
 

HETEROGENOUS AGENTS AND INCOMPLETE MARKETS: AN EXPLORATION 
 

Dushko Josheski1*, Natasha Miteva2, Tatjana Boshkov3  
1Associate professor Goce Delcev University of Stip, Faculty of tourism and business 

logistics, R.North Macedonia, dusko.josevski@ugd.edu.mk  
2Assistant professor, Goce Delcev University of Stip, Faculty of tourism and business 

logistics, R.North Macedonia, natasa.miteva@ugd.edu.mk  
3Associate professor, Goce Delcev University of Stip, Faculty of tourism and business 

logistics, R.North Macedonia, tatjana.dzaleva@ugd.edu.mk  
*Corresponding author: dusko.josevski@ugd.edu.mk 

 
 
 
Abstract  
 

This paper will review the issue of heterogeneity of agents and incomplete markets in 
macroeconomics. Central idea of this paper is the notion that representative agent models 
were wrong turn for modern macroeconomics especially for general equilibrium model (some 
individuals are some are not liquidity constrained) and that central problems of 
macroeconomics cannot arise in representative agent models (debt, bankruptcy, asymmetric 
information) as has also being criticized by Stiglitz (2017).And finally main motivation for this 
paper were Achdou et al.(2022) who developed algorithm for “solving equilibria in Aiyagari–
Bewley–Huggett economy” and Krusell-Smith (1998) comparison of economy behavior when 
incomplete markets (heterogeneous agents) and complete markets (representative agent) 
economy. 
 
Key words: Heterogenous agents, incomplete markets, Huggett economy, Krusell-Smith 
economy, Aiyagari model 
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INTRODUCTION 
 

Heterogeneity of agents is relevant, and it could provide answers for the welfare 
questions that are crucial in macroeconomics. In a way it is a critique on representative agents’ 
models. Lucas (1987) showed that for standard preferences, aggregate fluctuations have a 
very small impact on the welfare of a representative consumer. There are many heterogenous 
agents (HA) models, however in this paper we will stick to Huggett model (Huggett (1993)), 
and Krusell-Smith model (Krusell,Smith (1998)).Huggett model was based on  the enormous 
literature that up until then was done on “….heterogenous-agent-incomplete-insurance 
models of asset pricing….”, some of the references here include : Bewley (1980), Lucas 
(1980), Taub (1988). Models with heterogeneous agents have become a workhorse in 
macroeconomics since the seminal work of Bewley (1986), Hopenhayn (1992), Huggett 
(1993) and Aiyagari (1994). More complete review of this literature could be read in Heathcote 
et al.(2009).And why heterogeneity of agents is of interest in macroeconomics? This same 
question is asked and answered partially by Boppart et al. (2018).Marginal decisions made by 
households, regarding: consumption, hours worked, and investments in various types of 
assets “vary quite substantially” in population. As an example, study of previous Boppart et al. 
(2018)  mentions: Johnson, Parker, Souleles (2004), who provide evidence on departure from 
permanent income hypothesis when agents are heterogenous, and Misra and Surico (2014) 
“for estimating the heterogeneity in responses across households”. Real world problems such 
as inequality see Piketty (2014), and theoretical problems such as optimal taxation with 

heterogenous agents see Chien,Wen (2020),Ragot,Grand(2017), Bassetto et al.(1999),Brito 
etal.(1995),Stiglitz(1982),Arnott,Stiglitz(1988),Akerlof(1978),Diamond,Mirrlees(1978),Weiss 
(1976). Storesletten et al. (2001) showed that liquidity-constrained households are hit 
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particularly hard by aggregate productivity shocks. Arrow (1951) and Arrow,Debreu 
(1954),proved that competitive equilibrium in Arrow-Debreu economy is Pareto optimal and 
discovered class of convex Arrow-Debreu economies for which competitive equilibria always 
exist. In the case of incomplete (see Geanakoplos (1990)) markets this equilibrium may (will) 
not be efficient see Geanakoplos (1986) or the will be suboptimal constrained. This paper will 
review previously mentioned issues will be doing so by using derivations and some examples 

from modern macroeconomic literature such as Achdou et al.(2022), which is the main paper 
that motivated as to review this area of macroeconomics. 

MATERIAL AND METHODS 
 

 Hamilton-Jacobi Equation (HJB), Fokker-Planck equation (F-P) and Huggett 
economy 
 
A crucial question here is how to model income. First, income can be modeled as a Poisson 
process, that allows income to take two values. Second, income can be modeled as a diffusion 
process, allowing that the income to take many values. In particular, the case in which the 
income process follows a two-stage Poisson process: 𝑦𝑡  ∈  { 𝑦1 , 𝑦2 } with 𝑦1  <  𝑦2 . Here the 
income jumps from state 1 to state 2 with intensity 𝜆1 and vice versa with intensity 𝜆2 .Now, 
how does consumers in this model chooses optimal consumption? They maximize the lifetime 
present value utility function subject to the dynamic of individual wealth, the borrowing 
constraint, and the income process. When the agent solves his optimization problem, he takes 
as given the evolution of the equilibrium of the interest rate. The underlying assumption is that 
the agent is a price-taker. The next step is to set up and solve the equilibrium of this economy. 
The equilibrium is represented by a system of partial differential equations (PDEs). To solve 
this PDEs system, we need first to solve the Hamilton-Jacobi-Bellman equation (HJB) given 
an interest rate, and then to solve the Fokker-Planck equation (KFPE), and hence the 
equilibrium in the bond market. Now, we can update the value of the interest rate and start the 
loop again until we find the equilibrium interest rate. From these equations, we can find the 
consumption and savings policy functions and the stationary distribution of wealth. HJB 
equation was a result of the theory of dynamic programing pioneered by Richard Bellman 
(namely Bellman(1954),Bellman(1957),Bellman, Dreyfus,(1959) ).HJB equation is modeled 

as in Achdou et al.(2022). The deterministic optimal control problem is given as: 
 
equation 1 

𝑉(𝑥0) = max
𝑢(𝑡)𝑡=0

∞
∫ 𝑒−𝜌𝑡ℎ(𝑥(𝑡), 𝑢(𝑡)𝑑𝑡

∞

0
  s.t.  �̇�(𝑡) = 𝑔(𝑥(𝑡)), 𝑢(𝑡), 𝑢(𝑡) ∈ 𝑈 ; 𝑡 ≥ 0, 𝑥(0) = 𝑥0 

In previous expression:𝜌 ≥ 0 is the discount rate, 𝑥 ∈ 𝑋 ⊆ ℝ𝑚 is a state vector; 𝑢 ∈ 𝑈 ⊆
ℝ𝑛 is a control vector, and ℎ: 𝑋 × 𝑈 → 𝑅.  The value function of the generic optimal control 
problem satisfies the Hamilton-Jacobi-Bellman equation, i.e.:  
equation 2 

𝜌𝑉(𝑥) = max
𝑢∈𝑈

ℎ(𝑥, 𝑢) + 𝑉′(𝑥) ∙ 𝑔(𝑥, 𝑢) 

In the case with more than one state variable 𝑚 >  1, 𝑉′(𝑥)  ∈  ℝ𝑚  is the gradient of the 
value function. Now for the derivation of the discrete-time Bellman eq. we have: time 

periods of length ∆ ,discount factor 𝛽(∆) = 𝑒−𝜌∆ , here we can note that lim
∆→∞

𝛽(∆) = 0 and 

lim
∆→0

𝛽(∆) = 1.Now that discrete Bellman equation is given as:  

 
equation 3 

𝑉(𝑘𝑡) = max
𝑐𝑡

∆𝑈(𝑐𝑡) + 𝑒−𝜌∆𝑉(𝑘𝑡+∆) s.t. 𝑘𝑡+∆ = ∆[𝐹(𝑘𝑡) − 𝛿𝑘𝑡 − 𝑐𝑡] + 𝑘𝑡 
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For a small ∆= 0 we can make: 𝑒−𝜌∆ = 1 − 𝜌∆, so that 𝑉(𝑘𝑡) = max
𝑐𝑡

∆𝑈(𝑐𝑡) +

(1 − 𝜌∆, )𝑉(𝑘𝑡+∆),if we subtract (1 − 𝜌∆, )𝑉(𝑘𝑡) from both sides and divide by ∆ and 
manipulate the last term we get : 𝜌𝑉(𝑘𝑡) = max

𝑐𝑡

∆𝑈(𝑐𝑡) + (1 − 𝜌∆, )[𝑉(𝑘𝑡+∆) − 𝑉(𝑘𝑡) ] we 

get : 
equation 4 

 𝜌𝑉(𝑘𝑡) = max
𝑐𝑡

∆𝑈(𝑐𝑡) + (1 − 𝜌∆, )
[𝑉(𝑘𝑡+∆)−𝑉(𝑘𝑡) ]

𝑘𝑡+∆+𝑘𝑡
 
𝑘𝑡+∆−𝑘𝑡

∆
 

If ∆→ 0 then 𝜌𝑉(𝑘𝑡) = max
𝑐𝑡

∆𝑈(𝑐𝑡) + 𝑉′(𝑘𝑡)  �̇�𝑡 . Hamilton-Jacobi-Bellman equation in 

stochastic settings is given as: 
 
equation 5 

𝑉(𝑥0)) = max
𝑢(𝑡)𝑡=0

∞
𝔼0 ∫ 𝑒−𝜌𝑡ℎ(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡

∞

0
 s.t.𝑑𝑥(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 +

𝜎(𝑥(𝑡))𝑑𝑊(𝑡) , 𝑢(𝑡) ∈ 𝑈 ; 𝑡 ≥ 0, 𝑥(0) = 𝑥0  

 
 
In previous expression 𝑥 ∈ ℝ𝑚; 𝑢 ∈ ℝ𝑛. HJB equation without derivation is : 
equation 6 

𝜌𝑉(𝑥) = max
𝑢∈𝑈 

ℎ(𝑥, 𝑢) + 𝑉′(𝑥)𝑔(𝑥, 𝑢) +
1

2
𝑉′′(𝑥)𝜎2(𝑥) 

 
In the multivariate case: for fixed 𝑥 we define 𝑚 × 𝑚 covariance matrix, 𝜎2(𝑥) = 𝜎(𝑥)𝜎(𝑥)′ 
which is a function of 𝜎2: ℝ𝑚 → ℝ𝑚 × ℝ𝑚. HJB equation now is given as: 
equation 7 

𝜌𝑉(𝑥) = max
𝑢∈𝑈 

ℎ(𝑥, 𝑢) + ∑
𝜕𝑉(𝑥)

𝜕𝑥𝑖

𝑔𝑖(𝑥, 𝑢) +
1

2
 ∑ ∑

𝜕2𝑉(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

𝑚

𝑗=1

𝑚

𝑖=1

𝑚

𝑖=1

𝜎𝑖𝑗
2 (𝑥) 

In vector notation previous is given as: 
equation 8 

𝜌𝑉(𝑥) = max
𝑢∈𝑈 

ℎ(𝑥, 𝑢) + ∇𝑥𝑉(𝑥) ∙ 𝑔(𝑥, 𝑢) +
1

2
𝑡𝑟(Δ𝑥𝑉(𝑥)𝜎2(𝑥)) 

 
Where ∇𝑥𝑉(𝑥): gradient of 𝑉 (dimension 𝑚 × 1) ; Δ𝑥𝑉(𝑥) : Hessian matrix of 𝑉  (dimension 
𝑚 × 𝑚).By Ito’s lemma1: 
equation 9 

𝑑𝑓(𝑥) = (∑ 𝜇𝑖(𝑥)
𝜕𝑓(𝑥)

𝜕𝑥𝑖

𝑛

𝑖=1

+
1

2
 ∑ ∑ 𝜎𝑖𝑗

2 (𝑥)
𝜕2𝑓(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗

𝑚

𝑖=1

𝑚

𝑖=1

) 𝑑𝑡 + ∑ 𝜎𝐼(𝑥)
𝜕𝑓(𝑥)

𝜕𝑥𝑖

𝑚

𝑖=1

𝑑𝑊𝑖 

 
In vector notation:  
equation 10 

𝑑𝑓(𝑥) = (∇𝑥𝑓(𝑥) ∙ 𝜇(𝑥) +
1

2
𝑡𝑟(Δ𝑥𝑓(𝑥)𝜎2(𝑥))) 𝑑𝑡 + ∇𝑥𝑓(𝑥) ∙ 𝜎(𝑥)𝑑𝑊  

 
1 Itô's lemma is an identity used in Itô calculus to find the differential of a time-dependent function of a 
stochastic process. It serves as the stochastic calculus counterpart of the chain rule, see Kiyosi Itô (1951).  
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Now for the Kolmogorov Forward (Fokker-Planck2) equation we have folowing: let 𝑥  be a 
scalar diffusion  
equation 11 

𝑑𝑥 = 𝜇(𝑥)𝑑𝑡 + 𝜎(𝑥)𝑑𝑊, 𝑥(0) = 𝑥0 
 
Let’s suppose that we are interested in the evolution of the distribution of 𝑥, 𝑓(𝑥, 𝑡) and 

lim
𝑡→∞ 

𝑓(𝑥, 𝑡) .So, given an initial distribution 𝑓(𝑥, 0) = 𝑓0(𝑥), 𝑓(𝑥, 𝑡) satisfies PDE : 

  
equation 12 

𝜕𝑓(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
[𝜇(𝑥)𝑓(𝑥, 𝑡)] +

1

2

𝜕2

𝜕𝑥2
[𝜎2(𝑥)𝑓(𝑥, 𝑡)] 

Previous PDE is called “Kolmogorov Forward Equation” or “Fokker-Planck Equation”. 
 
Corollary 1: if a stationary equilibrium exists lim

𝑡→∞ 
𝑓(𝑥, 𝑡) = 𝑓(𝑥), it satisfies ODE  

equation 13 

0 −
𝑑

𝑑𝑥
[𝜇(𝑥)𝑓(𝑥)] +

1

2

𝑑2

𝑑𝑥2
[𝜎2(𝑥)𝑓(𝑥)] 

 
In the multivariate case Kolmogorov Forward Equation is given as: 
equation 14 

𝜕𝑓(𝑥, 𝑡)

𝜕𝑡
= − ∑

𝜕

𝜕𝑥𝑖

[𝜇(𝑥)𝑓(𝑥, 𝑡)]

𝑚

𝑖=1

+
1

2
∑ ∑

𝜕2

𝜕𝑥2 [𝜎𝑖𝑗
2 (𝑥)𝑓(𝑥, 𝑡)]

𝑚

𝑗=1

𝑚

𝑖=1

 

 Finite difference method and HJB equation  
 
As in Achdou et al.(2022),  two functions 𝑣1, 𝑣2 at 𝐼 discrete points in the space dimension 𝑎𝑖 
, 𝑖 = 1, … , 𝐼 . Equispaced grids are denoted by ∆𝑎𝑖as the distance by the grid points, and shot 

hand notation used is 𝑣𝑖,𝑗 ≡ 𝑣𝑗(𝑎𝑖) and so on. Backward difference approximation is given as:  

 
equation 15 

{
𝑣𝑗

′(𝑎𝑖) ≈
𝑣𝑖+1,𝑗 − 𝑣𝑖,𝑗

∆𝑎 
≡ 𝑣𝑖,𝑗,𝐹

′

𝑣𝑗
′(𝑎𝑖) ≈

𝑣𝑖+1,𝑗 − 𝑣𝑖−1,𝑗

∆𝑎 
≡ 𝑣𝑖,𝑗,𝐵

′
 

Two basic equations to explain Huggett economy are : 
equation 16 

(
𝜌𝑣1(𝑎) = max

𝑐
𝑢(𝑐) + 𝑣1

′ (𝑎)(𝑧1 + 𝑟𝑎 − 𝑐) + 𝜆1(𝑣2(𝑎) − 𝑣1(𝑎))

𝜌𝑣2(𝑎) = max
𝑐

𝑢(𝑐) + 𝑣2
′ (𝑎)(𝑧2 + 𝑟𝑎 − 𝑐) + 𝜆2(𝑣1(𝑎) − 𝑣2(𝑎))

 

Where 𝜌 ≥ 0 represents the discount factor for the future consumption 𝑐𝑡  (Individuals have 
standard preferences over utility flows), 𝑎 represents wealth in form of bonds that evolve 
according to : 
equation 17 

�̇� = 𝑦𝑡 + 𝑟𝑡𝑎𝑡 − 𝑐𝑡 

𝑦𝑡 is the income of individual, which is endowment of economy’s final good, and 𝑟𝑡 represents 
the interest rate. Equilibrium in this Huggett (1993) economy is given as: 

 
2 See Fokker (1914), Planck (1917), Kolmogorov (1931). 
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equation 18 

∫ 𝑎𝑔1(𝑎, 𝑡)𝑑𝑎 + ∫  𝑎𝑔2(𝑎, 𝑡)𝑑𝑎 = 𝐵
∞

𝑎

∞

𝑎

  

 
Where in previous expression 0 ≤ 𝐵 ≤ ∞ and when 𝐵 = 0 that means that bonds are zero net 
supply. So the finite difference method approx. to 

(
𝜌𝑣1(𝑎) = max

𝑐
𝑢(𝑐) + 𝑣1

′ (𝑎)(𝑧1 + 𝑟𝑎 − 𝑐) + 𝜆1(𝑣2(𝑎) − 𝑣1(𝑎))

𝜌𝑣2(𝑎) = max
𝑐

𝑢(𝑐) + 𝑣2
′ (𝑎)(𝑧2 + 𝑟𝑎 − 𝑐) + 𝜆2(𝑣1(𝑎) − 𝑣2(𝑎))

 is given as: 

equation 19 

𝜌𝑣𝑖,𝑗 = 𝑢(𝑐𝑖,𝑗) + 𝑣𝑖,𝑗
′ (𝑧𝑗 + 𝑟𝑎𝑖 + 𝑐𝑖,𝑗) + 𝜆𝑗(𝑣𝑖,−𝑗 − 𝑣𝑖,𝑗), 𝑗 = 1,2 

𝑐𝑖,𝑗 = (𝑢′)−1(𝑣𝑖,𝑗
′ )

 

Euler equation   
 
Here following lemma applies see Achdou et al.(2022) 
 
Lemma 1: The consumption and savings policy functions 𝑐𝑗(𝑎) and 𝑠𝑗(𝑎) for 𝑗 = 1,2.. 

corresponding to HJB equation : 𝜌𝑣𝑗(𝑎) = max
𝑐

𝑢(𝑐) + 𝑣𝑗
′(𝑎)(𝑦𝑗 + 𝑟𝑎 − 𝑐) + 𝜆𝑗 (𝑣−𝑗(𝑎) − 𝑣𝑗(𝑎)) 

which is maximized at : 0 = −
𝑑

𝑑𝑎
[𝑠𝑗(𝑎)𝑔𝐽(𝑎)] − 𝜆𝑗𝑔𝑗(𝑎) + 𝜆−𝑗𝑔−𝑗

(𝑎) is given as: 

 
equation 20 

(𝜌 − 𝑟)𝑢′ (𝑐𝑗(𝑎)) = 𝑢′′ (𝑐𝐽(𝑎)) 𝑐𝐽
′(𝑎)𝑠𝑗(𝑎) + 𝜆𝑗(𝑢′ (𝑐−𝑗(𝑎)) − 𝑢′ (𝑐𝑗(𝑎))

𝑠𝐽(𝑎) = 𝑦𝐽 + 𝑟𝑎 − 𝑐𝑗(𝑎)
 

Proof :  differentiate 𝜌𝑣𝑗(𝑎) = max
𝑐

𝑢(𝑐) + 𝑣𝑗
′(𝑎)(𝑦𝑗 + 𝑟𝑎 − 𝑐) + 𝜆𝑗 (𝑣−𝑗(𝑎) − 𝑣𝑗(𝑎)) with respect 

to 𝑎 and use that 𝑣𝑗
′(𝑎) = 𝑢′ (𝑐𝑗(𝑎)) and hence 𝑣𝑗

′′(𝑎) = 𝑢′′ (𝑐𝑗(𝑎)) 𝑐𝑗
′(𝑎) ∎ 

The differential equation
(𝜌 − 𝑟)𝑢′ (𝑐𝑗(𝑎)) = 𝑢′′ (𝑐𝐽(𝑎)) 𝑐𝐽

′(𝑎)𝑠𝑗(𝑎) + 𝜆𝑗(𝑢′ (𝑐−𝑗(𝑎)) − 𝑢′ (𝑐𝑗(𝑎))

𝑠𝐽(𝑎) = 𝑦𝐽 + 𝑟𝑎 − 𝑐𝑗(𝑎)
 

is and Euler equation , the right hand side(𝜌 − 𝑟)𝑢′ (𝑐𝑗(𝑎)) is  expected change of marginal 

utility of consumption 
𝔼𝑡[𝑑𝑢′(𝑐𝑗(𝑎𝑡)]

𝑑𝑡
.This uses Ito’s formula to Poisson process: 

equation 21 

 𝔼𝑡[𝑑𝑢′(𝑐𝑗(𝑎𝑡)] = [𝑢′′(𝑐𝑗(𝑎𝑡)𝑐𝑗
′(𝑎𝑡)𝑠𝑗(𝑎𝑡) + 𝜆𝑗 (𝑢′(𝑐−𝑗(𝑎𝑡)) − 𝑢′ (𝑐𝑗(𝑎𝑡))] 𝑑𝑡 

 

So, this equation 
(𝜌 − 𝑟)𝑢′ (𝑐𝑗(𝑎)) = 𝑢′′ (𝑐𝐽(𝑎)) 𝑐𝐽

′(𝑎)𝑠𝑗(𝑎) + 𝜆𝑗(𝑢′ (𝑐−𝑗(𝑎)) − 𝑢′ (𝑐𝑗(𝑎))

𝑠𝐽(𝑎) = 𝑦𝐽 + 𝑟𝑎 − 𝑐𝑗(𝑎)
 can be 

written in more standard form: 
equation 22 

𝔼𝑡[𝑑𝑢′(𝑐𝑗(𝑎𝑡)]

𝑑𝑡
= (𝜌 − 𝑟)𝑑𝑡  

 

CARA utility with borrowing constraint  
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Assumption 1: The CARA coefficient ℛ(𝑐) ≔ −
𝑢′′(𝑐)

𝑢′(𝑐)
 when wealth 𝑎 → 𝑎 approaches lower 

borrowing limit is given as see Achdou et al.(2022): 
 
equation 23 

ℛ ≔= lim
𝑎→𝑎

𝑢′′(𝑦1 + 𝑟𝑎)

𝑢′(𝑦1 + 𝑟𝑎)
< ∞ 

 
This is also known as the Arrow–Pratt measure of absolute risk aversion (ARA), after the 
economists Arrow (1965), and Pratt (1964). 
 

Marginal propensity to consume (MPC) and Marginal propensity to save (MPS) 
 
Definition 1: Marginal propensity to consume (MPC) is defined as: 
 
equation 24 

𝑀𝑃𝐶𝑗.𝜏(𝑎) = 𝑐𝑗,𝜏
′ (𝑎) = 𝔼 [∫ 𝑐𝑗(𝑎𝑡)𝑑𝑡 |𝑎0 = 𝑎, 𝑦0 = 𝑦𝑗)

𝜏

0

] 

 

Similarly, MPS is given as 𝑀𝑃𝑆𝑗.𝜏(𝑎) = 𝑠𝑗,𝜏
′ (𝑎) = 𝔼[𝑎𝜏|𝑎0 = 𝑎, 𝑦0 = 𝑦𝑗)] 

 
 
Assumption 2: if we define Euler equation and budget constraint as: 
equation 25 

�̇�

𝑐
=

1

𝛾
(𝑟 − 𝜌); �̇� = 𝑟𝑎 − 𝑐

̇
 

We must remember that 𝑢(𝑐) =
𝑐1−𝛾

1−𝛾
; 𝛾 > 0 ; so now savings and consumption are: 

 
equation 26 

�̇�(𝑡) = −𝜂𝑎(𝑡); 

𝜂: =
𝜌 − 𝑟

𝛾
 

𝑐(𝑡) = (𝑟 + 𝜂)𝑎(𝑡) 
So the wealth is given as: 
equation 27 

𝑎(𝜏) = 𝑎0𝑒−𝜂𝑡 , 𝜏 ≥ 0 
 

CARA utility with upper borrowing constraint  
 
Assumption 3. Here we are assuming that: 𝜌 < 𝑟 ; 𝑦1 < 𝑦2 and that CRRA is given as:  
equation 28 

ℛ(𝑐) = −
𝑐𝑢′′(𝑐)

𝑢′(𝑐)
 

∃𝑎 < ∞  such that 𝑠𝑗(𝑎) < 0 ; ∀𝑎 ≥ 𝑎; 𝑗 = 1,2..and 𝑠2(𝑎) ∼ 𝜓2(𝑎 − 𝑎) as 𝑎 → 𝑎 for some 

constant 𝜓. Asymptotic movement of wealth of some individual is given as : 
equation 29 

�̇�(𝜏) = 𝑎(𝜏) − 𝑎 ∼ 𝑒−𝜓2𝜏(𝑎0 − 𝑎) 
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In case 𝑢(𝑐) =
𝑐1−𝛾

1−𝛾
 individual policy functions are linear in 𝑎. In the asymptotic case where 

𝑎 → ∞ satisfy: 𝑠𝑗(𝑎) ∼
𝑟−𝜌

𝛾
𝑎, so 𝑐𝑗(𝑎) ∼

𝜌−(1−𝛾)𝑟

𝛾
𝑎. 

First part of this proposition where −
𝑐𝑢′′(𝑐)

𝑢′(𝑐)
 is bounded above ∀𝑐 rules out exponential utility 

function, 𝑢(𝑐) = −
1

𝜃
𝑒−𝜃𝑐; 𝜃 > 0. This is like Aiyagari (1994). While the second part 𝑠𝑗(𝑎) ∼

𝑟−𝜌

𝛾
𝑎,  𝑐𝑗(𝑎) ∼

𝜌−(1−𝛾)𝑟

𝛾
𝑎 is same as in Benhabib,Bisin, Zhu (2015),see Achdou et al.(2022). 

Now, since 𝑎 = −
𝑦

𝑟
  ,consumption and saving policy functions are given as: 

equation 30 

𝑠(𝑎) =
𝑟 − 𝜌

𝛾
(𝑎 +

𝑦

𝑟
) ; 

𝑐(𝑎) =
𝜌 − (1 − 𝛾)𝑟 

𝛾
(𝑎 +

𝑦

𝑟
) 

Krussel, Smith (1998) explain that linearity of consumption and saving policy functions with 
CRRA utility functions, explains their finding that the business cycle properties of baseline 
heterogeneous agent model are virtually indistinguishable from its representative agent 
counterpart. Now MPC and MPS will be given as: 𝑀𝑃𝑆𝜏(𝑎) = 𝑒−𝜂𝜏 ≈ 1 − 𝜂𝜏  and 𝑀𝑃𝐶𝜏(𝑎) =

1 − 𝑒−𝜂𝜏 + 𝜏𝑟 ≈ 𝜏(𝜂 + 𝑟), 𝜂 ≔
𝜌−𝑟

𝛾
  .  

Lemma 2. The conditional expectation of consumption 𝑐𝑗,𝜏(𝑎) defined previously as 𝑐𝑗,𝜏
′ (𝑎) =

𝔼[∫ 𝑐𝑗(𝑎𝑡)𝑑𝑡 |𝑎0 = 𝑎, 𝑦0 = 𝑦𝑗)
𝜏

0
] can be computed as 𝑐𝑗.𝜏(𝑎) = 𝒫𝑗(𝑎, 0).In previous expression 

𝒫𝑗 satisfies system of two PDE’s.  
equation 31 

0 = 𝑐𝑗(𝑎) + 𝜕𝑎𝒫𝑗(𝑎, 𝜏)𝑠𝑗(𝑎) + 𝜆𝑗 (𝒫−𝑗(𝑎, 𝜏) − 𝒫𝑗(𝑎, 𝜏)) + 𝜕𝜏𝒫𝑗(𝑎, 𝜏), 𝑗 = 1,2. . 𝒫𝑗(𝑎, 𝜏) = ∀𝑎  

 
Proof per Achdou et al.(2022) follows directly from application of Feynman-Kac formula for 
computing conditional expectations as solutions to PDE’s. So, since 𝑐𝑗,𝜏

′ (𝑎) =

𝔼[∫ 𝑐𝑗(𝑎𝑡)𝑑𝑡 |𝑎0 = 𝑎, 𝑦0 = 𝑦𝑗)
𝜏

0
] and if 𝐴 is infinitesimal generator (Feller process or Levy 

process, or Ornstein–Uhlenbeck process): 
1. Feller process-Let 𝐸 be a LCCB (locally compact with countable base) and 𝐸 ⊂

ℝ𝑛, ∃𝑛 ∈ 𝑁   and 𝐶0(𝐸) = 𝐶0(𝐸, ℝ) be the space of continuous function that vanishes in 
inf. A Feller semigroup 𝐶0(𝐸) is a family of positive linear operators 𝑇𝜏, 𝜏 ≥ 0 on 𝐶0(𝐸) 

✓ 𝑇0 = 𝐼𝑑; ‖𝑇𝜏‖; ∀𝜏 ∈ 𝑇 i.e. {𝑇𝜏}𝜏∈𝑇 is a family of contracting maps  
✓ 𝑇𝜏+𝑠 = 𝑇𝜏 ∘ 𝑇𝑠 (the semigroup property)  

✓ lim
𝑡↓0

‖𝑇𝜏𝑓 − 𝑓‖∀𝑓 ∈ 𝐶0(𝐸) 

 

See Revuz et al.(2005). 
2. Levy process- 𝐿 let be is an infinite divisible random variable ∀𝑡 ∈ [0, ∞]  
✓ L can be written as the sum of a diffusion, a continuous Martingale and a pure jump 

process; i.e: 
 
equation 32 

𝐿𝑡 = 𝑎𝑡 + 𝜎𝐵𝑡 + ∫ 𝑥𝑑�̃�𝜏
|𝑥|<1

+ ∫ 𝑥𝑑𝑁𝜏
|𝑥|≥1

(∙, 𝑑𝑥), ∀𝑡 ≥ 0 

In previous expression 𝑎 ∈ ℜ , 𝐵𝑡 is the standard Brownian motion, 𝑁  is defined to be the 
Poisson random measure of the Lèvy process 

✓ Lèvy -Khintchine formula: from the previous property it can be shown that for ∀𝜏 ≥ 0 
one has that : 
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equation 33 

𝐸|𝑒𝑖𝑛𝐿𝑡| = 𝑒^(−𝜏𝜓(𝑢)

𝜓(𝑢) = −𝑖𝑎𝑢 +
𝜎2

2
𝑢2 + ∫ (1 − 𝑒𝑖𝑢𝑥)𝑑𝑣(𝑥) + ∫ (1 + 𝑒𝑖𝑢𝑥 + 𝑖𝑢𝑥)𝑑𝑣(𝑥)

|𝑥|<1|𝑥|≥1

 

𝑎 ∈ ℜ; 𝜎 ∈ [0, ∞); 𝑣 > 0 borel measure and 𝜎 is Lèvy measure. More so 𝑣(∙) = 𝐸[𝑁1(∙, 𝐴)] 
See Applebaum (2004). 

3.  Ornstein–Uhlenbeck process- The Ornstein-Uhlenbeck process is a stochastic 
process that satisfies the following stochastic differential equation: 

equation 34 

𝑑𝑥𝜏 = 𝑘(𝜃 − 𝑥𝜏)𝑑𝜏 + 𝜎𝑑𝑊𝜏 
𝑘 > 0 is the mean rate of reversion; 𝜃 is the long term mean of the process, 𝜎 > 0 
 is the volatility or average magnitude, per square-root time, of the random fluctuations 
that are modelled as Brownian motions. 

✓ Mean reverting property-where 𝑑𝑥𝜏 = 𝑘(𝜃 − 𝑥): 
equation 35 

𝜃 − 𝑥𝜏

𝜃 − 𝑥0
= 𝑒−𝑘(𝜏−𝜏0), 𝑥𝜏 = 𝜃 + (𝑥0 − 𝜃)𝑒−𝑘(𝜏−𝜏0) 

 
✓ Solution for ∀𝜏 > 𝑠 ≥ 0 is given as: 

equation 36 

𝑥𝜏 = 𝜃 + (𝑥𝑠 − 𝜃)𝑒−𝑘(𝜏−𝑠) + 𝜎 ∫ 𝑒−𝑘(𝜏−𝑢)𝑑𝑊𝑢

𝜏

𝑠

 

See Jacobsen.M(1996) .So now partial differential equation 
𝜕𝑐𝑗,𝜏

𝜕𝜏
= 𝐴𝑐𝑗,𝜏(𝑎) − 𝑐𝑗,𝜏(𝑎)(𝑎) is 

the solution to 𝑐𝑗,𝜏
′ (𝑎) = 𝔼[∫ 𝑐𝑗(𝑎𝑡)𝑑𝑡 |𝑎0 = 𝑎, 𝑦0 = 𝑦𝑗)

𝜏

0
] ∎.  

Short note on Feynman -Kac formula  

Feynman-Kac formula- Suppose ∃𝒫(𝑡, 𝑥) that satisfies :
𝜕𝒫

𝜕𝑡
+ 𝑓(𝑡, 𝑥)  

𝜕𝒫

𝜕𝑥
+

1

2
𝜌2(𝑡, 𝑥)

𝜕2𝒫

𝜕𝑥2
−

𝑅(𝑥)𝒫 + ℎ(𝑡, 𝑥) = 0  s.t 𝒫(𝑡, 𝑥) = 𝜓(𝑥). Then ∃�̃�(𝑡) and a measure 𝒬 where solution is given 

as 𝒫(𝑡, 𝑥) = 𝐸𝒬[∫ 𝒱(𝑡, 𝑢)ℎ(𝑢, 𝑥(𝑢))𝑑𝑢 + 𝒱(𝑡, 𝑇)𝜓(𝑥(𝑡))|ℱ𝑡]; 𝑡 < 𝑇
𝑇

𝑡
 𝑑𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡))𝑑𝑡 +

𝜌(𝑡, 𝑥(𝑡))𝑑�̃�(𝑡); 𝒱(𝑡, 𝑢) = exp (− ∫ 𝑅(𝑥(𝑠)𝑑𝑠)
𝑢

𝑡
 given that 

∫ 𝐸𝒬 [(𝜌(𝑠, 𝑥(𝑠))
𝜕𝒫

𝜕𝑥
(𝑠, 𝑥(𝑠))]

2

|ℱ𝑡] 
𝑇

𝑡
.In previous expression ℱ𝑡 is a 𝜎algebra3  

 

Note on “MIT”shocks  
 
Following Boppart et al. (2018),” simple linearization method for analyzing frameworks with 
consumer heterogeneity and aggregate shocks” was applied to standard RBC model with 
neutral technology shocks as in Kydland,Prescott (1982),and investment specific as in  
investment-specific, as in Greenwood et al. (2000). In definition given by Boppart et al. (2018) 
“MIT shock” is defined as: 
“An “MIT shock” is an unexpected shock that hits an economy at its steady state, leading to a 
transition path back towards the economy’s steady state……”. 
Mukoyama (2021) also follows Boppart et al. (2018) definition:”…. the probability of the shock 
is considered zero, and no prior (contingent) arrangement is possible for the occurrence of the 
MIT shock”…..The dynamic analysis that was using exogenous shocks or policy changes has 
been used in the literature with the earlier examples including: Abel,Blanchard (1983), 

 
3 Let 𝒫(𝑥)is a 𝒫(𝑠), then a subset ∑ ⊆ 𝒫(𝑥) is 𝜎-algebra if it satisfies: 𝑥 ∈ ∑, and is considered to be ∪, and if 
𝑥 ∈ ∑ ⇒ 𝑥 ∈ ∑; and if 𝑥1, 𝑥2, … ∈ ∑ then 𝑥 = 𝑥1 ∪ 𝑥2 ….see Rudin (1987). 
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Auerbach, Kotlikoff (1983), and Judd (1985).And more recent examples being: Boppart et al. 
(2018), Kaplan et al. (2018), Boar ,Midrigan (2020), Guerrieri et al. (2020). 
 

Transitory dynamics and MIT shocks (an implicit-uncertainty economy): short note  
 
In the Aiyagari version of the model4: 
 
equation 37 

𝑟(𝑡) = 𝐹𝑘(𝐾(𝑡), 1)) − 𝛿 

𝑤(𝑡) = 𝐹𝑙(𝐾(𝑡), 1)) 

𝐾(𝑡) = ∫ 𝑎𝑔1(𝑎, 𝑡)𝑑𝑎 + ∫ 𝑎𝑔2(𝑎, 𝑡)𝑑𝑎  

 
HJB equation is given as: 
equation 38 

𝜌𝑣𝑗(𝑎, 𝑡) = max
𝑐

𝑢(𝑐) + 𝜕𝑎𝑣𝑗(𝑎, 𝑡)(𝑤(𝑡)𝑧𝑗 + 𝑟(𝑡)𝑎 − 𝑐) + 𝜆𝑗 (𝑣−𝑗(𝑎, 𝑡) − 𝑣𝑗(𝑎, 𝑡)) + 𝜕𝑡𝑣𝑗(𝑎, 𝑡) 

Kolmogorov Forward equation is: 
 
equation 39 

𝜕𝑡𝑞𝑗(𝑎, 𝑡) = −𝜕𝑎[𝑠𝑗(𝑎, 𝑡)𝑔𝑗(𝑎, 𝑡)] − 𝜆𝑗𝑔𝑗(𝑎, 𝑡) + 𝜆−𝑗(𝑎, 𝑡) + 𝜆−𝑗𝑔−𝑗(𝑎, 𝑡) 

𝑠𝑗(𝑎, 𝑡) = 𝑤(𝑡)𝑧𝑗 + 𝑟(𝑡)𝑎 − 𝑐𝑗(𝑎, 𝑡), 𝑐𝑗(𝑎, 𝑡) = (𝑢′)−1 (𝜕𝑎𝑣𝑗(𝑎, 𝑡)) 

In previous expression 𝑎 represents the borrowing limit, 𝑔𝑗,0(𝑎) represents the initial 

condition. Now, recall discretized equations for stationary equilibrium:  
equation 40 

𝜌(𝑣) = 𝑢(𝑣) + 𝐴(𝑣)𝑣 

0 = 𝐴(𝑣)T𝑔 
 
Transition dynamics is given as: 

• First denote 𝑣𝑖,𝑗
𝑛 = 𝑣𝑗(𝑎𝑖𝑡𝑛) and stack into 𝑣𝑛 

• Denote 𝑔𝑖,𝑗
𝑛 = 𝑔𝑗(𝑎𝑖 , 𝑡𝑛) and stack into 𝑔𝑛 

Then following applies: 
equation 41 

𝜌𝑣𝑛 = 𝑢(𝑣𝑛+1) + 𝐴 (𝑣𝑛+1)𝑣𝑛 +
1

∆𝑡
(𝑣𝑛+1 − 𝑣𝑛) 

𝑔𝑛+1 − 𝑔𝑛

∆𝑡
= 𝐴(𝑣)T𝑔𝑛+1 

Terminal condition for 𝑣 is given as: 𝑣𝑁 = 𝑣∞ which represents steady state, while initial 

condition is given as:  𝑔: 𝑔1 = 𝑔0 . 
 

Incomplete markets: Arrow securities and Bond markets (per Mukoyama (2021)) 
 
In this economy there are two types of consumers type I and type II. Arrow security5 does not 
exist for the irregular state although the consumers recognize the possibility of the irregular 
state in the future. A Type-I consumer’s problem is given as: 

 
4 See lecture notes by Benjamin Moll: https://benjaminmoll.com/lectures/  
5 An Arrow security is an instrument with a fixed payout of one unit in a specified state and no payout 

in other states, see Arrow (1953) 
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equation 42 

max
𝑐1,𝑐2.𝑐2̃,𝑎

𝑢(𝑐1) + (1 − 𝜋)𝑢(𝑐2) + 𝜋𝑢(�̃�2) 

s.t.  𝑐1 + 𝑝𝑎 = 0; 𝑐2 = 2 + 𝑎  ; �̃�2 = 2 − 𝜏 ;  
 
where 𝑎 denotes holding Arrow securities, regular state occurs with probability 1 − 𝜋, irregular 
state occurs with probability 𝜋 where 𝜋 ∈ (0,1). Type I receives 1 − 𝜏 , Type II consumer 

receives (1 + 𝜏) where 𝜏 ∈ (0,1) in irregular state transfer occurs from Type I to type II 
consumer. Utility 𝑢(∙) is strictly increasing, strictly concave, and continuously differentiable. 

Robbin, Joel W. (2010), here states that 𝑓 is said to be continuous on ℝ𝑙  if : 
equation 43 

∀𝑥0 ∈ ℝ𝑙∀𝜖 > 0 ∃𝛿 > 0 ∀𝑥 ∈ ℝ𝑙[|𝑥 − 𝑥0| < 𝛿 |⇒ 𝑓(𝑥) − 𝑓(𝑥0) < 𝜖|]  
In previous condition 𝜖 is trimmed price space 6, 𝑥0 is vector parameter, hence why the PDF 
is of a form 𝑓𝑥0

(𝑥) = (𝑥 − 𝑥0) . Next, for type II consumer we have: 

 
max

𝑐′1,𝑐′2.𝑐̃′2,𝑎′
𝑢(𝑐′1) + (1 − 𝜋)𝑢(𝑐′2) + 𝜋𝑢(�̃�′2) 

 
  This is the maximization problem for consumer Type II 𝑐′1 + 𝑝𝑎′ = 2; 𝑐′2 = 𝑎  ; �̃�′2 = 𝜏.The 

competitive equilibrium here is :(𝑐1, 𝑐1
′ , 𝑐2, 𝑐2

′ , �̃�2, �̃�2
′ ) = (1,1,1,1,2 − 𝜏, 𝜏). Thus the limit is given 

as: 
equation 44 

𝑙𝑖 𝑚𝜋→0(𝑐1, 𝑐1
′ , 𝑐2, 𝑐2

′ , �̃�2, �̃�2
′ ) = (1,1,2 − 𝜏, 𝜏) 

Where 𝑝 is the price of Arrow security. In the Bond markets this version of the model is given 
as with quadratic utility function: 
equation 45 

𝑢(𝑐) = 𝛼𝑐 −
𝛾

2
𝑐2 

Where 𝛼 > 0; 𝛾 > 0 , the value of 𝛼 ≫ 0 so that utility is increasing in 𝑐 for relevant range.Type 
I consumer problem in this economy is given as: 
 

max
𝑐1,𝑐2.𝑐2̃,𝑏

𝑢(𝑐1) + (1 − 𝜋)𝑢(𝑐2) + 𝜋𝑢(�̃�2) 

 
s.t.  𝑐1 + 𝑞𝑏 = 1; 𝑐2 = 1 + 𝑏  ; �̃�2 = 1 − 𝜏 + 𝑏 ; where 𝑞 represents the bond price and 𝑏 is the 
bond holding. Now, a type I consumer problem and bond demand after FOC is given as: 
equation 46 

𝑏 =
𝑞(𝛾 − 𝛼) + 𝛼 − 𝛾(1 − 𝜋𝜏)

𝛾(𝑞2 + 1)
 

Type II consumer problem is given as :  
 

max
𝑐1,𝑐2.𝑐2̃,𝑏

𝑢(𝑐′1) + (1 − 𝜋)𝑢(𝑐′2) + 𝜋𝑢(�̃�′2) 

 
s.t. 𝑐′1 + 𝑞𝑏′ = 1; 𝑐′

2 = 1 + 𝑏′  ; �̃�′2 = 1 − 𝜏 + 𝑏′ .The bond demand for Type II consumer is 
given as: 
equation 47 

𝑏 =
𝑞(𝛾 − 𝛼) + 𝛼 − 𝛾(1 + 𝜋𝜏)

𝛾(𝑞2 + 1)
 

 
6 Trimmed space as a location parameter class of probability functions that is parametrized by scalar 

or vector valued parameter 𝑥0 which determines distributions or shift of the distribution.  
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The bond price 𝑞 demand is zero here is set so that :𝑏 + 𝑏′ = 0. Now, 𝑞 = 1, (𝑏, 𝑏′) =

(
𝜋

2
𝜏, −

𝜋

2
𝜏). The resulting consumption functions are : 

equation 48 

(𝑐1, 𝑐1
′ , 𝑐2, 𝑐2

′ . �̃�2, �̃�2
′ ) = (1 −

𝜋

2
𝜏, 1 +

𝜋

2
𝜏, 1 +

𝜋

2
𝜏, 1 −

𝜋

2
𝜏, 1 + (

𝜋

2
− 1) 𝜏, 1 + (1 −

𝜋

2
) 𝜏) 

 
In the limit 𝜋 → 0, the consumption profile when irregular state takes place in period 2 
approach:  
equation 49 

lim
𝜋→0

(𝑐1, 𝑐1
′ , �̃�2, �̃�2

′ ) = (1,1,1 − 𝜏, 1 + 𝜏) 

 Now in an Arrow security economy if there is MIT shock, because the irregular state is not 
spanned by the Arrow security, the ex-post allocation will be given as: �̃�2

′ = 2 − 𝜏 ; �̃�2
′ = 𝜏 where 

tilde ( ̃ )  denotes irregular state. The entire ex-post allocation with MIT shock is: 

(𝑐1, 𝑐1
′ , �̃�2, 𝑐2

′ ) = (1,1,2 − 𝜏, 𝜏). The unique competitive equilibrium before the shock was: 𝑝 =
1, 𝑎 = 1, 𝑎′ = 1, 𝑐1 = 𝑐1

′ = 𝑐2 = 𝑐2
′ = 1 . In the bond economy post MIT shock allocation would 

be :   �̃�2 = 1 − 𝜏; �̃�2 = 1 + 𝜏 .The unique competitive equilibrium before the shock was: 𝑞 =
1, 𝑏 = −1, 𝑏′ = 1 ; 𝑐1 = 𝑐1

′ = 𝑐2 = 𝑐2
′ = 1. 

 
 

Krusell-Smith and Ayagari type incomplete markets  
 
 In this economy 𝑖 ∈ (0,1), 𝑙(𝑠𝑡) = 𝑠𝑡 it is i.i.d employment with support 𝑆 = {𝑠min, 𝑠max} ,where 
𝑠min > 0 . Now let 𝜋′(𝑠′|𝑠) = Pr(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠) , and ∑ 𝜋(𝑠′|𝑠) = 1, ∀𝑠𝑠′  and 𝜋(𝑠′) =
∑  𝜋(𝑠′|𝑠)𝜋(𝑠)𝑠 , we normalize 𝔼(𝑠) = 1.Preferences are given as: 
equation 50 

𝔼0𝒰 = 𝔼0 ∑ 𝛽𝑡𝑈(𝑐𝑡)

∞

𝑡=0

 

Budget and borrowing constraint are given as: 
equation 51 

𝑐𝑡 + 𝑎𝑡+1 = 𝑤𝑡𝑠𝑡 + (1 + 𝑟𝑡)𝑎𝑡 − 𝜏𝑡 
 

Where 𝑎𝑡 = 𝑘𝑡 − 𝑏𝑡, 𝑐𝑡 ≥ 0, 𝑘𝑡 ≥ 0, 𝑏𝑡 ≤ �̅�𝑡 , 𝑎𝑡+1 ≤ −�̅�𝑡.The asset grid is 𝑎𝑡+1 ∈ 𝐴 =
{𝑎1, 𝑎2, . . , 𝑎𝑁}. Now in previous 𝑎1 = −�̅�  
 
equation 52 

�̅� = inf
{𝑠𝑡+𝑗}

𝑗=1

∞
 
∑ (

𝑞𝑡+𝑗

𝑞𝑡
) [𝑤𝑡+𝑗𝑠(𝑡+𝑗) − 𝜏𝑡+𝑗] = ∑ (

𝑞𝑡+𝑗

𝑞𝑡
) [𝑤𝑡+𝑗𝑠𝑚𝑖𝑛 − 𝑟𝑡+𝑗𝐷]

∞

𝑗=0

∞

𝑗=1

 

𝑞𝑟 ≡
𝑞𝑡−1

1 + 𝑟𝑡
 

 
In equilibirum lets Φ𝑡(𝑎, 𝑠) = Pr(𝑎𝑡 = 𝑎, 𝑠𝑡 = 𝑠) which will denote the joint probability of 𝑎, 𝑠 in 
time period 𝑡.The distribution of wealth in period 𝑡 is given by: 
equation 53 

𝜓𝑡(𝑎) = ∑ Φ𝑡(𝑎, 𝑠) = Pr(𝑎𝑡 = 𝑎)

𝑥∈𝑠
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Market clearing condition is given as:𝐾𝑡 + 𝐷 = ∑ 𝑎𝜓𝑡(𝑎)𝑎∈𝐴  .Where 𝐷is exogenous 
government debt, and 𝐾𝑡 is aggregate per capita capital. Equilibrium prices are given as: 
equation 54 

𝑟(𝑡) = 𝑓′(𝐾𝑡) − 𝛿 ≡ 𝑟(𝐾𝑡) = 𝓀(𝑟𝑡); 𝑤(𝑡) = 𝑓(𝐾𝑡) − 𝑓′(𝐾𝑡)𝐾𝑡 ≡ 𝑤(𝐾𝑡). 𝑤𝑡 = 𝜔(𝑟𝑡) 
 
In recursive equilibrium suppose that, in equilibrium, the law of motion for the distribution of 
wealth is some functional Γ s.t.:Φ𝑡+1 = Γ(Φ𝑡),this means that the evolution of (Φ𝑡) is 

deterministic, also 𝐾𝑡 = 𝐾(Φ𝑡) ; �̅�𝑡 = 𝑏(Φ𝑡) .A recursive equilibrium is given by (𝑉, 𝐴, Γ): 
equation 55 

𝑉(𝑎, 𝑠, Φ) = max 𝑈(𝑐) + 𝛽 ∑ 𝑉(𝑎′, 𝑠′, Φ′)𝜋(𝑠′|𝑠)

(𝑠′∈𝑆)

 

s.t. 𝑎′ = 𝑤(Φ′)𝑠′ + [1 + 𝑟(Φ′)][𝑎 − 𝑐] − 𝑟(Φ′)𝐷; 0 ≤ 𝑐 ≤ 𝑎, 𝑎′ ∈ 𝐴(Φ); Φ′ = Γ(Φ); 𝐴(𝑎, 𝑠, Φ) =
𝑎𝑟𝑔𝑚𝑎𝑥{. . } . Where Γ is generated by 𝐴 that is , Γ maps Φ → Φ′ so that : 
equation 56 

Φ′(𝑎′, 𝑠′) = ∑ Φ(𝑎, 𝑠)1[𝐴(𝑎,𝑠,Φ)=𝑎′]𝜋(𝑠, 𝑠′)

𝑠∈𝑆

 

 
Now capital plus debt equal to : 
equation 57 

𝐾𝑡+1 + 𝐷 = ∑ 𝑎′𝜓𝑡+1(𝑎′)

𝑎′∈𝐴

= ∑ ∑ 𝑎′Φ𝑡+1(𝑎′, 𝑠′)

𝑠′∈𝑆𝑎′∈𝐴

= ∑ ∑ ∑ Φ(𝑎, 𝑠)1[𝐴(𝑎,𝑠,Φ)=𝑎′]𝜋(𝑠, 𝑠′)

𝑠∈𝑆,𝑎∈𝐴𝑠′∈𝑆𝑎′∈𝐴

= ∑ ∑ 𝑎′1[𝐴(𝑎,𝑠,Φ𝑡)=𝑎′]Φ𝑡(𝑎, 𝑠) ∑ 𝜋(𝑠′|𝑠) = ∑ 𝐴(𝑎, 𝑠, Φ𝑡)Φt(𝑎, 𝑠)

𝑠∈𝑆,𝑎∈𝐴𝑠′∈𝑆𝑠′∈𝑆𝑠∈𝑆,𝑎′∈𝐴

 

 
Steady-state capital, interest rate and wage are given as: 
 
equation 58 

𝐾 = ∫ 𝑎𝑑Φ(𝑎) − 𝐷; 𝑟 = 𝑟(𝐾); 𝑤 = 𝑤(𝐾) 

 
Aiyagari steady state is given as: 
 
equation 59 

𝑟𝑡 = 𝑟, 𝑤𝑡 = 𝑤 = 𝜔(𝑟) 

�̅�𝑡 = �̅� = min {𝑏,
𝑤𝑙min

𝑟
− 𝐷} ≡ �̅�(𝑤, 𝑟, 𝐷) 

We define that 𝑥𝑡 ≡ 𝑎𝑡 + �̅�; 𝑧𝑡 ≡ 𝑤𝑙𝑡 + (1 + 𝑟)𝑎𝑡 + �̅� − 𝜏 it follows that 𝑧𝑡 ≡ 𝑤𝑙𝑡(1 + 𝑟)𝑥𝑡 −
ζ,where 𝑧𝑡 are the total resources in the economy available at time 𝑡  and 𝑥𝑡+1 is investment 

in 𝑡 and  
equation 60 

𝜁 ≡ 𝑟�̅� + 𝜏 = 𝑟[�̅� + 𝐷] = 𝜁(𝑤, 𝑟, 𝐷) 

If −∆�̅� = −∆𝐷  then 𝜁  is independent of 𝐷. Individual consumption and resources of individual 
are given as: 
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equation 61 

𝑐𝑡 = 𝑧𝑡 − 𝑥𝑡+1 ; 𝑧𝑡+1 = 𝑤𝑠𝑡+1 + (1 + 𝑟)𝑥𝑡+1 − 𝜁  
 
Value function in terms of 𝑧 is: 
equation 62 

𝑉(𝑧) = max
0≤0≤𝑧

𝑈(𝑧 − 𝑥) + 𝛽∑𝑉(𝑧′)𝜋(𝑠′) 

 
s.t. 𝑧′ ≡ 𝑤𝑠′ − 𝜁 + (1 + 𝑟)𝑥. Abou the optimal consumption individual wealth dynamics in this 
economy is given as: 
equation 63 

𝑐𝑡 = 𝑚 ∙ [(1 + 𝑟)𝑎𝑡 + 𝑤𝑡𝑠𝑡 + ℎ − (𝑡 + 1) = 𝑚 ∙ [𝑧𝑇 + (ℎ𝑡+1 − �̅�]] 

Where ℎ𝑡+1 is the present value of labor income and 𝑚 is the marginal propensity to consume 

out of effective wealth and 𝑚 ∈ (0,1) and ℎ𝑡+1 ≥ �̅� , so that 𝑐𝑇 = 𝑐̅ + 𝑚 ∙ 𝑧𝑡 where 𝑐̅ > 0 and 
𝑚 ∈ (0,1).Now in Krusell-Smith dynamics:]= approximate constrained equilibrium is given as: 
 
equation 64 

𝑉(𝑎, 𝑠, m) = max 𝑈(𝑐) + 𝛽 ∑ 𝑉(𝑎′, 𝑠′, m′)𝜋(𝑠′|𝑠)

(𝑠′∈𝑆)

 

𝑉(𝑎, 𝑠, Φ) = max 𝑈(𝑐) + 𝛽 ∑ 𝑉(𝑎′, 𝑠′, Φ′)𝜋(𝑠′|𝑠)

(𝑠′∈𝑆)

 

s.t. 𝑎′ = 𝑤(Φ′)𝑠′ + [1 + 𝑟(Φ′)][𝑎 − 𝑐] − 𝑟(Φ′)𝐷; 𝑐 ≥ 𝑎, 𝑎′ ∈ 𝐴(Φ); m′ = Ĝ(m); 𝐴(𝑎, 𝑠, m) =
𝑎𝑟𝑔𝑚𝑎𝑥{. . }.Now, given that Φ_)  ad the rule 𝐴 , compute {𝑚𝑡, Φ𝑡  }𝑡=0

∞  by : 
equation 65 

Φ𝑡+1(𝑎, 𝑠) = ∑ Φ𝑡(𝑎, 𝑠)1[�̂�(𝑎,𝑠,𝑚𝑡)=𝑎′]

𝑠∈𝑆

𝜋(𝑠, 𝑠′) 

And 𝜀𝑡 ≡ 𝑚𝑡+1 − 𝐺(𝑚𝑡) are very small.  

RESULTS AND DISCUSSION 
 

Consumption savings problem and endogenous labor supply per Achdou et al.(2022). 
 

This section uses MATLAB codes used for computation in Achdou et al.(2022)m and 
published in Benjamin Moll web site :Benjamin Moll Heterogeneous Agent Models in 
Continuous Time London School of economics and political science, See: 
https://benjaminmoll.com/codes/ . The aim here is to depict graphically what was written 
previously theoretically about Huggett (1993) model. This problem outlined here is 
consumption-savings problem and endogenous labor supply. Here individuals solve: 

 
equation 66 

max
{𝑐𝑡,𝑙𝑡}𝑡≥0

𝔼0 ∫ 𝑢(𝑐𝑡 , 𝑙𝑡)𝑑𝑡 𝑠. 𝑡. �̇�𝑡 = 𝑤𝑧𝑡𝑙𝑡 + 𝑟𝑎𝑡 − 𝑐𝑡 ; 𝑎𝑡 ≥ 𝑎
∞

0

 

Where, 𝑧𝑡 ∈ {𝑧1, 𝑧2} follows a two step Poisoon process with intensities 𝜆1, 𝜆2. Now individuals 
endogenously choose labor supply 𝑙,here we assume that period utility function is given as: 
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equation 67 

𝑢(𝑐, 𝑙) =
𝑐(1−𝛾)

1−𝛾
−

𝑙
1+

1
𝜑

1+
1

𝜑

  

HJB equation here is : 
equation 68 

𝜌𝑣𝑗(𝑎) = max
𝑐,𝑙

𝑢(𝑐, 𝑙) + 𝑣𝑖
′(𝑎)(𝑤𝑧𝑗𝑙 + 𝑟𝑎 − 𝑐) + 𝜆𝑗 (𝑣−𝑗(𝑎) − 𝑣𝑗(𝑎)) , 𝑗 = 1,2 

 
FOC’s are: 
equation 69 

𝑢𝑐 (𝑐𝑗(𝑎), 𝑙𝑗(𝑎)) = 𝑣𝑗
′(𝑎)

−𝑢𝑙 (𝑐𝐽(𝑎), 𝑙𝑗(𝑎)) = 𝑣𝑗
′(𝑎)𝑤𝑧𝑗

 

Intra-temporal FOC is given as: 
 
equation 70 

−
𝑢𝑙 (𝑐𝑗(𝑎), 𝑙𝑗(𝑎))

𝑢𝑐 (𝑐𝑗(𝑎), 𝑙𝑗(𝑎))
= 𝑤𝑧𝑗 

 
Parameters here are : 𝑠 =  2; 𝜌 =  0.05;  𝑟 =  0.03; 𝑧1  =  0.1; 𝑧2  =  0.2; 𝑧 =  [𝑧1, 𝑧2]; 𝑙𝑎1  =
 1.5;  𝑙𝑎2  =  1; 𝑙𝑎 =  [𝑙𝑎1, 𝑙𝑎2];etc. Now resulting graph Figure 1 shows wealth-consumption; 
wealth-value function; wealth-labor supply, and wealth-saving. 
 
Figure 1 Consumption savings problem and endogenous labor supply per Achdou et al.(2022). 
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Source: solved with Benjamin Moll codes https://benjaminmoll.com/codes/  
 
 

Credit crunch in Huggett economy (per to Mellior, Gustavo) 
 
This MATLAB code and its algorithm explanation are due to Gustavo Mellior (Kent Uni.2016) 
and those files can be found at Benjamin Moll web site: https://benjaminmoll.com/codes/ .What 
is credit crunch? In Bernanke et al.(1991) credit crunch is defined as:“..We define a bank credit 
crunch as a significant leftward shift in the supply curve for bank loans, holding constant both 
the safe real interest rate and the quality of potential borrower..”A credit crunch (credit 
squeeze, credit tightening; credit crisis) is a sudden reduction in the general availability of 
loans or a sudden tightening of the conditions required to obtain a loan from banks. A credit 
crunch generally involves a reduction in the availability of credit independent of a rise in official 
interest rates. Economy is described in the text as before, and when credit crunch occurs a 
household with assets 𝑎𝑡0

 will find itself below the new borrowing limit, and it will reduce 

consumption by ∆𝑎  and it moves closer to 𝑎𝑇. And in this example 𝑎𝑡0
+ 3∆𝑎 = 𝑎𝑇  

equation 71 

∆𝑎 = 𝑠1(𝑎𝑡0
) = 𝑧1 + 𝑟(𝑎𝑇 − 3∆𝑎) − 𝑐1(𝑎𝑡0

);∆𝑎 = 𝑠1(𝑎𝑡0
+ ∆𝑎) = 𝑧1 + 𝑟(𝑎𝑇 − 2∆𝑎) − 𝑐1(𝑎𝑡0

+

∆𝑎);∆𝑎 = 𝑠1(𝑎𝑡0
+ 2∆𝑎) = 𝑧1 + 𝑟(𝑎𝑇 − ∆𝑎) − 𝑐1(𝑎𝑡0

+ 2∆𝑎);0 = 𝑠1(𝑎𝑡0
+ 3∆𝑎) = 𝑧1 + 𝑟(𝑎𝑇) −

𝑐1(𝑎𝑡0
+ 3∆𝑎) 

When credit crunch occurs previous will be modified to reduce borrowing limit by 3∆𝑎  
equation 72 

𝑐1̅,1 − 𝑧1 + 𝑟𝑎𝑡0
− ∆𝑎 ; 𝑐2̅,1 = 𝑧1 + 𝑟(𝑎𝑡0

+ ∆𝑎 ) − ∆𝑎 ; 𝑐3̅,1 = 𝑧1 + 𝑟 (𝑎𝑡0
+ 2∆𝑎) − ∆𝑎 ; 𝑐�̅�𝑇

, 1 =

𝑧1 + 𝑟𝑎𝑇;  �̅�𝑖,𝑗
′ = 𝑢′(𝑐�̅�,𝑗

′ ); 𝑣𝑖,𝑗 = 𝑣𝑖,𝑗
′ 𝟙SF>0 + vi,j

′ 𝟙(sB<0) + v̅i,j
′ 𝟙sB>0>SF

  
 
In this example parameters of the model are : 𝑠 =  2;𝜌 =  0.05;𝑧1  =  0.12; 𝑧2  =  0.25;  𝑧 =
 [𝑧1, 𝑧2]; 𝑙𝑎1  =  1.15;  𝑙𝑎2  =  1,𝑙𝑎 =  [𝑙𝑎1, 𝑙𝑎2]; 𝑟0  =  0.03; 𝑟𝑚𝑖𝑛  =  0.001; 𝑟max   =  0.045; 
𝐼 =  800; Equilibrium Found, Interest rate =0.0261. In the next photo equilibrium interest rate 
and supply of borrowings (loans) priced by that rate are depicted: 
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Figure 2 equilibrium interest rate  

  
Next densities 𝑔𝑖(𝑎) and wealth 𝑎  are depicted. 
Figure 3 wealth distribution and densities  

 
 

Krusell-Smith program for “Solving the incomplete markets model with aggregate uncertainty 
using the Krusell-Smith algorithm” by Maliar et al.(2010) 
 
This part is based on a program written by Lilia Maliar, Serguei Maliar and Fernando Valli 
(2008) which is available online : https://lmaliar.ws.gc.cuny.edu/codes/ .Paper that uses this 
code is published as Maliar et al. (2010). Parameters set for the model are: 
 
𝛽 = 0.99;   - discount factor 
𝛾 = 1;  - utility-function parameter 

𝛼 = 0.36; - share of capital in the production function 
𝛿=0.025;  - depreciation rate 

𝛿𝑎=0.01; - (1 − 𝛿𝑎) is the productivity level in a bad state, and (1 + 𝛿𝑎) is the productivity level 
in a good state 
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𝜇 =  0.15;   - unemployment benefits as a share of wage 

𝑙 ̅=1/0.9;  - time endowment; normalizes labor supply to 1 in a bad state 

𝑇 = 1100; - simulation length 
𝑛𝑑𝑖𝑠𝑐𝑎𝑟𝑑 = 100;   - number of periods to discard 

𝑛𝑠𝑡𝑎𝑡𝑒𝑠𝑖𝑑 = 2; - number of states for the idiosyncratic shock 
𝑛𝑠𝑡𝑎𝑡𝑒𝑠𝑎𝑔 = 2;- number of states for the aggregate shock 

𝜖𝑢 = 0; - idiosyncratic shock if the agent is unemployed 

𝜖𝑒 = 1; - idiosyncratic shock if the agent is employed 
𝑢𝑟𝑏 = 0.1; - unemployment rate in a bad aggregate state 

𝑒𝑟𝑏 = (1 − 𝑢𝑟𝑏);  employment rate in a bad aggregate state 
𝑢𝑟𝑔 = 0.04; - unemployment rate in a good aggregate state 

𝑒𝑟𝑔 = (1 − 𝑢𝑟𝑔); -employment rate in a good aggregate state 

 
Transition probability matrix is given as: 
 

𝜋𝑖,𝑗 = (

0.525 0.35 0.03125 0.09735
0.038889 0.836111 0.002083 0.122917
 0.09375 0.03125 0.291667 0.583333

0.009115 0.115885 0.024306 0.850694

) 

 
Now, to compute the aggregate law of motion, we use the stochastic-simulation approach of 
Krusell and Smith (1998). Results are presented in Figure 4.  
 
Figure 4 Accuracy of the aggregate law of motion with random shocks  

 

 

CONCLUDING REMARKS  
 
This paper was investigating model with heterogeneity of agents in incomplete markets in 

Huggett (1993) ,by using examples solved in MATLAB with  codes written for paper by Achdou 
et al.(2022) .Heterogeneity of individuals was also investigated in Krusell-Smith type economy 
(with aggregate uncertainty) and with MATLAB code written to find solution to aggregate law 
of motion and its accuracy with stochastic simulation as per Krusell,Smith (1998). So in 
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conclusion of this review of these models’ incomplete markets (heterogenous agents) is that 
there are developed algorithms for numerically solving the equilibria as equilibria do exist in 
these types of economics although they may be constrained efficient or inefficient. So, this is 
one temptation for further exploration in this area and shifting away from representative agent 
models. 
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