Council of 27 March 2003). The local authorities are taking steps to determine the
present situation. However, there is still a lack of information on the number of asbestos-
containing products in use, making it challenging to plan the landfill capacity required for
their disposal.

Despite the legal background and directives, most people are unaware of the danger
of asbestos. Thus, they might not appropriately treat the waste during roof renovations.
Accordingly, a complete and accurate list of the roofs that pose a risk of asbestos pollution
is required. Besides the environmental and health problems, old buildings usually have
asbestos roofs, most of which are expected to be seismically unsafe. For example, a study has
revealed that buildings constructed between the 1960s and 1990s in almost every European
country, including Bulgaria, North Macedonia and Serbia, included polluting building
materials such as asbestos; these buildings were often constructed using inadequate designs,
poor building materials, and bad construction methods, classifying them as seismically
unsafe [15]. A large portion of the buildings in Butel, Skopje, were constructed after
the earthquake in 1963 as a fast solution for sheltering, with asbestos being used for
both roof and wall materials. The area is affected by strong earthquakes; thus, damaged
buildings or building rubbles containing asbestos need to be treated separately from the
other buildings. Moreover, areas affected by other types of natural disasters, such as floods
and erosion, require special soil treatment if materials from asbestos-containing buildings
and other structures have been detected as traces of contamination in the ground after
many years [16]. Thus, the identification and detection of asbestos-containing buildings is
of great importance for both human and environmental health.

Literature Review

The use of data provided by remote sensing tools and techniques has proven to be
an effective method for identifying different urban surfaces, including roofing made of
asbestos fiber cement materials [17–21]. There have been numerous attempts to use remote
sensing technology to identify rooftops. Researchers have looked into the possibility of
employing different remote sensing data, mainly hyperspectral data types including field
spectroscopy data and hyperspectral images, for roofing material detection because most
roofing materials have distinctive spectral fingerprints, which hyperspectral bands can
record [22,23]. Using hyperspectral data can be challenging due to their high-cost as well as
the complexity of the data compared with RGB imagery. Even though collecting orthophoto
data can also result in high costs, most countries collect high-resolution imagery every
few years and hold it in cadastral archives. In addition, with the development of remote
sensing technologies, more high-resolution RGB satellite images are becoming available.

For example, Cilia et al. [12] used airborne Multi-spectral Infrared Visible Imaging
Spectrometer (MIVIS) hyperspectral images with 102 channels classified by the Spectral
Angle Mapper (SAM) algorithm to detect asbestos cement roofs and their weathering status;
their study which indicated reliable results for using this methodology for roof mapping
studies. Szabo, et al. [24], used airborne hyperspectral imagery (AISA Eagle II) classified by
the SAM, Support Vector Machine (SVM), and Maximum Likelihood (MaxL) algorithms to
identify different roof types and determine those with asbestos components. The results
from this study show that SVM performed most effectively for both datasets with an overall
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accuracy (OA) of around 80%. Krówczyńska, Raczko, Staniszewska and Wilk [25] used
aerial images in natural color (RGB) and color infrared (CIR); each image type had a spatial
resolution of 25 cm and convolutional neural networks (CNN) for the identification of
asbestos-cement roofing. The work investigated a deep learning algorithm; the asbestos-
cement roofing products classification results revealed a producer accuracy (PA) of 89%
and an overall accuracy (OA) of more than 87% for both datasets. Tommasini, et al. [26]
presented a tool in QGIS software for automatically identifying buildings with asbestos
roofing in an area in Prato, Italy. The WorldView-3 sensor acquired the input images. The
QGIS plugin showed reasonably good performance in identifying asbestos roofing, with
only some false positives and negatives when applying a per-pixel classification. Abriha
et al. [17] used WorldView-2 imagery with Discriminant Function Analysis (DFA), Random
Forest (RF), and pan-sharpening for the identification of roofing materials. They divided
the roof materials into three and six roof classes; the results revealed that OA was above
85%, while asbestos was classified with more than 95% accuracy and identified successfully
with all classifiers. Osińska-Skotak and Ostrowski [27] used an 8-channel WorldView-2
satellite image to classify roofing materials and aerial laser scanning data provided by
the ISOK project for the topographic correction. For asbestos–cement roofing materials,
the accuracy of the supervised classification ranged from 76 to 92% (depending on the
classification variant).

Besides the commonly used characteristics of spectral bands, many image analysis
techniques (e.g, pan-sharpening, spectral indices, GLCM textures) can be used to improve
classification accuracy. Authors suggest using pan-sharpening if various spatial resolution
bands are used [28–30]. To create additional raster inputs for classification and improve
classification accuracy, raster algebra can be used to create various spectral indices [31,32].
To improve accuracy, especially when high-resolution satellite imagery is used, authors
recommend using additional textural features from a gray-level co-occurrence matrix
(GLCM) [33]. GLCM features, also known as Haralick texture features, were developed and
introduced by Haralick [34]. Salah et al. developed an algorithm for building detection and
mapping from LiDAR data and multispectral aerial images [35]. Furthermore, Akhmadiya
et al. developed a GLCM textural-based method for building damage assessment using
Sentinel-1 imagery [36]. Furthermore, many other authors emphasize the contribution of
GLCM to increasing the accuracy of image classification and landscape pattern monitor-
ing [37–39]. Taking into consideration the success of the Haralik texture feature, this paper
investigates GLCM features along with various spectral indices for Asbestos-containing
roof classification using remote sensing data.

In their state-of-art review, Abbasi et al. [40] collected all relevant investigations for
mapping roofing with asbestos-containing materials using remote sensing imagery and
ML classification methods. From their analysis and our conducted literature review, it
can be noted that most of the studies on this topic were conducted with hyperspectral
remote sensing data. The use of RGB airborne remote sensing imagery is limited [25],
while thermal data are yet to be investigated for the asbestos-containing roof classification.
Although Abbasi et al. have reported an improvement in image classification using spectral
indices [25], their review did not report any paper using spectral indices for asbestos-
containing roof classification.

This study aims to classify asbestos-containing roofs. For this, remote sensing data
and techniques were used—namely, RGB orthophoto and high-spatial-resolution thermal
imagery. We also investigated several RGB-derived spectral indices and their influence on
the classification results, using state-of-the-art machine learning classification techniques.

2. Materials and Methods
2.1. Study Area and Data

As a study area, the Butel municipality in the City of Skopje, North Macedonia, has
been selected (Figure 1). Butel is one of the municipalities constructed after the devastating
earthquake of 6.9 degrees Richter in Skopje in 1963. More than 1000 people lost their
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lives and more than 43,000 homes were destroyed. Today, Butel is one of Skopje’s most
populated and urbanized municipalities. Butel is also one of the municipalities where
asbestos-containing roofs are still being used. Most of the buildings that have asbestos-
containing roofs were constructed after the 1963 earthquake within the scope of recovery
actions implemented by the government and social organizations [41]. Several temporary
dwelling units were constructed quickly to provide shelter to the victims of the earthquake.
These units were not earthquake-resistant buildings that received engineering design
service and were supposed to be replaced by new earthquake-resistant buildings in a
certain time span. However, some of these temporary units are still in use [42].
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Figure 1. Study area and data; (A) geographic location of the study area; (B) thermal imagery;
(C) RGB imagery with labeled data.

For the purposes of the study, airborne data collected with an Cessna 172 aircraft
have been used. The data were collected in the afternoon on 24 August 2018. The air
temperatures at the time of the data collection varied from 29 to 32.5 ◦C between 11:00 and
16:00. The data collection were collected using two different cameras: RGB and a thermal
Flir Pro Vue camera. The collected images were pre-processed in Pix4D, a suite of software
products for transforming photogrammetric images into maps and 3D models. The image
processing was performed on a CPU: Intel (R) Xeon (R) CPU E5-2643 v3 @3.40 GHz, RAM:
128 GB, GPU: NVIDIA Quadro K4200.

The average ground sampling distance of the RGB images is 52.51 cm. The geo-
position of every image was determined using the Global Navigation Satellite System
(GNSS). The average ground sampling distance of the thermal images was 1.50 m. As the
images from the thermal camera had no geo-position information, the thermal data were
processed in a local coordinate system; using approximately 100 Ground Control Points
(GCP) over the RGB orthophoto, the thermal map was then georeferenced.

For the purpose of the study, we have used Google Street View and checked every
available building in Butel municipality; we then labelled the building in a GIS environment
into two classes: asbestos-containing and non-asbestos-containing buildings. Buildings that
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were not fully available on Google Street View or the type of roof of which we found hard
to evaluate were not included in the dataset. Overall, 1250 buildings have been labeled as
non-asbestos-containing and 593 as asbestos-containing buildings, making a total dataset
of 1843 buildings. Examples of asbestos-containing roofs taken from Google Street View
are shown in Figure 2.
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Figure 2. Google Street View examples used for the labeling of the data.

2.2. Methods

The methodology followed in this study contains three different steps: (i) data collec-
tion and processing; (ii) creation of the datasets; and (iii) machine learning classification
of non-asbestos-containing buildings and evaluation of the results. A detailed view of the
methodology used is given in the flowchart in Figure 3.

2.2.1. Features

The first step was partly explained in the 2.2 Study area and data section, where details
about the image collection, image processing and data labelling through Google Street View
have been explained. After the first step, the spectral values of every labelled building were
extracted and filtered, with outlier and unclear data being removed from the dataset. The
statistical spectral values were thn evaluated. For providing ML classification and mapping
asbestos-containing roofs, three raster bands (R—red, G—green and B—blue) of airborne
imagery and one thermal image were used in dataset I (in total, four bands). Raster algebra
was used to create nine spectral indices (Table 1).
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Table 1. Spectral indices used in this study.

Index Abbreviation Formula Reference

Excess green EXG 2g − r − b [43,44]
Excess blue EXB g − r − 2b This study

Normalized difference yellowness index NDYI (g − b)/(g + b) [45,46]
Normalized difference red-blue index NDRBI (r − b)/(r + b) This study

Normalized difference red-green index NDRGI (r − g)/(r + g) [47]
Visible-band difference vegetation index VIDVI (2g − b − r)/(2g + b + r) [48]
Visible-band difference vegetation index VARI (g − r)/(g + r − b) [49]

Additional VARI AVARI (g − r)/(g + r + b) This study
Normalized red-green-blue index NRGBI NDRBI − NDYI [45,50]

Furthermore, GLCM textures were calculated as additional raster inputs for the classi-
fication. We calculated ten GLCM textures and used them in classification (angular second
moment, contrast, dissimilarity, energy, entropy, GLCM correlation, GLCM mean, GLCM
variance, homogeneity, maximum value) [51]. GLCM calculations were performed on
five different bands: R, G, B, averaged RGB, and thermal band. In total, 50 GLCM bands,
nine spectral indices and four source bands were used in dataset II (in total 63 bands) for
classification.

2.2.2. Feature Selection

For the feature selection, the Boruta algorithm was used (available at https://CRAN.
R-project.org/package=Boruta accessed on 5 November 2022). Boruta is an innovative
feature selection method that finds all relevant variables. The technique is built around a
RF classification algorithm. It repeatedly eliminates variables that are statistically proven
to be less meaningful than random probes [52]. The Boruta technique has been used

https://CRAN.R-project.org/package=Boruta
https://CRAN.R-project.org/package=Boruta
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in different research fields and for surface soil moisture mapping features using remote
sensing data [53], such as the spatial distribution of soil organic carbon [54], vegetation
mapping [55], etc. Thus, all of the covariates were evaluated with the Boruta algorithm to
identify the meaningful features for Asbestos-containing roof classification using remote
sensing data. Along with datasets I and II, we created dataset III from all of the confirmed
features and dataset IV from the most importing features.

2.2.3. Machine Learning Classification

After the preparation of the datasets was completed, the statistical analysis and classi-
fications were made in R, where three state-of-the-art machine learning algorithms were.
Here we used RF [56], SVM [57], and eXtreme Gradient Boosting (XGBoost) [58] classifiers
to obtain the results. The training of the datasets was performed in two classes: asbestos-
containing and non-asbestos-containing buildings. We also evaluated the influence of every
band in the classification using the Boruta algorithm [52]. The modelling was performed
using 70% of the samples, while the remaining 30% were separated for testing the models.
The RF classifier delivered reliable classifications by leveraging predictions generated by
an ensemble of decision trees [59]. Thus, RF classifier was an ensemble classifier that made
predictions using a set of Classification and Regression Trees (CARTs). The trees were
generated by replacing a subset of training samples (a bagging approach). This meant that
the same sample could be chosen multiple times, while others may not have been chosen at
all. Naturally, using a higher number of features would increase the classification accuracy.

On the other hand, SVM attempted to solve the classification problem by forming
a hyperplane that maximized the margin by categorizing the data. The margin was
the closest distance from the hyperplane to the point of each class [60]. XGBoost is an
upgraded technique based on the gradient-enhanced decision tree that can efficiently
generate enhanced trees and perform parallel computation [58,61]. XGBoost enhanced the
method by making it more scalable, efficient, and less prone to overfitting. It strengthened
the model by introducing a regularization term that penalized model complexity. This
technique has shown a lot of success in recent years in the remote sensing field [62].

2.2.4. Accuracy Assessment

A total of 1843 buildings were used in the classification: 70% were used for training
and 30% for testing the models. The accuracy was evaluated using independent buildings
that were not part of the training sets. The models were tested using several accuracy
evaluation metrics most commonly used in the literature for binary classification. Thus,
along with kappa, we adopted sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and balanced accuracy. Sensitivity (i.e., recall), as shown in
Equation (1), was calculated from true positives (TP—an asbestos-containing roof correctly
classified) and false negatives (FN—an asbestos-containing roof missed); it described the
asbestos-containing roof detection rate and how effectively the algorithm dealt with FN.
The negative class accuracy (non-asbestos-containing roof in this case) was measured
by specificity and negative predictive value (NPV), as shown in Equations (2) and (3),
respectively; TN stood for true negative, and FP for false positive—an asbestos-containing
roof incorrectly classified. The PPV (i.e., precision), described the correctness of detected
buildings and how well the algorithm dealt with FP values, as shown in Equation (4).
Finally, the balanced accuracy was calculated as a mean value from the Sensitivity and the
Specificity of the models [63].

Sensitivity = TP/(TP + FN) (1)

Specificity = TN/(TN + FP) (2)

NPV = TN/(TN + FN) (3)
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PPV = TP/(TP + FP) (4)

3. Results
3.1. Feature Selection Results

Along with the four bands from the study area (RGB and thermal), 50 variables were
retrieved with the Haralick technique and nine spectral indices were considered for the
investigated classification. Boruta performed 400 random forest runs. Using the Boruta
technique for feature selection, the results showed that 52 features were confirmed as
important for the classification, while nine features were rejected—the thermal band’s
energy, entropy, ASM, homogeneity, MAX values, RGB band’s energy, ASM, homogeneity
and MAX values, and the MAX value from red and green band were rejected by Boruta as
unimportant features. In the other 52 confirmed values, there were features that were more
important than the others. The results are shown in Figure 4. From the results, it can be
seen that the most important features were the spectral indices. In fact, all nine indices were
among the 15 most important features. The VIDVI had the highest Z-score, followed by
EXG, VARI, NDRGI, NRGBI, and AVARI. All of the mentioned indices had Z-scores higher
than 15; thus, they were selected for the dataset IV. All of the confirmed values were part
of the dataset III. The Haralick-produced bands show that the GLCM features were more
important than the others, especially the ones produced from the blue band. The original
rbg bands have a mean Z-score of 8.5 and, out of 63 values, were ranked in 14–16 places.
On the other hand, the original band had a mean Z-score of 6, placed as 22 features.
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3.2. Machine Learning Classification Results

Three different machine learning classifiers were used to classify the dataset into the
NAC and AC building classes: RF, SVM, and XGBoost. We evaluated different datasets
to investigate which dataset gave the best results for the aim of the study. Dataset I is
formed of four bands plus single RGB and thermal bands. Dataset II contains all of the data
explained in Section 2.1. and a total of 63 bands. Dataset III is produced from the bands
confirmed by the Boruta technique used for the feature selection and contains 53 bands.
To explore the performance of the investigated machine learning algorithms with a small
number of features, we have selected the features with Z-scores higher than 15; dataset
IV was constructed from six spectral indices produced from the RGB bands (VIDVI, EXG,
VARI, NDRGI, NRGBI, and AVARI).

The results from the classifications are shown in Table 2. The results show that overall,
SVM performed best within dataset I followed by XGBoost, and RF. In this dataset, the
accuracy of the negative class (non-asbestos-containing roofs) was better predicted with
XGBoost followed by RF. The balanced accuracy was higher for SVM (0.92) followed by
XGBoost (0.90) and RF (0.89).

Table 2. Classification results.

Dataset Method Kappa Sensitivity Specificity PPV NPV Balanced

RF 0.780 0.855 0.927 0.845 0.932 0.891
I SVM 0.813 0.940 0.900 0.821 0.970 0.922

XGBoost 0.793 0.861 0.933 0.856 0.935 0.897

RF 0.824 0.928 0.918 0.841 0.965 0.923
II SVM 0.815 0.916 0.918 0.840 0.960 0.917

XGBoost 0.822 0.910 0.927 0.853 0.956 0.918

RF 0.827 0.922 0.924 0.850 0.962 0.923
III SVM 0.819 0.922 0.918 0.841 0.962 0.920

XGBoost 0.819 0.916 0.921 0.844 0.959 0.918

RF 0.813 0.898 0.927 0.851 0.951 0.912
IV SVM 0.825 0.950 0.910 0.831 0.973 0.930

XGBoost 0.823 0.921 0.921 0.845 0.962 0.922

Features in; dataset I (RGB, thermal); dataset II (all 63 bands); dataset III (53 bands confirmed by Boruta); dataset
IV (best 6 features). Bold indicates highest values.

Dataset II contains many more bands than dataset I. While dataset I c only the original
four bands (rgb + thermal), dataset II contains all of the investigated features (63). While the
SVM results were similar for dataset I and dataset II, the results for RF and XGBoost showed
significant improvement. Thus, the kappa was improved from 0.78 to 0.82 and from 0.79
to 0.82 for RF and XGBoost, respectively,. Moreover, the sensitivity noticeably improved
from 0.86 to 0.93 and from 0.86 to 0.91 for RF and XGBoost, respectively. RF showed best
results within dataset for all values except specificity and PPV, where XGBoost slightly
outperformed RF. Taking out the values rejected by Boruta (dataset III) slightly improved
some of the results obtained, with RF achieving the highest kappa in all datasets (0.83).

Even though dataset IV was constructed of only six features, it showed some of the
highest accuracy values (Figure 5). SVM classifier achieved the highest sensitivity (0.95),
NPV (0.973), and Balanced Accuracy (0.93) among all datasets and classifiers. XGBoost
followed the SVM classifier in all accuracy parameters except specificity and PPV, where
RF showed the best results.
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4. Discussion

The environmental exposure caused by the presence of asbestos roofs is critical from
various points of view. As a result, determining the number of asbestos-containing roofs
still in use is essential. Detecting the asbestos-containing roofs might lead to a more
accurate estimate of asbestos removal expenses and create a foundation for determining
the extent to which residents are exposed to airborne asbestos fibers. Furthermore, the
prospective risk of acquiring asbestos-related disorders may be evaluated. Recently, the
identification and mapping of asbestos-containing roofs has been completed using remote
sensing data [12,26].

This paper’s main goal was to investigate different remote sensing data and remote
sensing delivered dataset features. In addition, one of the main goals was to compare
three state-of-the-art machine learning algorithms for asbestos-containing roofs. Most of
the instigations in the literature are made with multispectral or hyperspectral satellite or
airborne remote sensing data [12,22,23]. It should be noted that thermal data and RGB-
derived spectral indices have not been used in the literature for asbestos-containing roof
mapping and/or detection. In this study, we aimed to investigate airborne RGB along with
thermal data. In addition to the four bands, we investigated different features to extract
optimal benefit from the original data. As there were many different features, we have also
used the Boruta technique for feature selection. In fact, we have evaluated four variations
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of the dataset according to the feature selection results. The Boruta technique showed
that out of the 63 investigated features, 53 were confirmed as important. In general, the
Haralick-produced bands from the thermal and mean RGB bands were rejected, along with
the maximum values of the red and green bands. As a feature, the thermal band was not
among the most important features and ranked 23rd. The most important features were
six of the nine used spectral indices. This was an expected output as spectral indices are
often used to improve classification accuracy due to the combination of different spectral
bands [31,32]. However, this is the first study to use remote sensing spectral indices for
asbestos-containing roof classification.

The machine learning classification results showed that adding different features
derived with the Haralick technique did not significantly boost the results. Although there
was a slight difference in dataset I and dataset II results, the results from the other dataset
were very similar. As expected, the RF classifier performed best with dataset II and III, as
RF performs well on large datasets [59]. On the other hand, SVMs handle small training
datasets more effectively and often produce higher classification accuracy than the other
methods [64]. Thus, SVM outperformed RF and XGBoost in the model’s sensitivity with the
highest value from dataset IV (0.95), showing the rate of asbestos-containing roof detection
and how the algorithm dealt with missed values. However, RF outperformed both SVM
and XGBoost within dataset IV for the specificity and PPVs; therefore, RF more effectively
dealt with the negative class accuracy and the detection of the non-asbestos-containing
roofs. This was the case for the XGBoost classifier within dataset II. Overall, the highest
balanced accuracy was achieved within dataset IV with the SVM (0.93) classifier, followed
by XGBoost (0.92) and RF (0.91). The results show that dataset IV, constructed from six
spectral indices derived only from the RGB bands, gave the best results. It should be
noted that all of the classifiers showed more accurate results in the classification of the
negative class.

A visual inspection of the results showed that the falsely predicted results stemmed
from unclear roof visibility, such as roofs surrounded by taller buildings, trees, or very
small buildings. On the other hand, the wrongly predicted results from the negative class
stem from the very light color of the roof. As the asbestos-containing roofs are not equally
distributed in the study area, for visualization we selected a part of the study area with
dense asbestos-containing roofs, as shown in Figure 6.

A recent review noted that SVM outperformed other classifiers, such as SAM, ML
and RF. However, in their review Abbasi et al. did not report the use of RGB and thermal
data and the XGBoost classifier in other studies. In comparison with other studies, Pinho
et al. [65] achieved poor accuracy (kappa 0.53) with four-band QuickBird imagery. With
8 multispectral imagery, Gibril et al. [66] achieved high accuracy (over 90%) with RF. With
hyperspectral data and SVM classifier, Szabo et al. also achieved high accuracy. Overall,
most of the studies showed good results with, in most cases, the overall accuracy of the
classification varying from 85–95% [25]. The comparison of the results shows that even
though we are using only RGB data, we achieved as accurate results as the other studies
using multispectral or hyperspectral remote sensing data. This is also due to the use of
different spectral indices in this study. In terms of spatial resolution, other studies generally
used high-spatial resolution imagery (0.25–5 m); for example, Krówczynska et al. [25] used
0.25 m and achieved accuracy of 89%.

While Krówczynska et al. pointed out that low spectral resolution (RGB and near
infrared band) only allowed a rough classification of roof martials [67], the results of this
study showed the opposite. On the other hand, the results showed that the enhanced
spectral data with the Haralick algorithm and the use of thermal data did not positively
affect the classification accuracy. Instead, a few very simple spectral bands indices from
the RGB range were enough to achieve accuracy as high as the other studies that used
remote sensing data with multi- or hyper-spectral resolution. Using such datasets allows
for extra confirmation of results by photo interpretation, which is extremely difficult on
photos with lower spatial resolution. The use of publicly accessible and inexpensive



Sustainability 2023, 15, 6067 12 of 16

orthophotos increases the approach’s dependability. It makes the provided method simple
to execute as most countries’ cadastral agencies carry out imaging campaigns every few
years and have orthophotos already available with no additional data needing to be
acquired. On the other hand, hyperspectral data, the data widely used in the literature, are
challenging for processing and often have a high cost. Furthermore, the national circular
aero photogrammetry survey is standard for acquiring spatial information at the national
scale for most countries. Additionally, with the rapid development of remote sensing
technologies, high-resolution satellite imagery is becoming increasingly available and can
be used for the purpose of the study. Another highlight of this study is the use of Google
Street View to collect and validate the training and test data. This can be a great time-saver
as the data collection and validation are often available on-site. It should be noted that a
very small number of the building were unavailable in Google Street View within the study
area. It should also be mentioned that in some parts of the world, Google Street View is
not available; thus, in situ campaigns must also be completed. However, with the rapid
development of remote sensing and image processing, we imagine that this challenge will
be resolved in the near future. There are some impediments in the approach used, e.g.,
shadows near buildings or salt and paper effect on some locations. These are very common
remote sensing problems in high-resolution aerial or satellite imagery.
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The results are beneficial from several points of view. Besides the already discussed
benefits in the literature, the findings in this study can be applied worldwide for mapping
or detecting asbestos roofs or similar objects. Moreover, applicability and novel indices
and modelling approaches can be used in similar remote sensing research to improve
image classification. From our point of view, the results can be also used for approximately
determining the buildings’ year of construction. Notably, asbestos-containing products
have been forbidden in the study region since 2006 [68] and the roofs date from the
1960s. As a result, based on some assumptions, the recognized buildings can also be
time-tagged. Because the construction year is one of the most important characteristics for
assessing seismic building risk, the acquired data will be of significant interest to earthquake
engineering experts. Buildings with asbestos-containing roofs in the study region are often
old and have not received competent engineering services. As a result, their identification
is critical in terms of seismic safety. The identification of asbestos-containing buildings is
essential in areas affectec by natural disasters, such as earthquakes, floods, erosions etc., as
asbestos materials need to be treated separately.

From this perspective, for future studies, the acquisition of the crucial seismic risk
assessment building variables, such as construction year, building height, and building
area, can be investigated using different remote sensing data and techniques. Future studies
on asbestos-containing buildings can take a direction towards localizing dense buildings
and give instant information about the roof materials.

5. Conclusions

This study compared three state-of-art machine learning techniques for asbestos-
containing roof classification, such as RF, SVM, and XGBoost. For this purpose, high-
resolution RGB airborne data has been used along with thermal data. To investigate
the full potential of the data, we used different image data derivations, such as Haralick
techniques and simple spectral indices. From the produced data, we investigated four
different datasets: one only with the original bands, one with all the features, one with the
features confirmed by the Boruta technique and one with the most important features.

The results showed that the Haralik-produced bands and the thermal band did not
improve the classification accuracy. On the other hand, the spectral indices significantly
improved the classification of the asbestos-containing roofs. The spectral indices that
significantly improved the results were calculated only from the RGB bands and, to our
knowledge, they were used for the first time in the literature for the purpose of this study. In
terms of the algorithm used, as expected, RF showed good results with more features, while
the SVM showed the smallest number of features. Our results showed that RGB bands
could produce results as accurate as the multispectral and hyperspectral data with the
addition of simple spectral indices. The use of Google Street View was of great importance
to this study as conventional data collection and validation methods could be expensive
and time-consuming.
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