We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Leversha, G., The Geometry of the Triangle, UKMT (2013).Google Scholar
2
Nesbitt, A. M., Problem 15114, Educational Times 55 (May 1902) p. 233.Google Scholar
3
Engel, A., Problem-Solving Strategies, Springer-Verlag, New York, (1998).Google Scholar
4
Lukarevski, M., An alternate proof of Gerretsen's inequalities, Elem.Math.72, (2017) pp. 2–8.Google Scholar
5
Lukarevski, M., Exradii of the triangle and Euler's inequality, Math. Gaz. 101 (March 2017) p.123.10.1017/mag.2017.18CrossRefGoogle Scholar
6
Lukarevski, M., A Simple Proof of Kooi's Inequality, Math. Mag.93 (3), (2020) p. 225.10.1080/0025570X.2020.1736875CrossRefGoogle Scholar
7
Lukarevski, M., Marinescu, D. S., A refinement of the Kooi's inequality, Mittenpunkt and applications, J. Inequal. Appl.13 (3), (2019) pp. 827–832.10.7153/jmi-2019-13-57CrossRefGoogle Scholar
8
Lukarevski, M., Wanner, G., Mixtilinear radii and Finsler-Hadwiger inequality, Elem.Math.75 (2020) pp. 121–124.Google Scholar
9
Finsler, P., Hadwiger, H., Einige Relationen im Dreieck, Commentarii Mathematici Helvetici, 10 (1937) (1), pp. 316–326.Google Scholar
10
Lukarevski, M., The circummidarc triangle and the Finsler-Hadwiger inequality, Math. Gaz. 104 (July 2020) pp. 335–338.10.1017/mag.2020.63CrossRefGoogle Scholar
11
Lukarevski, M., The excentral triangle and a curious application to inequalities, Math. Gaz.102 (November2018) pp. 531–533.10.1017/mag.2018.134CrossRefGoogle Scholar