MATHEMATICAL MODEL FOR PREDICTIONS
OF COVID-19 DYNAMICS
L.K. Lazarova1, N. Stojkovikj2, A. Stojanova3,
M. Miteva4, M. Ljubenovska5 1,2,3,4,5 Goce Delcev University
Faculty of Computer Science
Stip 2000, Republic of NORTH MACEDONIA
COVID‑19 outbreak presents the biggest global health creases in last century. Its pandemic spread and influence in everyday social life, economics and health is in central interest of concern for all governments in the world. This pandemic is the worst global disasters since the World Wars and pandemic from 1918, which completely change normal life of people. The combat against Covid-19 is playing a central role in all branches in each country in order to minimize the damage caused by this pandemic. Mathematical modelling of spread of infection and predictions that derived from the models can be used as efficient tool in this combat and can give precise direction to authorities to implement new or balance the already implemented restrictions and measures in order to decrease harmful consequences from epidemic. In this paper we are implementing new modified SEIRS-D model on Republic of North Macedonia epidemic situation, using AnyLogic software. Using this model, we give prediction of spread of disease with or without restriction measures.
You will need Adobe Acrobat reader. For more information and free download of the reader, please follow this link.
References
[[1] S. Sugiyanto, M. Abrori, A mathematical model of the Covid-19 cases in
Indonesia (Under and without lockdown enforcement), Biol. Med. Nat.
Prod. Chem., 9, No 1 (2020), 1519.
[2] N. Mohapatra, Understanding the corona virus pandemic: From a sociological perspective, Int. J. Sci. Res. Publ., 10, No 06 (2020), 149-152.
[3] A. Dogra, B. Goyal, A.M. Sharma, Corona virus: A novel outbreak,
Biomed. Pharmacol. J., 13, No 1 (2020), 05-10.
[4] A. Zeb, E. Alzahrani, V.S. Erturk, G. Zaman, Mathematical model for
coronavirus disease 2019 (COVID-19) containing isolation class, Biomed.
Res. Int., 2020 (2020), Article ID 3452402.
[5] T. Singhal, A review of corona virus disease-2019 (COVID-19), Indian J.
of Pediatrics, 87, No 4 (2020), 281-286.
[6] H. Song, Z. Jia, Z. Jin, Estimation of COVID-19 outbreak size in Harbin,
China, (2020), 1-10.
[7] A. Anirudh, Mathematical modeling and the transmission dynamics in
predicting the Covid-19 - What next in combating the pandemic, Infect.
Dis. Model., 5 (2020), 366-374.
[8] M.O.F. Barriguete, S.A. Zarasvand, Quarantine and COVID-19, J. Heal.
Med. Nurs., 85 (2021), 7374.
[9] K.Y. Ng, M.M. Gui, COVID-19: Development of a robust mathematical
model and simulation package with consideration for ageing population
and time delay for control action and resusceptibility, Phys. D Nonlinear
Phenom., 411 (2020), Article 132599.
[10] K. Sharma, R.L. Sharma, V. Sharma, Corona virus epidemiology: A review
article, Int. J. Community Med. Public Heal., 7, No 12 (2020), 5219-5224.
[11] O. Zakary, S. Bidah, M. Rachik, H. Ferjouchia, Mathematical model to
estimate and predict the COVID-19 infections inMorocco: Optimal control
strategy, J. Appl. Math., 2020 (2020), Article ID 9813926.
[12] B. Ivorra, M.R. Ferrndez, M. Vela-Prez, A.M. Ramos, Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into
account the undetected infections. The case of China, Commun. Nonlinear
Sci. Numer. Simul., 88 (2020), Article 105303.
[13] S. Melliani, A. El Allaoui, L.S. Chadli, A simple mathematical model for
Coronavirus (COVID-19), medRxiv (2020), 1-6.
[14] J. Wang, Mathematical models for COVID-19: applications, limitations,
and potentials, J. Public Heal. Emerg., 4, No 9 (2020), 1-6.
[15] Y. Tang, S. Tang, S. Wang, The values and limitations of mathematical
modelling to COVID-19 in the world: a follow up report, Emerg. Microbes
Infect., 9, No 1 (2020), 2465-2473.
[16] A. Adiga, D. Dubhashi, B. Lewis, M. Marathe, S. Venkatramanan, A.
Vullikanti, Mathematical models for COVID-19 pandemic: a comparative
analysis, J. of the Indian Institute of Science, 100, No 4 (2020), 793-807.
[17] B. Adhikari, X. Xu, N. Ramakrishnan, B. Aditya Prakash, Epideep:
Exploiting embeddings for epidemic forecasting, In: Proc. of the ACM
SIGKDD Internat. Conf. on Knowledge Discovery and Data Mining
(2019), 577586.
[18] A.N. Desai et al., Real-time epidemic forecasting: challenges and opportunities, Heal. Secur., 17, No 4 (2019), 268-275.
[19] S. Funk, A. Camacho, A.J. Kucharski, R.M. Eggo, W.J. Edmunds, Realtime forecasting of infectious disease dynamics with a stochastic semimechanistic model, Epidemics, 22 (2018), 56-61.
[20] C.J.L. Murray, Forecasting the impact of the first wave of the COVID-19
pandemic on hospital demand and deaths for the USA and European Economic Area countries, medRxiv (2020); doi: 10.1101/2020.04.21.20074732.
[21] G. Perone, An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy, medRxiv (2020); doi:
10.1101/2020.04.27.20081539.
[22] N.G. Reich et al., Accuracy of real-time multi-model ensemble forecasts
for seasonal influenza in the U.S., PLoS Comput. Biol., 15, No 11 (2019);
doi: 10.1371/journal.pcbi.1007486.
[23] F. Brauer, Mathematical epidemiology: Past, present, and future, Infectious
Disease Modelling, 2, No 2 (2017); doi: 10.1016/j.idm.2017.02.001.
[24] S. Eubank, V. Anil Kumar, M.Marathe, A. Srinivasan, N.Wang, Structure
of social contact networks and their impact on epidemics, DIMACS Ser.
in Discrete Mathematics and Theoretical Computer Science (2007), 1-32.
[25] M.V. Marathe, N. Ramakrishnan, Recent advances in computational epidemiology, IEEE Intell. Syst., 28, No 4 (2013); doi: 10.1109/MIS.2013.114.
[26] M.E.J. Newman, The structure and function of complex networks, SIAM
Review, 45, No 2 (2003);
doi: 10.1137/S003614450342480.
[27] A. Palladino et al., Modelling the spread of Covid19 in Italy using a revised
version of the SIR model, arXiv (2020), arXiv:2005.08724.
[28] S. Moein et al., Inefficiency of SIR models in forecasting COVID-19
epidemic: A case study of Isfahan, Sci. Rep., 11, No 1 (2021); doi:
10.1038/s41598-021-84055-6.
[29] M. Ivanova, L. Dospatliev, Data analytics and SIR modeling of COVID19 in Bulgaria, International Journal of Applied Mathematics, 33, No 6
(2020); doi: 10.12732/ijam.v33i6.10.
[30] A. Simha, R.V. Prasad, S. Narayana, A simple stochastic SIR model for
COVID-19 infection dynamics for Karnataka after interventions Learning
from European trends, arXiv (2020), arXiv:2003.11920.
[31] O.N. Bjrnstad, K. Shea, M. Krzywinski, N. Altman, Modeling infectious
epidemics, Nat. Methods, 17, No 5 (2020); doi: 10.1038/s41592-020-0822-z.
[32] M.B. Trawicki, Deterministic seirs epidemic model for modeling vital dynamics, vaccinations, and temporary immunity, Mathematics, 5, No 1
(2017); doi: 10.3390/math5010007.
[33] J.M. Carcione, J.E. Santos, C. Bagaini, J. Ba, A simulation of a COVID19 epidemic based on a deterministic SEIR model, Front. Public Heal., 8
(2020); doi: 10.3389/fpubh.2020.00230.
[34] H. M. Youssef, N. A. Alghamdi, M. A. Ezzat, A. A. El-Bary, A. M. Shawky,
A modified SEIR model applied to the data of COVID-19 spread in Saudi
Arabia, AIP Adv., 10, No 12 (2020); doi: 10.1063/5.0029698.
[35] A. Rˇadulescu, C. Williams, K. Cavanagh, Management strategies in a
SEIR-type model of COVID 19 community spread, Sci. Rep., 10, No 1
(2020); doi: 10.1038/s41598-020-77628-4.
[36] L. Wang, J. Chen, M. Marathe, TDEFSI: Theory-guided deep learningbased epidemic forecasting with synthetic information, ACM Trans. Spat.
Algorithms Syst., 6, No 3 (2020); doi: 10.1145/3380971.
[37] P.M. Kaye, Infectious Diseases of Humans: Dynamics and Control. Roy
M. Anderson and Robert M. May, Oxford University Press (1992).
[38] O.N. Bjrnstad, Epidemics: Models and Data using R, Springer Nature,
Switzerland (2018).
[39] W.O. Kermack, A.G. McKendrick, Contributions to the mathematical theory of epidemics-I, Bull. Math. Biol., 53, No 12 (1991); doi:
10.1007/BF02464423.
[40] O.N. Bjrnstad, K. Shea, M. Krzywinski, N. Altman, The SEIRS model
for infectious disease dynamics, Nat. Methods, 17, No 6 (2020); doi:
10.1038/s41592-020-0856-2.
[41] A. Rachah, M. Saidi, Mathematical modeling and optimal control of Ebola
virus transmission dynamics, International Journal of Applied Mathematics
, 34, No 3 (2021); doi:10.12732/ijam.v34i3.9.
[42] D. Osthus, K.S. Hickmann, P.C. Caragea, D. Higdon, S.Y. Del Valle, Forecasting seasonal influenza with a state-space SIR model, Ann. Appl. Stat.,
11, No 1 (2017); doi: 10.1214/16-AOAS1000.
[43] E. Hincal, B. Kaymakamzade, N. Gokbulut, Humidity level on Covid-19
with control strategies, International Journal of Applied Mathematics, 34,
No 4 (2021); doi: 10.12732/ijam.v34i4.14.
[44] H. Kelly, K. Grant, Interim analysis of pandemic influenza (H1N1)
2009 in Australia: surveillance trends, age of infection and effectiveness of seasonal vaccination., Euro Surveill., 14, No 31 (2009); doi:
10.2807/ese.14.31.19288-en.
[45] S. Cook, C. Conrad, A.L. Fowlkes, M.H. Mohebbi, Assessing Google
Flu trends performance in the United States during the 2009 influenza
virus A (H1N1) pandemic, PLoS One, 6, No 8 (2011); doi: 10.1371/journal.pone.0023610.