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Totally 167 patients were admitted at cardiology ward in Villa Scassi hospital, Genoa, Italy. We worked
with two control groups: heart failure 59 patients (mean age: 71.37 ± 13.27 years) and chronic-ischemic
heart disease 108 patients (mean age: 68.85 ± 11.3 years). Nine parameters: Hb, Serum Creatinine, LDL,
HDL, Triglycerides, ALT, AST, hs-cTnI, CRP were evaluated onset to hospitalization. We aimed to identify
significant independent predictors relative to the outcome of heart failure versus chronic-ischemic heart
disease and select combination of biochemical parameters in logistic regression-based model that would
provide on average excellent discrimination to the outcome of heart failure versus chronic-ischemic heart
disease in elderly population. Applying 20-fold repeated stratified cross-validation, 4:1 train/test ratio
split, we have found that model: p HFð Þ ¼ eaþb1Hbþb2SerumCreatinineþb3ASTþb4hs�cTnIþb5CRP

1þeaþb1Hbþb2SerumCreatinineþb3ASTþb4hs�cTnIþb5CRP
, p HFð Þ : probability of heart fail-

ure, provides best discrimination of the outcome of heart failure against chronic-ischemic heart disease,
having learned coefficients: a; b1; b2; b3; b4; b5 upon training set.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Noncommunicable chronic diseases (NCDs) are a major concern
in global health worldwide. According to World Health
Organization (WHO), NCDs will account for>80 % of the global bur-
den of disease (GBD) (Wang & Wang, 2020). Besides diabetes, can-
cer, and chronic respiratory diseases, cardiovascular diseases
(CVDs) have the highest number of mortality and morbidity among
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NCDs estimated at around 17.5 million people (Zhou et al., 2018).
In 2030, the death rate from cardiovascular disease is expected to
reach 23.4 million (Cassar et al., 2009). The main common denom-
inator of the pathogenesis of CVD is atherosclerosis (Lopez et al.,
2021).

In our study, we are discussing two types of cardiovascular dis-
eases: ischemic heart disease (IHD) – more specifically chronic-
ischemic heart disease (CIHD) and heart failure (HF) which are
linked to coronary artery disease (CAD) (Lopez et al., 2021).

Coronary artery disease (CAD) is a complex pathological process
caused by atherosclerosis plaque that builds in the coronary arter-
ies. In that way, the arteries that are supplying the heart with
blood, oxygen, and nutrients become more damaged and it affects
the blood supply. The main process responsible for this condition is
called Atherosclerosis (builds up of fats, cholesterol, and other sub-
stances). The plaque obstructs the blood flow and can be obstruc-
tive and non-obstructive.

CAD can still be preventable with preventive medical checkups,
lifestyle modifications, and early treatment, even while being the
leading cause of death and disability (Brown et al., 2020). Many
cohort studies like Framingham Heart Study, USLAM, PIVUS, Epi-
Health and others have continued to investigate the impact of var-
ious risk factors. These studies classified CAD into two categories:
modifiable risk factors and non-modifiable risk factors (Borodulin
et al., 2018). According to the global case-control study INTER-
HEART 9 modifiable risk factors accounted for 90 % of the risk of
having a first myocardial infraction (MI) such as smoking, dyslipi-
demia, hypertension, diabetes, abdominal obesity, fruit and veg-
etable food consumption, regular alcohol consumption, and
physical activity (Yusuf et al., 2004). As a contrast, family history,
gender, and age, as non-modifiable factors can influence the differ-
ent outcomes (Costantino, 2016).

Because CAD is dynamic and complex in nature, results in dif-
ferent clinical presentations. In our study, we are analyzing the
Chronic Coronary Syndrome (CCS) also referred to as stable
ischemic heart disease (SIHD). In the 2019 ESC Guidelines for diag-
nosis and management of chronic coronary syndrome, CCS is
defined by the different evolutionary phases of CAD, excluding
clinical presentations of acute coronary artery thrombosis in which
this diagnosis dominates.

The most common clinical presentation is ‘chest pain’ typical
for stable angina pectoris. Other symptoms can be swelling, fear,
increased heart rate. In rare cases, the patients can present atypical
symptomatology: elder patients, women, patients with diabetes,
dyspnea. For diagnosing IHD the clinician must perform a detailed
history, and physical examination, to assess the risk factors for CAD
such as dyslipidemia, diabetes, hypertension, smoking, and other
lifestyle factors. Standard laboratory biochemical tests, ECG,
echocardiography, and chest X-ray needs to be evaluated. Depend-
ing on the clinical presentation and symptoms non-invasive and
invasive techniques can be done. The general strategy for treat-
ment includes pharmacological treatment and surgical procedures
such as revascularization.

On the other hand, Heart Failure (HF) is a complex and hetero-
geneous clinical syndrome. The diagnosis of HF can be defined as
the inability of the heart structure and function to insufficient
pump enough blood, therefore, to provide enough oxygen, to all
the cells in the body to function properly and satisfy their meta-
bolic needs as tissues (Bozkurt et al., 2021). The prevalence approx-
imately is estimated at 64.34 million people worldwide, with an
increasing tendency (Saia et al., 2021). Besides improved pharma-
cological treatments and innovative device therapies, the morbid-
ity and mortality rate are still ascending (Saia et al., 2021).

Predisposing frequent etiological causes include coronary artery
disease, hypertension, and cardiomyopathy causing abnormality in
function.
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Heart failure is commonly diagnosed by the following symp-
toms: shortness of breath on effort or also at night during supine
position, swelling of the ankles. History of myocardial infarction,
and anginal chest pain, can sometimes be the symptoms of heart
failure when ischemic heart disease provokes heart failure.

HF can be categorized into two categories: HF with reduced EJ
(ejection fraction), and HF with preserved EJ. The measurements
of EJ help us to track the progress or stability of the chronic disease,
classify heart failure, and to decide the ongoing treatment plan
(Bozkurt et al., 2021). Diagnosing heart failure is a combination
of medical professionals evaluating symptoms, signs, laboratory
biomarkers, and medical visualization techniques (Inamdar et al.,
2016).

Patients diagnosed with HF for quite some time, for them often
we say they are having chronic HF (CHF). If CHF is worsening, the
patient can be described as ‘decompensated’. This can happen
slowly or acutely. Acute myocardial infarction (AMI) can be a rea-
son for the acute manifestation of HF.

One fact about diagnosing patients with HF is concerning. Stud-
ies say that HF with preserved ejection fraction is easily missed up
to 76 % of the unrecognized cases. Lack of visualization diagnostic
methods in primary care is a primary reason for the misidentifica-
tion of HF. Chronic obstructive pulmonary disease, aging, or obe-
sity, are the most frequent diagnosis that usually HF get
misdiagnosed for (Groenewegen et al., 2020).

Research developments in basic and clinical trials acknowl-
edged that some blood parameters can be used as predictors for
CVD. High plasma LDL concentrations contribute to the process
of atherosclerosis, while plasma high-density lipoprotein (HDL) is
having a protective role, and it is reducing the risk of CVD because
is negatively associated with atherosclerosis (Badimon et al.,
2012). Studies show that dyslipidemia is a major predictor of
CVD (Kim et al., 2019). Triglycerides (TGs) are now recognized as
a distinct risk factor for cardiovascular disease. When TGs are ele-
vated, lipoprotein metabolism is altered, increasing CVD risk
(Jeppesen et al., 1998). Patients with metabolic syndrome (MetS),
type 2 diabetes (DM), or familial combined hyperlipidemia (FCHL)
often have hypertriglyceridemia (Harchaoui et al., 2009). Anemia is
a predictor of poor outcomes of chronic heart failure patients and a
significant risk factor also, in patients diagnosed with IHD
(Zeidman et al., 2004). Serum AST and ALT may be used as early
predictors identifiers of chronic heart disease in the early stages
(Shen et al., 2015). Persistent CRP elevation may be an indicator
of atherosclerotic cardiovascular disease (Kim SB et al., 2002).
Higher levels are linked to more severe heart failure features, as
well as mortality and morbidity (Anand et al., 2005). Elevated
Serum Creatinine has been associated with increased mortality in
hypertensive persons who are at risk for developing cardiovascular
disease (Wannamethee et al., 1997). As a non-invasive biomarker
for the detection of myocardial damage, hs-cTnT has recently
gained popularity. Independent of the underlying condition, high
levels of hs-cTnT in the blood are linked to increased cardiac events
and mortality rates (Askin et al., 2020).

Machine learning for healthcare diagnostics and clinical-
decision making has been widely explored topic: (Princy et al.,
2020), (Dwivedi, 2018), (Yip et al., 2017), (Lakshmi et al., 2021),
(Tsigalou et al., 2021), (Syarif et al., 2016), (Ward et al., 2020). Vari-
ety of models, such as: Logistic Regression: (Princy et al., 2020),
(Dwivedi, 2018), (Ward et al., 2020); Support Vector Machines
(SVM): (Princy et al., 2020), (Dwivedi, 2018); Deep Neural Networks
(DNN) (Tsigalou et al., 2021), Naive-Bayes classifier: (Princy et al.,
2020), (Dwivedi, 2018), (Lakshmi et al., 2021) and methods, such
as: Random Forest: (Princy et al., 2020), (Lakshmi et al., 2021),
(Ward et al., 2020); K-nearest neighbor (KNN) algorithm: (Princy
et al., 2020), (Lakshmi et al., 2021); Ridge Regression method: (Yip
et al., 2017), AdaBoost (Yip et al., 2017); Extreme Gradient Boosting
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(XGBoost): (Tsigalou et al., 2021), (Ward et al., 2020) optimization,
have been used for such purpose. Machine learning models for car-
diovascular diagnostic have been used to discriminate among dis-
eased and non-diseased subjects (Dwivedi, 2018), predict
cardiovascular risk (Lakshmi et al., 2021), (Ward et al., 2020), esti-
mate expected LDL level (Tsigalou et al., 2021). Models operate on
fixed parameters of interest, such as: biochemical variables (most
common scenario) (Lakshmi et al., 2021), (Dwivedi, 2018),
(Tsigalou et al., 2021), (Ward et al., 2020), status variables (Ward
et al., 2020), demographic variables (Ward et al., 2020). Parame-
ters, such as: Sex, Blood Pressure, Heart Rate, Diabetes, Hyper
cholesterol, Body Mass Index (obesity), HDL, LDL, total cholesterol
and triglycerides have been used as covariates in machine learning
models. Some studies had even compared the performance of dif-
ferent machine learning models: (Dwivedi, 2018) for cardiovascu-
lar discrimination. Models’ performance has been evaluated based
by: Confusion matrix, Precision, Recall, F1-Score, Accuracy (Princy
et al., 2020), AUC score under the ROC or PR curves (Ward et al.,
2020), (Krishnan & Kamath, 2019).

1.1. Study aims

Our research aims to decrease the number of misdiagnosed
cases of heart failure against chronic-ischemic heart disease
according to the prediction of specific blood analysis parameters
applying machine learning. For that reason, we accessed nine bio-
chemical variables of potential use: Hb, Serum Creatinine, LDL,
HDL, Triglycerides, ALT, AST, hs-cTnI and CRP in 167 cardiac
patients, onset to hospitalization. We aimed to examine the predic-
tive utility of each parameter relative to the outcome of heart fail-
ure versus chronic-ischemic heart disease and identify
combination of biochemical variables in logistic regression-based
model that would provide accurate discrimination between the
two diagnoses in elderly population. Logistic regression is the most
suitable method for analysis of binary classification tasks with high
diagnostic ability. We used logistic regression as a core machine
learning model and ROC and PR curves as means to evaluate mod-
els’ predictive capacity. All findings are reported based on compre-
hensive computational analysis in Python 3.9.

1.2. Main findings

- Hb and HDL unit-increase reduces the odds of HF against CIHD
for 21.18 % and 3.83 % on average, p-value < 0.05;

- AST, ALT and CRP unit-increase increases the odds of HF against
CIHD for 3.43 %, 2.46 % and 4.11 % on average, p-value < 0.05;

- Logistic regression-based model upon covariates: Hb + Serum
Creatinine + AST + hs-cTnI + CRP provides on average excellent
discrimination between heart failure and chronic-ischemic
heart disease, AUROC = 0.805 (20-fold cross-validation mean
AUROC score reported);

2. Data and materials of analysis

The results from a full blood panel tests of 167 cardiac patients,
diagnosed with chronic-ischemic heart disease (CIHD) – 108 and
heart failure (HF) – 59, onset to hospitalization at cardiology ward
in the hospital Villa Scassi Genoa, Italy in the period February 2020
– March 2021 are considered. ARCHITECT c16000 clinical chem-
istry analyser (ABBOTT) and ADVIA 2120/2120i (SIEMENS) hema-
tology analyzer were used to access 9 biochemical variables of
interest

P ¼ fLDL ðmg=dLÞ; HDL ðmg=dLÞ; Triglycerides ðmg=
dLÞ; SerumCreatinine ðmg=dLÞ; ALT ðU=LÞ;AST ðU=LÞ; hs� cTnI
ðpg=mLÞ; Hb ðg=dLÞ; CRP ðmg=LÞg. Blood test files were extracted
by SIO SIVIS Health Information System.
3

Study participants mean age ± standard deviation was 69.74 ±
12.05 years. CIHD patients had mean age of 68.85 years,
SD = 11.3, while HF patients had mean age of 71.373 years
(SD = 13.27). About three quarters or 74.85 % of study participants
were male and 25.15 % female. Totally 77.78 % of CIHD patients
were male and 22.22 % female. In the HF group we had 69.49 %
male patients and 30.51 % female patients.

For CIHD and HF groups, for all parameters in R, we computed:
minimum (min), first quartile (Q1), median (Q2), third quartile
(Q3), maximum (max), mean, standard deviation (SD), range,
interquartile range (IQR) and skewness (sk), Table 1. We used:
range, interquartile range and standard deviation as measures of

variability, Table 1. We computed skewness sk ¼
PN

i¼1
ðxi�meanÞ3

N�1ð ÞSD3 to

measure distribution’s deviation relative to perfect symmetry
and get the direction of outliers. As per rule of thumb:
�0:5 < sk < 0:5 for approximately symmetrical distribution,
0:5 � sk < 1ð�1 < sk � �0:5Þ for moderate positive(negative)
skewness and sk � 1ðsk � �1Þ for positive(negative) skewness.
We plotted the distribution of each parameter in both control
groups: CIHD and HF (Fig. 1).

No major difference in HDL, Triglycerides and Hb variability
was found among CIHD and HF group, Table 1, Fig. 1. LDL had
higher variability in CIHD compared to HF group: CIHDLDL;range ¼
218mg=dL; CIHDLDL; IQR ¼ 68:25mg=dL; (HFLDL; range ¼ 186mg=dL;
HFLDL; IQR ¼ 29mg=dLÞ, Table 1, Fig. 1. LDL mean and LDL median
scored approximately the same in both groups, Table 1. On the
other hand, hs-cTnI was unevenly distributed, Table 1. HF group
had higher hs-cTnI median 21.9 pg/mL and IQR 63.7 pg/mL that
is approximately-six times CIHD hs-cTnI IQR of 11.65 pg/mL,
Table 1. At the same time, hs-cTnI mean 470 pg/mL, standard devi-
ation 3916.98 pg/mL and range 40060.7 pg/mL were higher in
CIHD control group, Table 1. CRP ranged about the same in both
group (Table 1, Fig. 1), but there was significant difference in CRP
mean, standard deviation, median and interquartile range
between groups, Table 1, Fig. 1. Higher values are attributed to
HF: CIHDCRP;mean�SD¼6:29�16:59mg=L (HFCRP;mean�SD¼25:4�
35:59mg=L); CIHDCRP;median¼1:75mg=L (HFCRP;median¼11:1mg=L);
CIHDCRP;IQR¼4:03mg=L (HFCRP;IQR¼26:5mg=L), Table 1. Serum Crea-
tinine was more variable in HF group, Table 1. Higher ALT variabil-
ity was also specific to HF control group: CIHDALT;SD¼10:52U=L;
CIHDALT; IQR¼12:5U=L; CIHDALT;range¼55U=L; (HFALT;SD¼34:53U=L;
HFALT; IQR¼22:5U=L; HFALT;range¼214U=L), Table 1, Fig. 1. HF ALT
mean was 32.71 U/L, while CIHD ALT mean was 23.08 U/L, Table 1.
We computed mean CIHD AST of 21.43 U/L and 28.49 U/L mean HF
AST, Table 1.
3. Computational methods of analysis

We used the dataset of 167 patients that includes data on 9
explanatory variables of interest

P ¼ fHb; SerumCre atinine;
LDL; HDL; Triglycerides; ALT; AST; hs� cTnI; CRPg to examine the
potential use of each parameter included in R as predictor to the
outcome of HF against CIHD and we aimed to find subset of bio-
chemical variables from R that provides best discrimination
between HF and CIHD. We used logistic regression as a core model
in our computational analysis. Parameters’ predictive potential
was examined in Python 3.9 convenience interface statsmodels.-
formula.api and we used Scikit-learn (Sklearn) library (Python
3.9) to measure mean diagnostic capacity provided under particu-
lar model section (combination of predictors) based on 20-fold
cross-validation.

To identify statistically significant predictors on HF against
CIHD we performed single-variable logistic regression analysis in
statsmodels.formula.api (Python 3.9). We report odds ratios (log



Table 1
Biochemical variables characteristics – CIHD and HF control groups.

Parameter min Q1 Q2 Q3 max mean SD range IQR skewness

LDL (mg/dL) CIHD 26 66 98.5 134.25 244 105.528 46.703 218 68.25 0.8
LDL (mg/dL) HF 21 79 98 108 207 98.678 36.087 186 29 0.581
HDL (mg/dL) CIHD 23 38 43.5 52 80 45.796 11.864 57 14 0.721
HDL (mg/dL) HF 18 32.5 41 45 70 40.847 11.117 52 12.5 0.49
Triglycerides (mg/dL) CIHD 41 82.75 101 136.25 334 119.139 60.615 293 53.5 1.408
Triglycerides (mg/dL) HF 41 69 89 124 326 106.966 61.065 285 55 1.942
hs-cTnI (pg/mL) CIHD 0.1 3.25 6.35 14.9 40060.8 470.005 3916.982 40060.7 11.65 9.709
hs-cTnI (pg/mL) HF 1 13.25 21.9 76.95 3336.1 160.992 483.238 3335.1 63.7 5.286
Hb(g/dL) CIHD 8.1 13.2 14.15 15.1 17.2 14.062 1.56 9.1 1.9 �0.783
Hb(g/dL) HF 8.1 12.15 13.4 14.7 18.5 13.297 2.133 10.4 2.55 �0.058
CRP (mg/L) CIHD 0.3 0.9 1.75 4.925 155.8 6.291 16.593 155.5 4.025 7.164
CRP (mg/L) HF 0.3 4 11.1 30.5 150.7 25.4 35.591 150.4 26.5 1.995
Serum Creatinine (mg/dL) CIHD 0.58 0.8 0.965 1.09 4.56 1.07 0.554 3.98 0.29 4.184
Serum Creatinine (mg/dL) HF 0.59 0.87 1.05 1.29 12.83 1.408 1.653 12.24 0.42 5.83
AST (U/L) CIHD 7 16 19 23 192 21.426 17.463 185 7 8.71
AST (U/L) HF 6 20 23 35 104 28.492 16.285 98 15 2.208
ALT (U/L) CIHD 6 15 21 27.25 61 23.083 10.515 55 12.5 1.117
ALT (U/L) HF 6 14.5 23 37 220 32.712 34.526 214 22.5 3.518

Fig. 1. CIHD and HF parameters distribution.
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odds ratios) of HF against CIHD for significant regressors (p-
value < 0.05). As method for model estimation we used Maximum
Likelihood Estimation (MLE), (Myung, 2003). For each model we
report: maximum of the log likelihood function: logðLðmÞÞ and
McFadden’s log likelihood ratio (McFadden, 1973) R2:

R2
MF ¼ 1� logðLðmÞÞ

logðLðm0ÞÞ as a measure for the goodness of fit, based on

the improvement of the model m relative to the null model
m0(the model that contains intercept only). We provide compre-
hensive computational analysis, based on: all data fits, fits having
excluded extreme outliers and fits having excluded regression
influential points only. Points v i such as: v i < Q1 � 3IQR or
v i > Q3 þ 3IQR are considered as extreme outliers and their impact
on regression was examined. On the other hand, deviance residuals
rDi (Hosmer et al., 2013) were computed to measure the exact level
of discrepancy between the current fit and the ideal fit at each
point v i, thus suggesting points v i that significantly affect the
4

course of the logistic curve. Deviance residuals rDi were computed

as: rDi ¼ si
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2fYi log pið Þ þ 1� Yið Þlogð1� piÞ

p g, si ¼ þ1 if Yi ¼ 1
(HF) and si ¼ �1 if Yi ¼ 0 (CIHD), such as: Yi is dichotomous output
for data point v i and pi is the value of HF probability curve from the
estimated model at point v i. Values v i for which: rDi > 2 or rDi < �2
were considered as highly influential and their impact on the good-
ness of fit was analyzed.

We applied backward stepwise elimination methodology
(Marill & Green, 1963) to select combination of significant
predictors only, p-value < 0.05. Backwards stepwise elimination
methodology aims to identify predictors that act as significant
(p-value < 0.05) when joined together. Due to the mutual depen-
dencies in the joint set, variable found as insignificant in the joint
set, may also acts as significant when considered independent of
the others. We consider this issue in the next section. Throughout

the process we monitored likelihood-ratio test kLR ¼ �2log LðmrÞ
LðmÞ

� �



Fig. 2. Cross-validation – 4:1 train-test ratio split, repeated 4 times.
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p-value or the probability that further nested model restriction mr

would result in better fit relative to the current fit m. For selected
covariates we examined the joint diagnostic capacity of logistic
regression as a binary predictor of diagnosis: 0 for chronic-is-
chemic heart disease and 1 for heart failure. For that purpose,
we applied 20-fold repeated stratified cross-validation. Repeated
cross-validation provided an unbiased estimate of the mean dis-
crimination capacity of the model, while stratification preserved
the same ratio of CIHD to HF patients in the train and test splits
due to the presence of moderate class imbalance in our dataset
(108 CIHD patients (64.7 %), 59 HF patients (35.3 %)). The set of
167 cardiac patients was shuffled each time the cross validation
was repeated that ensured training and testing logistic regression
models for different combinations of cardiac patients. The overall
diagnostic performance was summarized by mean AUROC score
(area under the receiver operating characteristic). To estimate the
average precision of the model on HF predictions (the positive or
the minority class) we computed the area under the mean
Precision-Recall (PR) curve, AUPRC.

Significance level was set to 0.05. In contemporary statistical
decision theory, it is widely assumed that one common value for
the level of significance is 0.05 (Siegel, 1956). Logistic regression
was fitted five times, such as the most insignificant predictor
(highest p-value) was discarded from the domain R, until there
were left only significant predictors (p-value < 0.05), Table 2. As
we refitted the regression, kLR p-value gradually improved, Table 2.
We gradually discarded: ALT (U/L) (p-value = 0.764), LDL (mg/dL)
(p-value = 0.628), Triglycerides (mg/dL) (p-value = 0.410) and
HDL (mg/dL) (p-value = 0.192) from R, until all left covariates were
statistically significant: Hb + SerumCreatinine + AST + hs-cTnI +
CRP, Table 2.

We applied 20-fold repeated stratified cross-validation to the
input dataset of 167 cardiac patients to check the joint diagnostic
capacity of suggested selection: Hb + SerumCreatinine + AST + h
s-cTnI + CRP. Prior cross-validation, we applied data standardiza-
tion. Applying equation: zi ¼ xi�l

r (l predictor mean value, r pre-
dictor standard deviation), predictors’ values xi were transformed
to zi – distribution with mean value 0 and standard deviation 1.
We used 4:1 train-test ratio split (Lakshmi et al., 2021), (Ward
et al., 2020) or 80 % of the cardiac patients (134 cardiac patients)
were used to fit logistic regression models and the remaining
20 % (33 cardiac patients) were used to test the models. This was
repeated 4 times on shuffles to the input dataset, that provided
training/testing models for different combinations of cardiac
patients. Train-test ratio of 4:1 means that we spilt the dataset into
5 folds, such as: 4-folds were used to train the model and 1-fold
was used to test the model, Fig. 2. Since there are 5 different folds
that can be used for testing and the remining 4 for training, each
repetition resulted in 5 trained and tested models, Fig. 2. Given
that we repeated the cross validation 4 times, we were able to esti-
mate the diagnostic capacity of totally 20 models of logistic
regression.

For trained models we used test splits to compute ROC (Zweig &
Campbell, 1993) and PR curves (Saito & Rehmsmeier, 2015). ROC
Table 2
Selection of significant predictors (backward stepwise elimination methodology).

Model kLR p-value Hb (g/dL) Serum
Creatinine
(mg/dL)

AST (U/L)

1 2.495� 10-9 0.012 0.088 0.001
2 9.095 � 10-10 0.010 0.089 0.000
3 3.320 � 10-10 0.011 0.092 0.000
4 1.390 � 10-10 0.008 0.079 0.000
5 8.944 � 10-11 0.010 0.049 0.000
Best model Hb Serum Creatinine AST
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and PR curves are powerful means to estimate diagnostic ability
of the model over a range of classification thresholds
THR; 0 � THR � 1. This means that instead of examining the dis-
crimination capacity of the model at fixed cut-off point – classifica-
tion threshold (*by default THR ¼ 0:5), it is examined for all real
numbers in the range [0–1] taken as decision thresholds. For illus-
tration, given a trained model under: Hb + Serum Creatinine + AS
T + hs-cTnI + CRP, for each patient in the test set p HFð Þ (Eq. (1))
is computed for standardized: Hb, Serum Creatinine, AST, hs-
cTnI, CRP values. IF p HFð Þ > THR the patient is classified as HF
patient, otherwise as CIHD patient and this is done not just for
one cut-off THR, but for all decision thresholds THR s in the range
[0–1].

p HFð Þ ¼ eaþb1Hbþb2SerumCreatinineþb3ASTþb4hs�cTnIþb5CRP

1þ eaþb1Hbþb2SerumCreatinineþb3ASTþb4hs�cTnIþb5CRP
; 0 � THR � 1

ð1Þ
p HFð Þ: probability of HF.
Receiver Operating Characteristic (ROC) curve summarizes dis-

crimination potential of the model to assign patients to the right
class. It is plotted as trade-offs between True Positive Rate (TPR)
(also referred as Recall or Sensitivity) (Eq. (2)) and False Positive
rate (FPR) (Eq. (3)) at all possible classification thresholds THR,
0 � THR � 1. In our case, TPR or the Recall measures how many
of the real HF patients were ranked as HF, while FPR measures
ALT (U/L) LDL
(mg/dL)

HDL
(mg/dL)

Triglycerides
(mg/dL)

hs-cTnI
(pg/mL)

CRP
(mg/L)

4 0.622 0.122 0.357 0.005 0.008
0.124 0.358 0.007 0.008
0.142 0.007 0.008

0.006 0.006
0.004 0.006
hs-cTnI CRP
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the fraction of CIHD patients that were mispredicted as HF patients.
Since there is a relation between FPR and True Negative Rate (TNR or
Specificity) or how many of CIHD patients were actually predicted as
CIHD, such as: FPR = 1-TNR, ROC curve may be also seen as plot of
Sensitivity versus 1-Specificitiy at different decision thresholds. The
area under the ROC curve AUROC may be seen as probability that
randomly selected HF patient is ranked as more likely to be HF
patient than randomly selected CIHD patient.

TPRðRecallÞ ¼ TP
TP þ FN

ð2Þ

TP (true positives): number of HF patients predicted as HF
patients.

FN (false negatives): number of HF patients mispredicted as
CIHD patients

FPR ¼ FP
FP þ TN

ð3Þ

FP (false positives): number of CIHD patients mispredicted as
HF patients.

TN (true negatives): number of CIHD patients predicted as CIHD
patients.

Given that we are not interested in model’s performance for
true negatives (CIHD patients predicted as CIHD), Precision-Recall
(PR) curve offers selective estimation of model’s diagnostic ability,
biased towards the positive class – HF. PR curve is plotted as trade-
offs between Precision (Eq. (4)) – how many of the predicted HF
patients were actually true HF patients and Recall (Eq. (2)) – how
many of the true HF patients were actually predicted as HF patients
at every single classification threshold THR, 0 � THR � 1. The area
under the PR curve AUPRC in our case is the average precision on
HF predictions.

Precision ¼ TP
TP þ FP

ð4Þ

In the cross-validation, we trained and tested totally 20 models
of logistic regression and we computed the same number of ROC
and PR curves. Trapezoidal rule was used to compute AUROC
(Bradley, 1997) (Eq. (5)) and AUPRC (Boyd et al., 2013) (Eq. (6)).

AUROC ¼
XN

i¼1

TPR ið Þ � DFPR ið Þ ð5Þ

AUPRC ¼
XN

i¼1

Precision ið Þ � DRecall ið Þ ð6Þ

D: sampling interval.
TPR(i),Precision(i): i’th TPR, Precision sample.

4. Results

Single-variable logistic regression analysis in Python 3.9
statsmodels was performed. For all models we report: McFadden’s
Pseudo R2, the maximum of the log likelihood function logðLðmÞÞ,
predictor’s regression coefficient: log odds ratio (odds ratio), 95 %
confidence interval and the p-value. For each model we computed
and plotted the probability of HF against CIHD curve – p(HF) in
addition to extreme outliers and residual deviances rDi , Fig. 3. Both

McFadden’s Pseudo R2 and rDi may be taken as measures for the
goodness of fit, expect that rDi s are suitable for visual inspection
of the goodness of fit, Fig. 3. The more rDi s asymptotically approach
the p(HF) curve, the more the goodness of fit has improved, Fig. 3.

Plots matched numerical results, Fig. 3, Fig. 4, Fig. 5. For param-
eters that are significant predictors of the outcome: 0(CIHD)/1(HF),
sigmoidal (S-shaped) p(HF) curves were plotted, either positive or
6

negative, Fig. 3. For insignificant predictors p(HF) lacked the logis-
tic S-shape and it was linear most of the time, Fig. 3. Of all insignif-
icant predictors, only hs-cTnI becomes significant as predictor, if
extreme outliers are removed, Fig. 4. In principle, removing
extreme outliers for significant predictors did not improved the
goodness of fit (estimated by McFadden’s Pseudo R2 and rDi distri-
bution), Fig. 4. The goodness of fit for significant predictors was
improved by having discarded highly influential residuals only:
rDi > 2 (rDi < �2), Fig. 5.

Regressors: Hb, AST, ALT, HDL and CRP were found as indepen-
dent, statistically significant predictors (p-value < 0.05) of HF
against CIHD, Fig. 3. Hb and HDL negative P(HF) curve (Fig. 3) indi-
cates on reduced odds of HF against CIHD having increased Hb or
HDL, while AST, ALT and CRP positive P(HF) curve indicates on
increased odds of HF against CIHD having increased AST, ALT or
CRP (Fig. 3). We have found that (Fig. 3):

I. g/dL increase of Hb reduces the odds of HF against CIHD for
21.18 % on average, 95 % CI = [5.34 – 34.37]%, p-
value = 0.011;

II. U/L increase of AST increases the odds of HF against CIHD for
3.43 % on average, 95 % CI = [0.33 – 6.63]%, p-value = 0.03;

III. U/L increase of ALT increases the odds of HF against CIHD for
2.46 % on average, 95 % CI = [0,33 – 4,64]%, p-value = 0.024;

IV. mg/dL increase of HDL reduces the odds of HF against CIHD
for 3,83 % on average, 95 % CI = [0,88 – 6,69]%, p-
value = 0.011;

V. mg/L increase of CRP increases the odds of HF against CIHD
for 4.11 % on average, 95 % CI = [1,71 – 6,58]%, p-value = 0.01.

Serum Creatinine (p-value = 0.115), LDL (p-value = 0.328),
Triglycerides (p-value = 0.219) and hs-cTnI (p-value = 0.593) were
insignificant in predicting the outcome of HF against CIHD. For
Triglycerides and LDL as regressors, P(HF) curve was linear, while
U-shaped curve for hs-cTnI was plotted, instead of the regular S-
shaped curve, Fig. 3. No rDi > 2 (rDi < �2) points were found for
insignificant predictors, but only significant number of extreme
outliers in Serum Creatinine (8) and hs-cTnI (20), Fig. 3.

Insignificant regressors’ extreme outliers were removed and we
refitted models again, Fig. 4. In that case hs-cTnI becomes signifi-
cant as independent predictor of HF against CIHD, increasing the
odds of HF against CIHD for 2.68 % on average, 95 % CI = [0.98 –
4.41]%, p-value = 0.002 for each pg/mL increase, Fig. 4. This time
instead of U-shaped curve, regular S-shaped p(HF) curve was com-
puted, Fig. 4. Removing extreme outliers in Serum Creatinine (8)
did not remove p(HF) linearity and no regular S-shaped curve
was computed for excluding extreme outliers in Triglycerides (3),
Fig. 4. Serum Creatinine (p-value = 0.211) and Triglycerides (p-
value = 0.175) were again insignificant as predictors. When it
comes to significant predictors, Hb and HDL did not include
extreme outliers, while for AST(7), ALT(2) and CRP(14) we recorded
slightly improvement of the goodness of fit only for AST (McFad-
den’s Pseudo R2 increased from 0.0334 to 0.0679), Fig. 4.

Regression highly influential points rDi > 2 (rDi < �2) were
found in AST, values: 192 U/L, 6 U/L and CRP, values: 155.8 mg/L,
53.4 mg/L, 34.7 mg/L and 33.2 mg/L, Fig. 3. Discarding these points
only and refitting logistic regressions again: p(HF) curve S-shape
improved, McFadden’s Pseudo R2 increased from 0.0334 to
0.1339 for AST and for CRP it was doubled, 0.2232 compared to
0.1027 in the initial fit, Fig. 5. In Fig. 5 we report odds ratio (log
odds ratio) of HF against CIHD, having removed residuals rDi > 2
(rDi < �2) in AST and CRP.

Having discarded AST and CRP regression influential residuals
rDi > 2 (rDi < �2), we have found:



Fig. 3. Regression fits and odds ratio (log odds ratio) of HF against CIHD for significant predictors – all patients included.
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VI. U/L increase of AST increases the odds of HF against CIHD for
11.34 % on average, 95 % CI = [5.91 – 17.04]%, p-
value = 0.000;
7

VII. mg/L increase of CRP increases the odds of HF against CIHD
for 12.4 % on average, 95 % CI = [6.56 – 18.56]%, p-
value = 0.000.



Fig. 4. Regression fits and odds ratio (log odds ratio) of HF against CIHD for hs-cTnI as predictor – extreme outliers discarded.
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We examined the mean diagnostic capacity of the combination
of statistically significant predictors: Hb + Serum Creatinine + AS
T + hs-cTnI + CRP (Table 2) in Scikit-learn (Python 3.9). To detect
the impact on discrimination ability having discarded specific
covariate, the mean diagnostic ability of all models considered in
backwards elimination methodology (Table 2) was analyzed. We
also examined the impact on discrimination capacity having dis-
carded the least significant of all significant predictors – Serum
Creatinine, p-value = 0.049 (Table 2). Totally 20 different combina-
tions of 134 CIHD + HF patients (80 % of data) for models’ training
and 33 CIHD + HF patients (20 % of data) for models’ testing were
derived from the input dataset of 167 cardiac patients: 108
CIHD + 59 HF patients. Stratification preserved the same percent-
age of CIHD (64.7 %) to HF (35.3 %) patients in training and testing
sets, 87 CIHD + 47 HF = 134 cardiac patients in training sets and 21
CIHD + 12 HF = 33 cardiac patients in testing sets. For all models,
we computed 20 models of logistic regression and we plotted mod-
els’ Receiver Operating Characteristic (ROC) curves and Precision-
Recall (PR) curves, Fig. 6. From ROC and PR curves we computed
the mean ROC and the mean PR curve and the area underneath,
Fig. 6, Table 3. Obtained results are relevant and comparable in
terms of the impact of covariates upon overall diagnostic ability,
because we used the same combinations of train-test splits for
all models’ selection, Fig. 6, Table 3.
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The combination of predictors: Hb + Serum Creatinine + AST +
hs-cTnI + CRP predicted the true diagnosis: heart failure (1)
against chronic-ischemic heart disease (0), 80.5 % of the time
(mean AUROC = 0.805), while the average precision on HF predic-
tions was 71.2 % (mean AUPRC = 0.712), Table 3, Fig. 6.

Other combinations of predictors were generally less accurate
than: Hb + Serum Creatinine + AST + hs-cTnI + CRP, Table 3.
Mean AUROC = 0.769 (mean AUPRC = 0.691) was computed
for having all covariates included in the model, Table 3, Fig. 6.
Excluding ALT(p-value = 0.764, Table 2) as covariate, we got
mean AUROC = 0.776 (mean AUPRC = 0.698), Table 3, Fig. 6. Dis-
carding ALT + LDL(p-value = 0.628, Table 2) as covariates, the
mean AUROC was 0.78 (mean AUPRC = 0.702), Table 3, Fig. 6.
Having discarded ALT + LDL + Triglycerides(p-value = 0.410,
Table 2) as covariates, we computed mean AUROC = 0.792 (mean
AUPRC = 0.717), Table 3, Fig. 6.

The combination of all significant predictors: Hb + Serum
Creatinine + AST + hs-cTnI + CRP (HDL excluded, p-value = 0.192,
Table 2) provided best discrimination score of 0.805 mean AUROC,
Table 3, Fig. 6. Further model restriction did not improve discrim-
ination ability. Having discarded the least significant of all signifi-
cant predictors – Serum Creatinine (p-value = 0.049, Table 2), the
combination of predictors: Hb + AST + hs-cTnI + CRP resulted in
mean AUROC of 0.789 (mean AUPRC = 0.7), Fig. 6, Table 3 or



Fig. 5. Regression fits and odds ratio (log odds ratio) of HF against CIHD for AST and CRP as regressors, rDi > 2 (rDi < �2) discarded.
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slightly worse results compared to model having included Serum
Creatinine as predictor were obtained. The mean AUROC score of
the model that provides best discrimination ability: Hb + Serum
Creatinine + AST + hs-cTnI + CRP forms an elbow point in AUROC
scores line plot, Fig. 7.
5. Discussion

Our preliminary findings based on logistic regression analysis of
167 CIHD + HF cardiac patients, suggests positive correlation
between: AST, ALT, CRP and the outcome of HF against CIHD, while
negative correlation between: Hb, HDL and the outcome of HF
against CIHD, Fig. 3. Having included regressor’s all data, Serum
Creatinine, LDL, Triglycerides and hs-cTnI were not significant as
predictors, (p-value > 0.05). The basic assumption of logistic
regression for linearity between log odds and the outcome CIHD
(0)/HF(1) was corrupted in the case of hs-cTnI due to the high per-
centage of extreme outliers (11.98 %) in hs-cTnI distribution, Fig. 3.
In absence of extreme outliers, hs-cTnI is highly reliable (p-
value = 0.002) prognostic factor of the outcome of HF against CIHD,
such as pg/mL increase of hs-cTnI increases the odds of HF against
CIHD for 2.68 % on average, Fig. 4.

Since the goodness of fit is primarily affected by particular
residuals of high influence rDi > 2 (rDi < �2), we computed highly
reliable results, having discarded such residuals out of AST and
CRP regression models, Fig. 5. At p-value = 0.000 we found that
U/L increase of AST increases that odds of HF against CIHD for
11.34 % and mg/L increase of CRP increases the odds for 12.4 %
on average, Fig. 5. One can say that one-unit increase either in
AST or CRP resulted in approximately 12 % increased odds of HF
against CIHD, Fig. 5.
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Model selection plays pivotal role in machine learning. Follow-
ing results in Table 3 (mean AUROC(AUPRC) scores), model’s ability
to discriminate between HF and CIHD depends of the predictors
included in the model. As estimated by the mean AUROC score,
removing insignificant predictor improved mean diagnostic capac-
ity, Table 3. The mean diagnostic capacity increased for 0.72 % on
average for having removed one insignificant predictor, Table 3.
On moderate-sized dataset (167 CIHD + HF cardiac patients), we
have identified model: Hb + Serum Creatinine + AST + hs-cTnI +
CRP that provides on average excellent discrimination
(Mandrekar et al., 2010) between HF and CIHD (mean AUROC
score = 0.805 > 0.8), Fig. 6, Table 3. Our 20-fold cross-validation
analysis showed that the model: Hb + Serum Creatinine + AST +
hs-cTnI + CRP can assign in 80.5 % of the time higher rank to ran-
domly selected HF patient than randomly selected CIHD patient.
Three models: Hb + Serum Creatinine + AST + HDL + Triglycerides +
hs-cTnI + CRP; Hb + Serum Creatinine + AST + HDL + hs-cTnI + CRP;
Hb + Serum Creatinine + AST + hs-cTnI + CRP had acceptable mean
diagnostic precision on HF (mean AUPRC score > 0.7), Table 3. Off
all three, model Hb + Serum Creatinine + AST + HDL + hs-cTnI +
CRP had the highest mean AUPRC score of 0.717, Table 3. If we
had higher number of patients, AUROC(AUPRC) score would be
higher.

Even though Serum Creatinine is insignificant as single predic-
tor (p-value = 0.115), its covariance in addition to: Hb, AST, hs-cTnI
and CRP positively affects the overall discrimination ability of the
model, Table 3, Fig. 6. Model Hb + AST + hs-cTnI + CRP had mean
AUROC(AUPRC) score of 0.789(0.7) compared to 0.805(0.712) for
the model Hb + Serum Creatinine + AST + hs-cTnI + CRP, Table 3,
Fig. 6.

Some studies (Princy et al., 2020) investigate machine learning
models for cardiovascular diagnostic on public or freely accessible
data. In this study we sourced our own data and applied machine



Fig. 6. Cross-validation results.

Table 3
Predictive capacity under different models’ selection.

MODEL Mean AUROC Mean AUPRC

Hb + Serum Creatinine + AST + ALT + LDL + HDL + Triglycerides + hs-cTnI + CRP 0.769 0.691
Hb + Serum Creatinine + AST + LDL + HDL + Triglycerides + hs-cTnI + CRP 0.776 0.698
Hb + Serum Creatinine + AST + HDL + Triglycerides + hs-cTnI + CRP 0.78 0.702
Hb + Serum Creatinine + AST + HDL + hs-cTnI + CRP 0.792 0.717
Hb + Serum Creatinine + AST + hs-cTnI + CRP 0.805 0.712
Hb + AST + hs-cTnI + CRP 0.789 0.7
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learning. Current studies explore different types of parameters as
covariates in machine learning models, such as: demographic
(Ward et al., 2020), (Lakshmi et al., 2021), biochemical (Lakshmi
et al., 2021), carotid artery ultrasound images (Lakshmi et al.,
2021) and status parameters, such as: smoking or diabetes status
10
(Ward et al., 2020), (Princy et al., 2020). We used biochemical vari-
ables in our study. Some biochemical variables, such as: choles-
terol, triglycerides (Lakshmi et al., 2021) are used as covariates in
other studies but in addition to parameters that are very different
from the parameters considered in this study. No study so far has



Fig. 7. Mean AUROC scores line plot.
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evaluated the joined predictive capacity of biochemical parameters
considered here. Studies for cardiovascular diagnostic apply
machine learning usually to discriminate among healthy and dis-
eased individuals, (Dwivedi, 2018), (Lakshmi et al., 2021). Diseased
subjects are usually annotated as positive class (1), while non-
diseased subjects as negative class (0) and the main purpose of
machine learning model is to discriminate among classes. We go
step forward that we aim to discriminate between two different
cardiovascular diagnoses: CIHD (0), negative class and HF (1), pos-
itive class, that has not been addressed so far. As usual practice, dif-
ferent machine learning models are evaluated in order to identify
which model provides best discrimination utility under fixed set
of variables of interest (Princy et al., 2020), (Dwivedi, 2018). We
aim to select optimal set of variables for discrimination of HF
against CIHD. The problem of selection of near-optimal parameter
combination was examined in (Syarif et al., 2016), comparing the
performance of Grid Search against Genetic Algorithm for SVM
parameter optimization. For the same purpose we used Logistic
Regression in our study. Only few studies implement cross-
validation as regular model evaluation technique, (Dwivedi,
2018) (10-fold cross-validation), (Ward et al., 2020) (5-fold cross-
validation). We did the same, but for higher number of folds = 20
(20-fold cross-validation). Results at random or optimal cut-off
point may be reported if ROC or PR analysis is dismissed. ROC
(PR) analysis is provided in (Ward et al., 2020) and both character-
istics (ROC and PR) are considered in (Krishnan & Kamath, 2019).
Since one characteristic analysis (ROC or PR) may provide partial
insight towards model’s discrimination ability, in our study we
examined both characteristics: ROC and PR. In order to increase
diagnostic accuracy, some studies apply hyperparameter tuning
(Ward et al., 2020). We did not tune any parameter and still got
satisfactory AUROC score of 0.805 for Hb + Serum Creatinine + AS
T + hs-cTnI + CRP. Time series in data may undermine model’s reli-
ability and only few studies, such as (Ward et al., 2020), properly
address this inquiry, considering the most recent data. If data
before and after therapeutic treatment, before and after surgery,
before and after lifestyle modification, participates equally in
machine learning model, the model loses its credibility on predic-
tions under specific circumstances. We used blood analysis results
obtained onset to hospitalization, as we aimed to tailor predictivity
to a specific medical condition or scenario – discriminate HF versus
CIHD based on values of specific blood parameters in crucial
moments when patients are hospitalized at the cardiac or emer-
gency care unit with serious symptoms. Our model can be used
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as a direct aid to clinical-decision making and likely help in reduc-
ing the time in relation to establish a diagnosis.
6. Conclusion

In this study we have exploited the computational capacity of
logistic regression as a core model for predicting of the outcome
of heart failure against chronic-ischemic heart disease in elderly
population. For that reason, we sourced data from 167 cardiac
patients (108 CIHD and 59 HF), hospitalized at cardiology ward
in Villa Scassi hospital Genoa, Italy. We considered data on 9 bio-
chemical variables: Hb, Serum Creatinine, LDL, HDL, Triglycerides,
ALT, AST, hs-cTnI, CRP, onset to hospitalization.

Based on comprehensive cross-validation analysis we have
identified subset of biochemical variables: Hb + Serum
Creatinine + AST + hs-cTnI + CRP that provides excellent discrimi-
nation between HF and CIHD. We have computed that logistic
regression ML model run upon this combination of covariates can
assign in 80.5 % of the time on average higher rank to randomly
selected HF patient than CIHD patient. This point is one of the main
contributions of our study, as we recommend: Hb + Serum
Creatinine + AST + hs-cTnI + CRP combination for accurate early
detection of the outcome of HF versus CIHD in logistic
regression-based model.

The predictive potential of each biochemical parameter was
also investigated. Our computational study found that unit
increase of AST, ALT or CRP increases the odds of HF against CIHD
for 3.43 %, 2.46 % and 4.11 % respectively, p-value < 0.05. On the
other hand, unit increase of Hb or HDL reduces the odds of HF
against CIHD for 21.18 % and 3.83 % respectively, p-value < 0.05.
Hs-cTnI increases the odds of HF against CIHD in absence of
extreme outliers. Since AST and CRP regression fits were negatively
impacted by particular observations: rDi > 2 (rDi < �2), AST and CRP
goodness of fit dramatically improved after discarding them out of
models. In such circumstances, we have computed that one-unit
increase of AST or CRP increases the odds of HF against CIHD for
approximately 12 % on average.

The small number of patients that we worked with (totally
167), was identified as limitation and reason why ROC AUC scored
0.805 for the best model selection, that on the contrary was
expected to be higher. However, we provide model for develop-
ment of reliable software for better-informed decision-making
processes and time-saving benefits in emergency situations. Our
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model, with ongoing research and development, can be further
improved in addition to other chronic diseases. Meanwhile the
number of available patients has increased, that opens the possibil-
ity for development of well-trained application with ultimate diag-
nostic precision.
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