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It is exactly one hundred years ago when the first paper about the development of polarography 

was published in 1922. Polarography is considered a predecessor of voltammetry, and this iconic electro-

chemical technique was designed by the Nobel laureate Jaroslav Heyrovsky. In this short review, the aim 

is to highlight some of the most important achievements of voltammetry so far. While hints are given to 

some of the most important theoretical works related to various electrode mechanisms in cyclic voltam-

metry and pulse voltammetric techniques, a critical part is written that should help to improve the com-

munication between theoretical and experimental electrochemists. Since a main application of voltamme-

try is in the field of constructing biosensors, some of the major achievements and several drawbacks of 

applying voltammetric techniques in designing sensors are discussed. In a small part of this review, the 

role of nanomaterials in voltammetry is also considered. As scanning electrochemical microscopy 

(SECM) seems to be most promising instrumental system that will bring voltammetry a step closer to 

probing real biological systems, critical aspects about the weaknesses of this technique are also briefly 

discussed. In the final outlooks, we present a set of directions in which voltammetry will develop in the 

coming years. The paper is written in a way to motivate younger electrochemists to get more involved in 

exploring the voltammetry.  
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ИДНИНА НА ВОЛТАМЕТРИЈАТА 

 

Точно пред сто години, во 1922 година, е публикуван првиот научен труд што го опишува 

развојот на нова електрохемиска техника наречена поларографија. Поларографијата се смета за 

претходник на волтаметријата и оваа техника е дизајнирана од страна на добитникот на Нобелова 

награда Јарослав Хејровски. Главната цел во овој краток прегледен труд е да се прикажат некои од 

најголемите достигнувања во волтаметријата. Покрај дадените информации за некои од 

најважните теоретски трудови што се однесуваат на објаснувањето на својствата на различни 

механизми во циклична волтаметрија и во пулсни волтаметриски техники, претставена е и 

критична дискусија што треба да помогне во комуникацијата помеѓу теоретските 

електрохемичари и истражувачите што работат на полето на експериментална електрохемија. 

Бидејќи главната апликација на волтаметријата е во дизајнирањето на биосензори, претставени се 

најголемите достигнувања на ова подрачје, а дискутирани се и недостатоците од примената на 

волтаметријата во дизајнирањето на електрохемиски сензори. Во мал дел од прегледниот труд е 

опишана и улогата на наночестичките што се применуваат во електрохемиските експерименти. 

Бидејќи скенирачката електрохемиска микроскопија е најсофистицирана волтаметриска техника 

што треба да ја доведе волтаметријата чекор поблиску до испитувањето на електрохемиските 

својства на биолошките микросистеми, во трудот е даден и критички осврт на слабите страни на 

оваа техника. На крајот од овој прегледен труд се дадени насоки во кои волтаметријата би можела 

да се развива во наредните години. Овој прегледен труд е напишан со цел да ги мотивира младите 

електрохемичари да ги користат поинтензивно можностите на волтаметријата.  
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1. INTRODUCTION 

 

It was in 1959 when an electrochemist (Jaro-

slav Heyrovsky) was awarded the Nobel Prize for 

the first time for his achievements in developing 

"polarography".1 Since then, it took exactly 60 

years for another electrochemical achievement to 

be awarded the Nobel Prize for Chemistry in 2019, 

this time for work related to the development of 

lithium-ion batteries.2 Meanwhile, electrochemis-

try and especially voltammetry made tremendous 

progress in many areas of research.3–7 Even though 

voltammetry has made a huge impact in many 

different scientific fields (physics, chemistry, 

pharmacy, medicine, biofuel cells, environmental 

protection, etc.), it must be admitted that it is still 

considered by many as a sort of "secondary re-

search technique".8 The fact is that voltammetric 

systems are among the cheapest instrumental de-

vices that are already available in many research 

laboratories. With the newest electrochemical sys-

tems developed in the last 10 years, one can afford 

an entire voltammetric device (i.e., potentiostat 

plus electrochemical cell with all electrodes in-

cluded) for less than 4000 US $. Moreover, most 

of the voltammetric experiments are not time-

consuming and can be performed using a very easy 

and cheap protocol. Because the electrode trans-

formation of a given analyte in voltammetry can be 

linked to various phenomena such as phase trans-

formation, adsorption, coupled chemical reactions, 

mass transfer effects, and many more,3–5 the 

interpretation of voltammetric outputs is often a 

very challenging task, even for the skilled electro-

chemists. Because the core of every electrochemi-

cal experiment is an evaluation of certain physical 

parameters, from the experimental data obtained, 

one should make a suitable mathematical model 

that will reveal the most probable behavior of the 

system that is considered under defined experi-

mental conditions. Once the mechanism of the 

electrode transformation is revealed, the corre-

sponding data analysis will drive the evaluation of 

the physical parameters of the studied system. 

Mathematical modelling in voltammetry is not a 

simple task, and most of the troubles met by exper-

imental electrochemists come from the appropriate 

interpretation of the theoretical voltammetric data. 

Indeed, voltammetry has been applied to study var-

ious systems, ranging from small ions3–5 to bulky 

proteins,9–12 and it is incorporated as a working 

technique in many electrochemical systems. In this 

short overview, hints are given to some of the most 

important voltammetric achievements, while some 

of the major puzzling aspects of practicing volt-

ammetry are also critically discussed. 
 

 

2. RESULTS AND DISCUSSION 

 

Exactly 100 years ago, the Czech electro-

chemist Jaroslav Heyrovsky designed the first 

electrochemical device with the capacity to obtain 

insights into the redox transformation of substanc-

es that exchange electrons with an electronic 

conductor in experiments performed under a 

defined potential difference.1 Polarography was 

the name of that electrochemical technique, for 

which the Nobel Prize was awarded to J. Heyrov-

sky in 1959. Nowadays, polarography (using the 

dropping mercury as a working electrode) is al-

most completely removed from most of the elec-

trochemical labs, and it is almost entirely replaced 

by voltammetry in all novel commercial electro-

chemical systems. Voltammetry is an electrochem-

ical technique that uses solid working electrodes 

made mainly of graphite, gold, or platinum.3 In the 

time that it was designed (in the late 1950s), 

polarization of the working electrodes in voltam-

metry was achieved by applying a bias having a 

linear or cyclic form. The latter paved the way for 

the design of cyclic voltammetry, one of the most 

familiar voltammetric techniques both for 

mechanistic and kinetic characterizations.3,13–17 

Cyclic voltammetry is, even nowadays, a first 

choice in studying different electrode mechanisms. 

Moreover, many physical phenomena such as 

adsorption, phase transformation, or chemical reac-

tions that occur at/nearby a working electrode can 

be successfully recognized and characterized by 

cyclic voltammetry.3–5,16,17 Because of its ability to 

obtain deeper insight into the nature of all the 

above-mentioned phenomena, cyclic voltammetry 

is often designated as "electrochemical 

spectroscopy".17 A valuable historical overview on 

polarography and cyclic voltammetry can be found 

in.18 With respect to the theories developed on cy-

clic voltammetry until now, a large number of 

mathematical models of "diffusional" and "sur-

face" electrode mechanisms, in which the electrode 

transformations are associated with preceding, in-

termediate, follow up, dimerization, or regenera-

tive chemical reactions at planar electrodes, rotat-
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ing electrodes, microelectrodes, and rough-surface 

electrodes, simulated for single and multiple elec-

tron transfer steps have been presented in the lit-

erature.3–5,13–16,19–50 The majority of the cyclo-

voltammetric theories have been developed by 

prominent names in theoretical electrochemistry, 

such as M. Olmstead, R. Nicholson, J. M. Saveant, 

A. Bond, E. Laviron, J. Heinze, A. Bard, Ch. Ama-

tore, R. Compton, K. Oldham, Anson, M. Lovrić, 

F. Scholz, F. Armstrong, A. Molina, S. Komorsky-

Lovrić, L. Bieniasz, I. Shain, J. O’Dea, J. Os-

teryoung, V. Mirčeski, L. Faulkner, and many 

more. Since the mid 1960s, there have been per-

manent efforts to design novel voltammetric 

techniques with similar abilities to cyclic 

voltammetry for diagnostics of electrode mecha-

nisms but with much better performances in sensi-

tivity than cylic voltammetry. The last was accom-

plished by launching of the so-called "pulse 

voltammetric techniques", which were designed in 

a way to achieve superiority by measuring the de-

sired "Faradaic currents" over the unwanted 

"charging currents" in voltammetric experiments. 

By applying potential in the form of pulses with 

defined characteristics and by measuring the cur-

rent in a small time-frame at the end of the applied 

pulses, one achieves significant domination of 

Faradaic currents over the charging currents.51–53 

Nowadays, there are several commercially availa-

ble pulse voltammetric techniques in modern po-

tentiostats, i.e., differential pulse voltammetry 

(DPV), square-wave voltammetry (SWV), normal 

pulse voltammetry (NPV), differential square-

wave voltammetry (DSWV), or cyclic square-wave 

voltammetry (CSWV).3,51–56 All pulse voltammet-

ric techniques have a different form of applied 

potential pulses, and they also differ in the current 

sampling procedure. In the short list of theoretical 

electrochemists who developed scores of theories 

for different mechanisms in pulse voltammetric 

techniques,3,51–53,57–90 the names of outstanding 

electrochemists such as Janet Osteryoung, John J. 

O’Dea, Milivoj Lovrić, Valentin Mirčeski, Richard 

Compton, Alan Bond, Zbigniew Stojek, Hiroaki 

Matsuda, Šebojka Komorsky-Lovrić, Angela Mo-

lina, Jan Myland, Samuel Kounaves, Stephen 

Feldberg, Robert Osteryoung, Craig E. Banks, and 

many more can be found. To the present day, there 

are several thousands of scientific papers related to 

various theoretical aspects of different electrode 

mechanisms studied under conditions of some 

voltammetric technique. Regardless of the algo-

rithm used, the major task of all theoretical works 

is to provide diagnostic criteria to recognize some 

phenomenon at a defined electrode mechanism. 

Moreover, it is up to theoretical electrochemists to 

provide working curves that will clearly portray 

the most relevant results of their studies. In addi-

tion, they should propose methodologies for get-

ting access to physical parameters that are relevant 

to the considered mechanism. In scores of the theo-

retical works considered in voltammetric condi-

tions, one finds valuable methodologies that allow 

access to kinetic and thermodynamic parameters 

relevant to the studied systems. While in most of 

the theoretical voltammetric works, there is a com-

prehensive explanation of the mathematical algo-

rithms used, troubles are mainly met by explana-

tions of the theoretical results in a language that is 

understandable for the experimentalists. There is a 

general impression that the majority of the theoret-

ical results are not easily received by many exper-

imentalists working in voltammetry. What is ex-

pected from the theoreticians in their further theo-

retical works is to propose a working protocol or 

some type of guidance in which they will give 

hints to experimentalists on designing a proper 

voltammetric experiment. This will help experi-

mentalists to evaluate the physical parameters of 

relevance in light of the theoretical results. Unfor-

tunately, this part is missing in many valuable the-

oretical voltammetric papers, and that aspect must 

be improved soon.  

One of the most important applications of 

voltammetry is in the design of specific biosen-

sors.5,91–93 Voltammetric biosensors are devices 

that take advantage of the sensitivity of a particular 

electroanalytical method and the inherent 

selectivity of the defined biological system. In 

most voltammetric biosensors, a defined biological 

substance, commonly attached to the surface of the 

working electrode, has the ability to recognize its 

specific counterpart (the analyte) present in the 

voltammetric cell. An eventual chemical interac-

tion between these two systems might produce an 

electrical signal that will be proportional to the 

analyte concentration. This event can be amplified 

and detected, and it will be displayed in a specific 

pattern on recorded voltammograms. In last 25 

years, a huge impact of voltammetry on the field of 

biosensor design has been witnessed.91–94 Because 

many recent reviews report on a large number of 

voltammetric sensors, we refer the readers to some 

of those excellent works.91–96 At this point, it is 

worth mentioning one remarkable achievement of 

voltammetry in probing the chemical features of 

so-called redox proteins and enzymes.97 The tech-

nique, named "protein-film voltammetry" (PFV), 

introduced by Armstrong et al.98–101 is seen as a 

cornerstone of voltammetric methodologies de-
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signed to obtain insight into the chemistry of wa-

ter-insoluble redox enzymes that keep their activity 

even after being immobilized on the surface of a 

working electrode. In the last 20 years, scores of 

relevant theoretical98–112 and experimental papers98–

102,110,113–120 have been published reporting on the 

mechanism of action between various redox en-

zymes and defined substrates, thus paving the way 

to getting access to kinetic and thermodynamic 

parameters of many enzyme-substrate interactions. 

Due to the selectivity of redox enzymes to interact 

with a defined substrate only, protein-film volt-

ammetry was also used to design specific voltam-

metric biosensors [see review 121 and the refer-

ences therein, for example]. Although remarkable 

progress has been achieved in understanding the 

chemistry of some lipophilic redox enzymes by 

using a simple voltammetric setup, the number of 

proteins and enzymes studied experimentally with 

PFV remains quite limited.102,110,121 The hindrances 

in electron communication between the working 

electrode and the redox active center(s) that are 

deeply hidden in the bulky protein structure are 

seen as major limiting factors for the broader use 

of PFV in enzymatic biosensing. In addition, deac-

tivation/inhibition of some proteins often happens 

when they are brought in contact with the material 

of the working electrode.  

For achieving a better selectivity and sensi-

tivity of voltametric biosensors, it was inevitable 

that steps towards modifications of surfaces of 

commercially available working electrodes would 

be undertaken. Polymerization methods at the elec-

trode’s surfaces were seen as an initial step in im-

proving some of the performances of the working 

electrodes.122–124 Furthermore, the discovery of 

metal-based nanoparticles and their application as 

modifiers of different electrode surfaces was the 

next step forward in the era of the development of 

voltammetric biosensors.125–135 However, a real 

revolution in improving the overall performances 

of commercial working electrodes and their inten-

sive application in developing voltammetric bio-

sensors happened some 20 years ago. This period 

coincides with the year in which 2D graphene was 

isolated in a separate form.136 The introduction of 

this carbon-type material in electrochemistry, 

which is characterized by amazing elasticity and 

flexibility and highly expressed thermal and elec-

trical conductivity, brought quick positive feed-

back in developing scores of voltammetric biosen-

sors.137 Because the graphene structure can be 

rolled and wrapped quite easily, many carbon-

based nanomaterials with outstanding physical per-

formances were derived from graphene, such as the 

fullerenes, carbon single-walled nanotubes, carbon 

multiwalled nanotubes, quantum nanodots, and 

nanoplatelets.138 Very soon, it was recognized that 

these graphene-based nanostructures exhibit amaz-

ing improvements over the performances of the 

material of working electrodes used in voltamme-

try.138 An inherent property of all graphene-based 

nanoforms is their overexpressed ability to interact 

with a large number of biomolecules, hence serv-

ing as a platform for the attachment of many spe-

cific functional groups on their surface.136,138 The 

so-called "functionalization" of the graphene-based 

nanostructures leads to the creation of a bio-

modified nanoplatform on the surface of the work-

ing electrodes that is made a key platform in spe-

cific molecular recognitions in voltammetric bio-

sensors.136,138–140 In the last couple of years, several 

excellent reviews already reported on many volt-

ammetric biosensors based on carbon nanotubes or 

fullerenes.137–145 Next to their use in chemistry and 

pharmacy, scores of voltammetric biosensors using 

graphene-based nanoforms have been designed for 

quantification of systems relevant in clinical bio-

chemistry and molecular diagnostics, such as 

glucose, urea, DNA, hemoglobin, and other im-

portant biomolecules detected in physiological flu-

ids.142,146,147 Moreover, because specific antibodies 

can be attached to the surface of graphene-based 

nanoforms, several voltammetric biomarkers have 

also been constructed, reported to be suitable in 

medical diagnostics.148–150 From most of the volt-

ammetric studies presented so far, it seems that the 

future of voltammetry will be closely linked to the 

further development of current and novel forms of 

various nanoparticles. 

The biggest expectations for the broader ap-

plication of voltammetry in biological micro-

systems came some 30 years ago, when scanning 

electrochemical microscopy (SECM) was intro-

duced by A. J. Bard.151 SECM is a hybrid-type of 

microscopic-electrochemical technique that can 

detect a redox activity even from single cells pre-

sent in water solution.152 In SECM, by using an 

ultra-microelectrode (with diameter of 20 µm or 

smaller) that is polarized at a defined potential, it is 

possible to detect the redox activity of defined spe-

cies present in a very limited part of some biologi-

cal or chemical system. The SECM has been ap-

plied so far in important research areas such as cor-

rosion,153 surface modification,154 medical diagnos-

tics,155 and biosensor development.156 Even very 

precise topographies of some carcinogenic cells 

have been achieved by applying the SECM in ex-

periments with single cells.157 A comprehensive 

overview about the basic principles and achieve-
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ments of SECM can be found in.158 Although there 

are several reports of using the SECM for reliable 

diagnostic cancer studies on single cells,152,156–158 it 

seems that due to the practical problems that arise 

from fragile ultra-micro electrodes, whose surface 

can get easily contaminated when working in a 

complex matrix of biological systems, the broader 

application of this technique is far below its real 

potential. Indeed, one needs researchers skilled 

both in microscopy and electrochemistry to get 

relevant data from the experiments performed with 

quite expensive SECM instrumentation. The very 

high price (more than 100 000 US $) seems to be 

another limiting factor for using the SECM to 

study electrochemical systems of broader interest. 

These are the most probable reasons why there are 

"only" about 2500 papers published in which the 

SECM was explored in the last 33 years. 
 

 

3. OUTLOOKS FOR THE FUTURE 
 

This year coincides with the 100th anniver-

sary of the first work published on the develop-

ment of the predecessor of voltammetry, i.e., po-

larography.1 Without exaggeration, voltammetry is 

the most versatile instrumental technique that is 

already applied in hundreds of thousands of studies 

related to various phenomena observed during 

electrode transformation of important physiologi-

cal and chemical systems. In the last 30 years, one 

witnesses the rapid progress of voltammetry in un-

derstanding processes of corrosion, in environmen-

tal analysis, in designing sensors relevant to bio-

medicine, in developing biofuel cells, in character-

izing novel materials, in separation and analyses in 

many industrial processes, in understanding the 

ion-transfer processes across a liquid-liquid inter-

face,159,160 and many more. The role of voltamme-

try in biosensor development has been recognized 

significantly in the last 20 years. This coincides 

with the development of various metallic and gra-

phene-based nanoparticles that have superior phys-

ical properties compared to the commercial materi-

al from which the working electrodes are made. 

Although about tens of thousands of voltammetric 

sensors are reported every year for the detection of 

DNA, proteins, enzymes, hormones, glucose, and 

many other physiological systems, regretfully, only 

few voltammetric biosensors have been trans-

formed into commercially applicable devices. In-

teresting information existing in the literature is 

that there are more than 20 000 reports of different 

enzymatic and non-enzymatic voltammetric sen-

sors developed for glucose detection in blood, but 

none is still designed for commercial purposes. 

The same also holds true for the majority of volt-

ammetric biosensors for other physiological and 

chemical systems. A major reason for these dis-

crepancies is the fast contamination of the working 

electrode’s material when applying these conduc-

tors for probing complex biological samples. A 

huge potential in overcoming these problems is 

seen in metallic nanomaterials and especially in 

graphene-based nanoparticles and their ability to 

host specific substrates on their surfaces that can 

recognize only a single defined target in complex 

biological matrixes. It will also be a challenging 

task to develop multi-functionalized nanomaterials, 

where several different substrates will be attached 

at a single nano-platform. This will open up the 

possibility of designing voltammetric biosensors 

capable of simultaneously quantifying different 

biomolecules and permanently monitoring com-

plex biological samples. In the last couple of years, 

many fast and reliable analytical tools have been 

designed for the detection of Covid-19. In that re-

spect, voltammetry has made rapid progress in the 

field of virus detection, and several reliable volt-

ammetric sensors for the detection of Covid-19 

have already been reported.161–164 It seems that 

voltammetric devices are quite suitable for the de-

velopment of an inexpensive platform for rapid 

diagnosis of Covid-19. Now, it seems very likely 

that the future of voltammetry in the 21st century 

will be closely tied to the development of new na-

nomaterials. With respect to achieving a better sen-

sitivity of the voltammetric techniques, novel ma-

terials, and novel types of modifications of work-

ing electrodes should be designed. In addition, one 

expects that novel voltammetric techniques with 

new forms of the applied potential should be de-

signed, as those reported recently72,77,88 that will 

contribute to better analytical sensitivity. Because 

voltammetry turns quickly to the nano-world, it 

will be a challenging task for the theoreticians to 

start considering the theories of voltammetry at the 

molecular level. Indeed, one expects to see, in the 

near future, a large number of so-called "interdis-

ciplinary theories", in which molecular dynamics 

simulations, quantum mechanics, and electrochem-

ical theories will be intersecting. Performing volt-

ammetry experimentally is probably not very diffi-

cult, but understanding voltammetry is definitely not 

an easy task. It is up to all electrochemists to transfer 

their knowledge to younger generations and to make 

voltammetry a research technique of the first choice. 

In Figure 1, we give a visual scheme for the possible 

directions in which voltammetry will develop in the 

21st century. Happy 100th anniversary to polarogra-

phy and voltammetry. 
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Fig. 1. Possible directions in which voltammetry will develop in the 21st century 
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