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DEPENDENCE OF INPUT ENERGY FROM THE LEVEL OF GROUND 
NONLINEARITY 

 
ALEKSANDRA RISTESKA-KAMCHESKI AND VLADO GICEV 

 
Abstract. In this paper we studied the characteristics of the response when different 
boundary conditions are applied. We analyzed a two-dimensional model of the ground-
foundation system (construction) and investigated how the physical-mechanical 
characteristics (density and propagation velocity) of the constituent elements of the 
ground-foundation system affected the energy that would enter the building. 
 

1. Introduction 

In the field of physical phenomena where the region of interest is infinite, such as the 
case of the problem of propagation of seismic and other types of waves, the application 
of a numerical simulation is impossible and unnecessary to perform throughout the 
region. In this case, the artificial boundaries should be such as to allow the wave to 
travel freely outside the boundaries of the numerical model. By "free" output we mean 
as little reflection as possible in the numerically modeled region. On the other hand of 
the propagation of a wave in an infinite domain, there is a wide field of research that 
involves the response of elements with finite dimensions to a seismic wave. In this case, 
the boundaries that limit the elements also exist physically. In the process of numerical 
simulation, the physical response of the borders of the region should be taken. In most 
cases, boundary conditions are particularly important for simulating the process in the 
interior region. Different boundary conditions can give completely different simulation 
results. With the use of numerical methods one problem can be solved from the initial 
time to a desired time in all spatial points. The most popular numerical methods for 
solving partial differential equations are the finite element method and the finite 
difference method. Typically, the finite element method uses implicit schemes in which 
unknown quantities at all spatial points are determined simultaneously for each time step 
by solving a system of linear algebraic equations. Otherwise, more finite difference 
calculation schemes are explicit, where the solution is determined by the solution of the 
previous time step and the equations are independent. The final elements as a numerical 
tool are more convenient than the final differences for modeling complex and irregular 
models. However, for large-scale problems arising in seismology, for example, explicit 
schemes are recommended because they are cheaper (they require less computer 
resources) and easier to implement in numerical algorithms. In the last few decades, 
with the rapid development of computing machines, researchers have been studying 
wave phenomena through computer simulations of mathematical models. With these 
simulations we can predict how the object will respond to seismic excitations. This 
means determining which locations of the building will have a concentration of stresses 
and large permanent deformations that can lead to the breakage of the building. In 
addition to the vulnerability of objects, computer simulations of mathematical models 
help us to study soil damage. 
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2. Numerical model 
We analyzed a two-dimensional model of a ground-foundation-object system 

(construction). The interest of this research was how the physical-mechanical 
characteristics (density and velocity of propagation) of the constituent elements of the 
ground-foundation-object system affected the energy that would enter the building. 
Because of that, we neglected the geometric details of the building and the foundation 
and approximated them with rectangles. The building, the foundation, and the soil 
(ground) have different physical properties. We assumed that the building and the 
foundation were linear, and that the soil could suffer nonlinear deformation. The 
nonlinearity of the soil affects the response of the building to excitation at the base. The 
excitation is from a half-sinusoidal pulse (Fig. 1), and the angle that occupies the 
direction of propagation of the wave with the vertical is denoted by θ. It is assumed that 
all the contacts (interfaces) between the building and the foundation, and the foundation 
and the soil, remain continuous. The height of the building is 𝐻𝐻", and the width 𝑊𝑊" =
2а. The propagation velocity of the wave in the building is 𝛽𝛽", and the density of the 
material from which the building is made is 𝜌𝜌". The foundation has a depth ℎ*, density 
𝜌𝜌* and velocity of propagation of the wave through it 𝛽𝛽*. The soil has a density 𝜌𝜌+ and a 
velocity of wave propagation through it 𝛽𝛽+. In our model we took a section of soil with 
the length 𝐿𝐿- = 10𝑎𝑎 and the width 𝐻𝐻- = 5𝑎𝑎. The depth of the foundation is half the 
width of the building,  ℎ* = 𝑎𝑎.  

 
Figure 1. System with linear structure and foundation and nonlinear soil (Gicev et al, 

2015) 
The incoming wave is an SH plane wave in the form of a semisinusoidal pulse and with 
it we modeled strong impulse movements in the soil. We used the dimensionless 
frequency  as a measure of the pulse duration, where a is half 
the width of the base, and 𝜆𝜆 = Т ∙ 𝛽𝛽+ = 2 ∙ 𝛽𝛽+ ∙ 𝑡𝑡67 is the length of the input wave. 𝑇𝑇 =
2 ∙ 𝑡𝑡67		is	the	pulse	period, 	𝛽𝛽+ is the propagation velocity of the wave in the soil and 
𝑡𝑡6F  is the pulse duration. 

( )02 / / s da a th l b= = ×
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For completeness, we will briefly summarize the model of finite differences and its 
characteristics. To set the spatial network in the finite difference model, we analyze the 
pulse in a spatial domain (S) and the displacement at the points obtained because of the 
pulse is: 

     (1) 
where A is the pulse amplitude and s is the distance from the point under consideration 
to the front of the wave at the initial time and in the direction of its propagation. Using 
the fast Fourier transform, the semisinusoid pulse (1) is transformed into a domain of a 
wave number or spatial frequency (k), as follows:  

      (2) 
The maximum response occurs at 𝑘𝑘 = 0 (rigid body motion). As it increases , the 
answer 𝑤𝑤(𝑘𝑘)	decreases (weakens) and approaches zero, approaching  to infinity. Since 
𝜔𝜔 = 𝛽𝛽 ∙ 𝑘𝑘 and λ = 2π / k with increasing k the angular frequency ω increases and the 
wavelength λ decreases. For proper discretization of the grid, i.e., correct interval 
selection, the highest mode must be selected (max k, i.e. min λ) that our grid can 

reproduce well. In this analysis we chose the maximum wave number, , for 
which the answer 𝑤𝑤(𝑘𝑘) is at least 0.03 of the maximum, 𝑤𝑤(0) (Gicev, 2008). Then, for 
this value of , the corresponding frequencies and wavelengths are: 

 and   (3) 

where  is the propagation velocity of the wave in the soil.  

The accuracy of the finite difference network depends on the ratio of the numerical and 
physical propagation velocities, which ideally should be 1. The parameters that 
affect this accuracy are:  

1) The density of the network  (m is the number of wavelength 
points , and  is the distance between points in the grid); 
2) Courant number  ( is a time step); 
3) The angle of the input wave .  

It has been shown that the error increases when m and decrease and  is close to 0 or 
 (Alford et al., 1974; Fah, 1995; Dablain, 1986). For a second order approximation, 

the above authors state	𝑚𝑚 = 4. 
To model the soil numerically, we selected a rectangular section with dimensions 𝐿𝐿- =
10𝑎𝑎 and 𝐻𝐻- = 𝐿𝐿- 2⁄ = 5𝑎𝑎 (Figure 1). For practical reasons, the maximum number of 
spatial intervals in the network in the horizontal direction (x-axis) is 200, and in the 
vertical (y-axis) 400 (125 in the soil plot and 275 in the building). The minimum spatial 
intervals in the model are . For a grid with a smaller 
spatial interval , the computation time increases rapidly. Thus, for , according 
to the above-mentioned criterion for discretization, the highest mode that we want to be 
well reproduced with our spatial grid has a wave number  for which 𝑤𝑤(𝑘𝑘) ≈
0.03 ∙ 𝑤𝑤-RS = 	0.03 ∙ 𝑤𝑤(0)has a frequency . 

0( ) sin[( / ( ))]s dw s A s tp b= × ×

[ ]( ) ( )w k F w s=
k

k

maxk k=

maxk

max maxkw b= min max max2 / 2 /kl p pb w= =

sb b=

/c b

xm D= /l
l xD

/s t xc b= D D tD
q

c q
2/p

min / 200 76.4/ 200 0.382mx L mD = = =

xD 2=h

maxk k=
max 980 /rad sw =
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3. Energy distribution in the system 

The flow of energy through a given area can be defined in relation to the passage of the 
wave through the surface 𝐴𝐴+U:  

   (4) 

Where  is the density of the soil,  is the velocity of propagation of the wave 
through the soil, v is the velocity of movement of soil particles, and 𝐴𝐴+Uis the area 
normal to the direction of wave propagation. From the geometry of our calculation 
model (Figure 1), the area normal to the passing wave is: 

   (5) 
where  is the height and  width of the soil section in our model (Figure 1), 
respectively. 
By inserting and integrating equations (3) in (2) we get the analytical solution for the 
wave energy input in the model, as follows: 

    (6) 
As can be seen from equation (6), for the defined length of the soil section  and the 
defined input angle , the input energy is reciprocal of the pulse duration, which means 
that it is a linear function of the dimensionless frequency . 
Due to the law of conservation of energy, the input energy is balanced by the following:  

• Cumulative energy 𝐸𝐸WXY  goes out of the model, and is calculated by equation 
(4),  

• Cumulative (hysterical) energy, i.e., the energy consumed for the creation and 
development of permanent deformations in the soil, is calculated by: 

, (7) 

where  is the time at the end of the analysis, N is the total number of points,  

are the stresses at points in x and y axis, respectively,  is the 

increase of the elastic deformation in the direction x at point i, and  
is the increase of the elastic deformation in the direction y at the point i. 

• The instantaneous energy in a building, which consists of kinetic and potential 
energy, can be calculated from: 

 , (8) 

0
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a
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where  and  are the horizontal and vertical distances of the grid in the building,

 and µ are the density and shear modulus of the building, respectively,  is the 
velocity of the particles, while 𝜀𝜀S	and 𝜀𝜀[	are the deformations at point i of the building. 
To study only the effect of scattering on the foundation, it is assumed that the building is 
high enough that the reflected wave from the top of the building cannot reach the 
building-foundation contact by the end of the analysis. The analysis is stopped when the 
wave is completely out of the ground.  
 

4. Numerical example 
We took the Holiday Inn Hotel in Van Nuys, California as a prototype for our two-

dimensional numerical model (Figure 2). The hotel is located in the middle of the San 
Fernando Valley in the metropolitan area of Los Angeles, California, and was fully 
instrumented. During the Northridge earthquake in California in 1994, the hotel was 
severely damaged (Figure 3) and its response during this earthquake has been analyzed 
and described in many articles and reports (Li and Jirsa, 1998; Browning et al., 2000); 
Trifunac and Ivanovic, 2003; Gicev and Trifunac 2006; Gicev and Trifunac 2011. For 
our two-dimensional SH model, we took the physical-mechanical characteristics of the 
soil on which the hotel is built, as well as the equivalent physical-mechanical 
characteristics of the hotel in the east- west, obtained by impulse response analysis of a 
one-dimensional model.  

 

Figure 2. View of the hotel “Holiday Inn”  Figure 3. Post-earthquake view of in Van 
Nuys from North-East                 damaged columns 

 
We assumed that all contacts in our model, three foundation-soil contacts and one 
foundation-building contact (Figure 1) remain continuous, i.e., no separation or sliding 
is allowed. The building and the foundation remain linear throughout the analysis. 
Figure 1 shows the dimensions of the model and the physical-mechanical characteristics 
of the elements that make up the model in general numbers. For our example, the 
propagation velocity of the SH wave in a building is  ,  in the 
ground. The width of the foundation is the same as the width of the building 𝑊𝑊" =
2𝑎𝑎 = 19.1𝑚𝑚, and its depth is half of its width, ℎ* = 	𝑎𝑎	 = 	9.55	𝑚𝑚. The density of the 

xD byD

r iv

m/s b 100=b m/s s 250=b
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material from which the building is constructed is for all examples in this 
study. We took the density of the foundation and the soil the same . 
We stop the calculation at time Ts, when the complete filtered pulse passes the right 
corner of the foundation-structure contact, B (Figure 1).  

,   (9) 

Where  and  are the vertical and horizontal phase velocities of the 

SH wave propagating in the soil,  and  (Figure 1) are the width and height of the 

soil section, a is the half-width of the structure and  is the duration of the half-
sinusoidal pulse. After this time, we have no energy input in the construction. Since we 
only researched the energy that enters the construction, we varied the height of the 
building, . We calculated the height of the building from the condition for the time 
after the wave front (pulse) that reached point A (Figure 1), reached the top of the 
structure, bounced and continued to travel backwards, did not reach the foundation-
building contact until the moment when the complete pulse has passed point B when we 
interrupt the numerical simulation. The shortest time to reach the wavefront from the 
lower left corner of the model to the left corner of the foundation contact, then bounce 
off the top of the structure and reach the foundation contact again is: 

   (10) 

Then the required condition for calculating the height of the building is , or 

    (11) 

From (11) and keeping in mind that , we calculate the required height of the 

structure (object) . 

From the point of view of design of seismically resistant structures, it is important to 
know the excitation at the base of the structure. Because the input energy through a 
given cross-section depends on the velocity of the particles at equation (11), we 
investigated how different factors affect the velocity of the particles at the foundation-
object contact, and thus at the seismic energy entering the building. The factor that we 
researched was the level of nonlinearity of the ground C, at different input angles θ. For 

3
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this purpose, we have defined the mean velocity of the particles of the contact object-
foundation: 

 ,   (12) 

where  is the number of points of the contact foundation-object, and  is the 
velocity at point i of the contact in time step k. In this way, for each time step of our 
numerical simulation, we calculated the mean pulse excitation velocity with a 
dimensionless frequency ɳ. For the largest absolute value of the mean velocity and the 
corresponding ɳ, we obtain a point on the curve . We conducted the 
research in the domain of the dimensionless frequency of excitation  with 

a step . In this way we have  points on our curves 

.  
 

5. Results and discussion 

Figures 4, 5, 6 and 7 show the normalized curves , 

where  is the highest velocity at absolute value that occurs on the free surface 
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this purpose, we have defined the mean velocity of the particles of the contact object-
foundation: 

 ,   (12) 
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trend of the previous two curves, by not starting from 1 for the smallest considered 
dimensionless frequency, ɳ = 0.06, but from = 0.8. 
  

 

Figure 4. Peak average velocity vav at structure-foundation interface normalized by  
peak free-field velocity vmax, ff  vs. ɳ for three levels of nonlinearity of soil. θ = 00 

 

This is because in the previous two curves, for the smallest dimensionless frequencies, 
the ground is linear and there is no permanent deformation in it, which is not the case 
with the model with large nonlinearity, C = 0.8, when permanent deformations occur at 
the smallest ɳ. Models with low nonlinearity on the ground have larger ordinates than 
models with higher nonlinearity. The model with the highest level of nonlinearity in the 
ground C = 0.8 (red line) has the smallest ordinates of  for all ɳ, which leads to 
the conclusion that the models with high nonlinearity in the soil, i.e. small εm, i.e. small 
C in equation (2) prevent (do not allow) much of the energy to reach the object (to the 
foundation-object contact). This insight allows us to understand why many of the 
buildings on weak soil (with a high level of nonlinearity) and close to the epicenter of 
the 1994 Northridge earthquake remained completely undamaged. As the input angle θ 
increases, for high frequencies (Figures 5 to 7), the curves approach. Figure 5 shows the 
corresponding input angle curves θ=300. As ɳ increases, the curves  approach 
each other.  
In Figure 5, it can be seen that for lower nonlinearity, C = 1.1 and C = 1.5 (green and 
blue lines), the curves  almost match, especially at high dimensionless 
frequencies. Otherwise, for this input angle, θ = 300 the curves for large nonlinearity C = 
0.8, have different, always smaller ordinates than the curves for C = 1.1 and C = 1.5. 
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Figure 6 shows the curves  for input angle θ = 600. The figure shows that for 
small ɳ the model with the lowest level of nonlinearity on the ground C = 1.5 has the 
highest value for the average velocity. 
 

  

Figure 5. Same as Fig.4 but for θ = 300      Figure 6. Same as Fig.4 but for θ = 600 

For , i.e. for the longest pulses,  has the ordinate close to 0.86 and as the 

dimensionless frequency increases,  decreases sharply. At  the relative 
velocity of the model with the lowest level of nonlinearity on the ground C = 1.5, it 
becomes greater than the same for C = 1.5. For , the relative velocities for this 
model are the highest and reach the lowest value in the considered interval, about 0.25. 
The model with the level of nonlinearity on the ground C = 1.1 for  has a 
maximum ordinate for the relative velocity 0.8. The curve of this model runs parallel to 
the curve with the nonlinearity level C = 1.5 and the minimum occurs for , 

. The model with the largest nonlinearity on the ground (red line) behaves 
similarly to the previous curve, in that the minimum value for the mean velocity reaches 
the same for , . It is observed that the increase of the input angle leads 

to the approximation of the curves . 
Figure 7 shows the curves of the previous mathematical models, but at the input pulse 
angle θ = 850. It is obvious that the maximum value for the relative velocity is lower 
than that at the input angle θ = 600, . This value reaches the curve of the 
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model for the lowest nonlinearity of the ground C = 1.5 (blue line). The curve with the 
level of nonlinearity C = 1.1 behaves similarly, with a small difference in the maximum 
and minimum of the relative velocity. Curves with large nonlinearity on the ground (C = 
0.8) have the lowest value for velocity, about 0.58. As ɳ increases, they decrease and for 

 reach the minimum, about 0.1. Figure 7 also shows that as the pulse input angle θ 

increases, as the frequency increases, the curves  decrease and move closer to 
each other (some of them even coinciding). This shows that at higher ɳ the degree of 
nonlinearity of the ground is almost irrelevant to the values of the relative velocity of 
the foundation-object contact, . It is also obvious that these velocities for larger 
ɳ become almost constant, i.e., they no longer depend on the frequency.  
 

 

Figure 7. Same as Fig.4 but for θ = 850 

6. Conclusion 
 
We conclude that the models with high nonlinearity on the ground have the smallest 
ordinates for , i.e., as the nonlinearity of the ground increases, so most of the 
input energy is scattered from the foundation and a smaller part enters the building. 
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