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UDC: 517.925:517.933 
A PARTICULAR SOLUTION TO THE SPECIAL CASE OF A FOURTH-

ORDER SHORTENED LORENZ SYSTEM  
 

Biljana Zlatanovska1, Boro Piperevski2, Mirjana Kocaleva Vitanova1, Marija Miteva1   
 
 
Abstract. In this paper, from the expanded class of the second-order linear 
differential equations, a subclass of the second-order linear differential equations 
will be obtained. For this subclass, a new condition for reductability according 
to Frobenius, as well as explicit formulas of its particular solution will be 
received. This subclass of the second-order linear differential equations and its 
particular solution, for obtaining a particular solution of the special case of the 
fourth-order shortened Lorenz system which was obtained from the Modified 
Lorenz system will be applied.  

 
1. INTRODUCTION 

 
For the class of second-order linear differential equations of B.S. Popov in 

[1] necessary and sufficient condition for reductable according to Frobenius is 
obtained. In mathematical literature [2-7] the following theorem is known: 

 
Theorem 1. Let the differential equation  

2( ) '' ( ) ' 0, , , , , ,Ax Bx C y Dx E y Fy A B C D E F           (1) 

is given. The differential equation (1) is integrable if there exists an integer n  
(the smallest number after absolute value if there are such numbers) that satisfies 
the condition 

                                                 ( 1) 0n n A nD F                                 (2) 
In doing so, the differential equation (1) has a particular solution which is given 
by the formula  

2 22 2 1 ( )( ) ( ) ( ) [( ) ]
Dx E Dx E

dx dx
n nAx Bx C Ax Bx C

p ny x P x Ax Bx C e Ax Bx C e
 


         

(3) 

 
if  n  (a polynomial solution). 

But, if , ( 1)n k n       then a particular solution will be given by the 
formula 

22 1 ( )( ) [( ) ]
Dx E

dx
k kAx Bx C

py x Ax Bx C e



     

         (4) 

The Lorenz system in mathematical literature (e.g. [8-20]) is already known. 
Its explicit solutions are unknown and its behavior is analyzed through graphical 
visualization (e.g. [8-14]). It has the following form 
2010 Mathematics Subject Classification. 34A34, 34A05.  
Key words and phrases. Fourth-order shortened Lorenz system, particular solution. 
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and initial values 0 0 0(0), (0), (0)x x y y z z   . The Modified Lorenz system in 

[21] with initial values 0 0 0(0), (0), (0)x x y y z z   , 
( )

(0)
p

pz z , }4,3,2,1{p  

(5) (4)

2 2 2
0 0 0 0 0

( )

( )

( ) ( ) ( ) ( )

, , 0, 1 , ( ) , ,

x y x

y x r z y

z A b z B Ab z C Bb z D Cb z Dbz

r b A b B r z x C x y D y



    

 
  

         

         




  

(5) 

is presented. 
The third equation of the Modified Lorenz system is a five-order linear 

homogeneous differential equation with the constant coefficients. Its 
characteristic equation is   

5 4 3 2( ) ( ) ( ) ( ) 0m A b m B Ab m C Bb m D Cb m Db               (6) 
which solutions are m1= -b, m2/3/4/5=k(A,B,C,D,b). The explicit solutions of the 
Modified Lorenz system in [21] for any value of the parameters , , 0r b   σ>0 

and initial values 0 0 0, ,x y z  are obtained.  
By using of two solutions from the solutions m1/2/3/4/5 of the equation (5), the 

7th order Modified Lorenz system (5) in [22] is transformed in a fourth-order 
subsystem Modified Lorenz system  

*

1 2 1 2

*
1 2

( )

( )

( )

, 0, ,

x y x

y x r z y

z u

u m m u m m z

r m m





 

  


  

 









  (6) 

with the initial values 0 0 0(0), (0), (0),x x y y z z   0 1(0) (0)u u z z   .The 
fourth-order subsystem from the Lorenz system will be called fourth-order 
shortened Lorenz system. For this system (6) in [23] is done dynamical analysis. 
When the system condition  

1 2 1, 2m m m        (*) 
is true, we will speak for a special case of  a fourth-order shortened Lorenz system 
(6).  
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Remark 1. By the notation 𝑟∗ in the fourth-order shortened Lorenz system (6), 
the parameter r from Modified Lorenz system (5) has been replaced. Because the 
notation r will be used with another meaning in this paper. 
 

The explicit solutions of the Modified Lorenz system (5) from [21] can be 
used for solving of the fourth-order shortened Lorenz system (6). But, these 
solutions are complex for use. In this paper under specific conditions with proving 
integrability of a subclass of differential equations from the extended class linear 
differential equations [24] which are presented in [1], we will be offered simpler 
obtaining of a particular solution for a special case of the fourth-order shortened 
Lorenz system (6). 
 
Remark 2. In the paper [25] in the same way, a particular solution of the third-
order shortened Lorenz system via integrability of a class of differential equations 
is already offered. Therefore, this paper will follow the already published paper 
[25]. 
 

The integrability of this extended class of differential equations gives us 
explicit formulas for one particular solution. A subclass from this extended class 
of differential equations will be obtained, which will be used for solving the 
fourth-order shortened Lorenz system (6).  

This paper gives only theoretical access without examples, which is small, 
but an essential contribution to solving differential equations. 

 

2. MAIN RESULTS  
 

In this part, the subclass from the extended class of second-order linear 
differential equations of B.S. Popov is obtained, which can be used for solving of 
the fourth-order shortened Lorenz system (6). For this goal, the following 
Theorem 2 will be proved. 

 
Theorem 2. Let the differential equation  

2
1 1 1 1 1 1( ) 0, , , ,t tz z A e B e C z A B C              (7)   

is given. The differential equation (7) is integrable if there exists an integer n  
that satisfies the condition 

2
1 1 1 1( )[2 1 ( 4 )] 0, 0B A n C A           (8) 

In doing so, the differential equation (7) has a particular solution which is given 
by the formula 

( )
( ) ( )

tr e s d t t
p pz t e y e

 
            (9) 

where  
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1 1 ( )( ) ( ) [ ]E Dx n E D x n
p ny x P x x e x e                   (10) 

if n   
or 

1 ( )( ) [ ]k E D x k
py x x e   ,                          (11) 

 

if , ( 1)n k n      . 
By the relations  

2
1 1 1

2 2
1 1 1 1

2( ), 1 ( 4 ), ,

1
( 4 ), ( )[1 ( 4 )]

2

D A E C r A

s C F B A C



  

       

       

 

 
        (12) 

the coefficients in the formulas (9), (10) and (11) are obtained. 
 
Proof. Let us consider the differential equation 

'' ( ) ' 0, , ,xy Dx E y Fy D E F                           (13) 
where 

2

2
( ), ' , ''

dy d y
y y x y y

dx dx
   . 

By the substitution  
tx e       (14) 

the differential equation (13) can be written as 

[ 1] 0t ty De E y F e y        (15) 
where 

2

2
( ), ,

dy d y
y y x y y

dt dt
    . 

By the substitution 
( )

( ) ( ), ,
tr e s d t

y t e z t r s


         (16) 
the equation (15) is transformed in the differential equation 

2 2

2

[(2 ) 2 1] [( ) (2 )

] 0

t t tz r D e s E z r rD e rs rE sD F e

s sE s z

          

   

 
   (17) 

where 
2

2
( ), ,

dz d z
z z t z z

dt dt
    . 

The equation (7) is equal of the equation (17) if the following relations 
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2
1

1

2
1

2 0

2 1

2

r D

s E

r rD A

rs rE Ds F B

s sE s C


 
  

 

   

  

  (18) 

are satisfied. From (18), the relations (12) are obtained. 
By using the Theorem 1, the equation (13) is integrable if there exists an integer 
n  that satisfies the condition 

 
0nD F            (19) 

In accordance with the relations (12), the condition (19) is equal to the condition 
(8). By using the formulas (3) and (4) from Theorem 1 applied to the equation 
(13), the formulas (10) and (11) are obtained. Finally, in accordance with the 
substitutions (14) and (16), the formula (9) is obtained.            □ 
 
Remark 3. In connections (12) the sign before the roots is equal to the sign before 
the roots the condition (8). 
 

By Theorem 3, the last two equations of the fourth-order shortened Lorenz 
system (6)  for given initial values offered a particular solution.  

 
Theorem 3. The last two equations of the fourth-order shortened Lorenz system 
(6) are transformed in a second-order linear homogeneous differential equation 
with the constant coefficients 

1 2 1 2( ) 0z m m z m m z       (20). 

The differential equation (20) with the initial values 0 (0),z z 1 (0)z z  , and the 

condition (*) for 1m m  has the particular solution  

2 0 1 1 02
( ) , , .mt mt

p

mz z z mz
z t We Le W L

m m

 
           (21) 

 
Proof.  By help of the fourth equation and differentiation of the third equation of 
the fourth-order shortened Lorenz system (6), a second-order linear homogeneous 
differential equation with the constant coefficients (20) is obtained. The 
characteristic equation of the differential equation (20) is 

2
1 2 1 2( ) 0m m m m m m      

by solutions 1 2,m m . The general solution of the differential equation (20) is 
1 2( ) , , cm t m tz t We Le W L onst   . 
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Nothing is lost from generality, if we assume that 1m m . For the initial values 

0 (0),z z 1 (0)z z   and the condition 1 ,m m 2 12 2m m m  , the particular 
solution  

2 0 1 1 02
( ) , ,mt mt

p

mz z z mz
z t We Le W L

m m

 
        

 
is obtained.                □ 
 
By Theorem 4, the first two equations of the fourth-order shortened Lorenz 
system (6) in a second-order linear differential equation are transformed. 
 
Theorem 4. The first two equations of the fourth-order shortened Lorenz system 
(6) are transformed in a second-order linear differential equation 

* 2 *( 1) (1 ) 0, , 0,mt mtx x r We Le x r m                (22) 
where 

2
0 1 1 0

2

2
( ), , , ,

mz z z mzdx d x
x x t x x W L

dt m mdt

 
      . 

Proof.  By help of the second equation and differentiation of the first equation of 
the fourth-order shortened Lorenz system (6), a second-order linear differential 
equation 

* *( 1) (1 ( )) 0, , 0px x r z t x r           

is obtained, where   
 

2

2
( ), ,

dx d x
x x t x x

dt dt
     

By using of the particular solution (21), the second-order linear differential 
equation (22) is obtained.              □ 
 

The condition for integrability of the differential equation (22) in Theorem 4 
is given by Theorem 5. In accordance with the formulas of Theorem 2, one 
particular solution is obtained by Theorem 5.  
 
Theorem 5. Let the differential equation (22) is given. The differential equation 
(22) is integrable if there exists an integer n  that satisfies the condition 

    2 *( )[(2 1) ( ( 1) 4 ) 0, 0,W L n m r L m              ,      (23) 

where 0 1 1 0
0 1

2
, , ,

mz z z mz
W L z z

m m

 
   . 

In doing so, the differential equation (20) has a particular solution which is given 
by the formula 
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* * *( )*( ) ( )
tr e s d t t

p px t e y e
 

            (24) 

where  
1 1 ( )( ) ( ) [ ]E Dx n E D x n

p ny x P x x e x e                      

if n  
or  

1 ( )( ) [ ]k E D x k
py x x e                          

if , ( 1)n k n       for *t mt . 
By the relations   

   
 

2 *

2 *

2 *

2 1 1
, 1 ( 1) 4 , ,

1
1 ( 1) 4 ,

2
1 1 1

( )(1 ( 1) 4

D L E r r L
m m m

s r
m

F W L r
m m m

   

  

   

       

       

       

 

 

 

the coefficients 𝐷, 𝑟, 𝑠, 𝐸, 𝐹 are obtained.  
 
Proof.  By the substitution 

                                                      *mt t                                               (25) 
the equation (20) are transformed in the differential equation  

* ** * 2 * *
2

1 1
( ) ( 1) ( ) ( 1 ) ( ) 0t tx t x t Le We r x t

m m
              (26) 

where 
2

2
( ), ,

dx d x
x x t x x

dt dt
    . 

The differential equation (26) is equal by the equation (7), if the relations 

*
1 1 12 2 2

1 1 1 1
( 1), , , (1 )А L B W C r

m m m m
                

are valid. 
The condition (8) of Theorem 2 applied to the equation (26) is the condition (23). 
By using the formula (9) of Theorem 2, formula (24) is obtained. In accordance 
with the substitution (25), the formula of one particular solution is obtained.        □ 
 

A particular solution ( ( ), ( ), ( ))p p px t y t z t of a special case of the fourth-order 

shortened Lorenz system (6) is obtained by the following Theorem 6.  
 

Theorem 6. A particular solution ( ( ), ( ), ( ))p p px t y t z t  of a special case of the 

fourth-order shortened Lorenz system (6) when the condition (23) is satisfied is 
obtained as follows: 
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- for ( )px t  with the formula (24); 

- 
1

( ) ( ) ( )p p py t x t x t


   where ( ) p
p

d x
x t

dt
 ; 

- for ( )pz t  with the formula (21). 

 
Proof.  It is clear that a particular solution ( ( ), ( ), ( ))p p px t y t z t of the fourth-order 

shortened Lorenz system (6)  can be found in the condition (23) of Theorem 5 is 
satisfied. The particular solution is obtained by using the formulas for one 
particular solution (24) for one particular solution from Theorem 5 for ( )px t , the 

formula (21) from  Theorem 3 for ( )pz t  and by using the first equation of the 

fourth-order shortened Lorenz system (6) with 1
( ) ( ) ( )p p py t x t x t


  , where 

( ) p
p

d x
x t

dt
 .                             □ 

 
3. CONCLUSIONS  
 
In this paper for the special case of the fourth-order shortened Lorenz system (6), 
a way for theoretically obtaining one particular solution was presented. We speak 
for a finding of a particular solution for а small class of systems of differential 
equations, but solving such a nonlinear system is complex even with a computer.  
 
It would be good to be given an appropriate example with concrete initial values 
and its geometrical visualization. But, the choice of such an example is a difficult 
and complex process even with a computer. 
 
Therefore, this paper gives only theoretical access, which is an essential 
contribution to solving differential equations. 
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