11th International HYBRID **Aerosol** Conference **AC** 2022 **4-9 September 2022**

Megaron Athens International Conference Centre (M.A.I.C.C.)

ATHENS Greece

www.iac2022.gr

Organized by: HAAR CIARA

Abstract Book

Table of Contents

	Oral Pres	entatio	ns
	(in alphabetical order,	as per session	codes)
6	AH-1: Aerosol emissions and sources	185	AT-6: Aeroso and Industria
14	AH-2: Novel metrics and tools	192	AT-7: Synthe functional na
22	AH-3: Occupational exposures	199	ATAS-1: Pola
29	AH-4: Organic aerosols: from emissions to toxicity assessment	207	ATAS-2: Sour
37	AH-5: Health impacts and impact assessment of exposure to airborne particles	215	ATAS-3: Aerc
44	AH-6: Aerosol inhalation and deposition studies	223	ATAS-4: Chai
52	AH-7: Bioaerosol: monitoring, emissions and exposure	230	ATAS-5: Aerc and modellin
60	AH-8: Human exposure in urban environments	238	ATAS-6: Seco
67	AMT-1: Low-cost sensors	246	ATAS-7: Cher
75	AMT-2: Measurement Techniques for health relevant aerosols	253	ATAS-8: Radi
83	AMT-3: Particle detection by optical and condensational means	261	ATAS-9: Tran observations
91	AMT-4: Measurement techniques for ambient air	269	ATAS-10: Che the molecula
97	AMT-5: Comparison of different measurement techniques	277	ATAS-11: Cho carbonaceou
105	AMT-6: Electrical and mechanical sizing techniques	284	ATAS-12: Spa optical prope
113	AMT-7: Novel Measurement Techniques I	292	ATAS-13: Cho of carbonace
121	AMT-8: Novel Measurement Techniques II	300	ATAS-14: Sou aerosol
129	AMT-9: Novel Measurement Techniques III	308	ATAS-15: Sou
137	AMT-10: Measurement techniques for carbonaceous particle	317	ATAS-16: Lor transport of a
145	AT-1: Synthesis, structuring and applications of functional nanoparticles I	324	ATAS-17: Sou regions I
153	AT-2: Synthesis, structuring and applications of functional nanoparticles II	332	ATAS-18: Atr observations
161	AT-3: Transportation aerosol emissions and control technologies	340	ATAS-19: Sou regions II
169	AT-4: Combustion generated aerosols, spark ablation, and electrostatic properties	348	ATAS-20: Net ice nucleation
177	AT-5: Nanoparticle surface modification, deposition and thin film formation	356	ATAS-21: Sou

per sessior	n codes)
185	AT-6: Aerosol Measurement Techniques, Filtration and Industrial Aerosols
192	AT-7: Synthesis, structuring and applications of functional nanoparticles III
199	ATAS-1: Polar aerosols and clouds
207	ATAS-2: Source apportionment of urban aerosol
215	ATAS-3: Aerosol-cloud interaction: Observations
223	ATAS-4: Characterization of non-exhaust aerosol
230	ATAS-5: Aerosol-cloud interaction: Observations and modelling
238	ATAS-6: Secondary organic aerosols
246	ATAS-7: Chemistry in a multiphase aerosol system
253	ATAS-8: Radiative impacts of aerosols
261	ATAS-9: Transport of aerosols: Modelling and observations
269	ATAS-10: Chemical profiling of organic aerosols at the molecular level
277	ATAS-11: Chemical characterization of atmospheric carbonaceous aerosols
284	ATAS-12: Spatio-temporal variability of aerosol optical properties
292	ATAS-13: Chemical characterization and modelling of carbonaceous aerosols
300	ATAS-14: Source apportionment of carbonaceous aerosol
308	ATAS-15: Source apportionment at high resolution
317	ATAS-16: Long-term trends and long-range transport of aerosols
324	ATAS-17: Source apportionment in different regions I
332	ATAS-18: Atmospheric new particle formation: Field observations and lab studies
340	ATAS-19: Source apportionment in different regions II
348	ATAS-20: New particle formation and atmospheric ice nucleation
356	ATAS-21: Source apportionment of organic aerosol

Table of Contents

362	ATAS-22: Brown carbon optical properties and radiative effects
370	ATAS-23: Physico-chemical properties of ambient aerosols
377	ATAS-24: Connecting aerosol physico-chemical and optical properties I
385	ATAS-25: Mechanistic understanding of SOA formation and transformation processes
393	ATAS-26: Physico-chemical properties of laboratory aerosols
401	ATAS-27: Connecting aerosol physico-chemical and optical properties II
408	BAP-1: Smog chamber and flow tube simulations and experiments
416	BAP-2: Molecular-level studies of aerosol formation and gas-phase kinetics
424	BAP-3: Modelling aerosol processes I

440	BAP-5: Aerosol transport properties and fluid dynamics
448	BAP-6: Physical properties of aerosols
456	SS-1: Quantification of health risk from airborne particulate pollutants
464	SS-2-A: COVID-19, aerosols, and ventilation I
472	SS-2-B: COVID-19, aerosols, and ventilation II
479	SS-3: Advanced aerosol metrology for atmospheric science and air quality
487	SS-4: Aerosols in agriculture and livestock sectors
495	SS-5-A: Oxidative potential of aerosols particles and health risks I
503	SS-5-B: Oxidative potential of aerosols particles and health risks II

Poster Presentations

(in alphabetical order, as per session and codes)

POST	FER	SES	SIO	1 1

512	AH-P1: Health effects of aerosols
530	AH-P2: Bioaerosols
549	AMT-P1: Instrumentation for aerosol characterization
583	AMT-P2: Measurement techniques
625	AT-P1: Functional nanoparticles
666	ATAS-P1: Aerosol chemistry
705	ATAS-P2: Source apportionment and air quality
800	BAP-P1: Heat and mass transfer: Experiments and simulations
813	BAP-P2: Quantum chemistry of aerosol formation
819	LP-P1: Late Posters 1
825	SS2-P1: Special Session-2: COVID-19, aerosols and ventilation

POSTER SESSION 2

850 AH-P3: Exposure: Sources and health studies

896	AMT-P3: Novel and low cost instrumentation
941	ATAS-P3: Aerosols, clouds, and new particle formation
996	ATAS-P4: Atmospheric aerosol transport and modelling
1028	ATAS-P5: Atmospheric aerosol properties and characterization
1091	AT-P2: Electrical effects
1103	AT-P3: High temperature aerosols and filtration
1111	AT-P4: Aerosol emissions and control technologies
1130	BAP-P3: Modelling of internal and external aerosol processes
1155	BAP-P4: Physical properties of aerosol particles
1161	LP-P2: Late Posters 2
1168	SS1-P1: Special Session-1: Quantification of health risk from airborne particulate matter
1175	SS3-P1: Special Session-3: Advanced aerosol metrology for atmospheric science and air quality
1183	SS4-P1: Special Session-4: Aerosols in the agriculture and livestock sectors
1188	SS5-P1: Special Session-5: Oxidative potential of aerosol particles and health risks

Table of Contents

VIRTUAL POSTERS

1209	AH-eP1: Health effects of aerosols
1216	AH-eP2: Bioaerosols
1228	AH-eP3: Exposure: Sources and health studies
1242	AMT-eP1: Instrumentation for aerosol characterization
1254	AMT-eP2: Measurement techniques
1263	AMT-eP3: Novel and low cost instrumentation
1276	ATAS-eP1: Aerosol chemistry
1287	ATAS-eP2: Source apportionment and air quality
1321	ATAS-eP3: Aerosols, clouds, and new particle formation
1336	ATAS-eP4: Atmospheric aerosol transport and modelling
1342	ATAS-eP5: Atmospheric aerosol properties and characterization

1356	AT-eP1: Functional nanoparticles
1363	AT-eP2: Electrical effects
1366	AT-eP3: High temperature aerosols and filtration
1368	AT-eP4: Aerosol emissions and control technologies
1371	BAP-eP1: Heat and mass transfer: Experiments and simulations
1374	BAP-eP3: Modelling of internal and external aerosol processes
1375	BAP-eP4: Physical properties of aerosol particles
1377	SS1-eP1: Special Session-1: Quantification of health risk from airborne particulate matter
1383	SS2-eP1: Special Session-2: COVID-19, aerosols and ventilation
1386	SS3-eP1: Special Session-3: Advanced aerosol metrology for atmospheric science and air quality
1389	SS4-eP1: Special Session-4: Aerosols in the agriculture and livestock sectors
1392	SS5-eP1: Special Session-5: Oxidative potential of aerosol particles and health risks

ATAS-4: Characterization of non-exhaust aerosol

ATAS-4-01 Non-exhaust emissions from road traffic in Lisbon: Characterization and pollution indexes

INES CUNHA-LOPES1, Celia Alves2, Ismael Casotti Rienda2, Tiago Faria1, Franco Lucarelli3, Xavier Querol4, Fulvio Amato4, Susana Marta Almeida1 | 1Centro De Ciencias E Tecnologias Nucleares, Instituto Superior Tecnico, Universidade De Lisboa, Portugal; 2Centre of Environmental and Marine Studies, Department of Environment, University of Aveiro, Portugal; 3INFN - Firenze, National Institute for Nuclear Physics - Florence division, Italy; 4Institute of Environmental Assessment and Water Research, Spanish Research Council (IDAA-CSIC), Barcelona, Spain

ATAS-4-02 Quantifying non-exhaust emissions in the UK using combined measurement and modelling approaches

WILLIAM HICKS1, Sean Beevers1, Max Priestman1, Anja Tremper1, Annalisa Sheehan1, James Allan2, Michael Flynn2, William Bloss3, David Green1 | 1Imperial College London, United Kingdom; 2Department of Earth and Environmental Sciences, Manchester, United Kingdom; 3School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom

ATAS-4-03 Sources of ambient particulate matter in Skopje urban area

DEJAN MIRAKOVSKI, Blazo Boev, Afrodita Zendelska, Marija Hadzi-Nikolova, Ivan Boev, Tena Shijakova | University "Goce Delcev", Stip, North Macedonia

ATAS-4-04 Non-exhaust traffic emissions: a size-segregated field study and development of a road dust sampling device

FEDERICA CROVA1, Vera Bernardoni1, Giulia Calzolai2,3, Maddalena Castelli Dezza1, Alice Corina Forello1,2, Luigi Gianelle4, Franco Lucarelli2,3, Silvia Nava2,3, Sara Valentini1, Gianluigi Valli1, Roberta Vecchi1 | 1Department of Physics, Universita degli Studi di Milano and INFN-Milano, Italy; 2Department of Physics and Astrophysics, Universita degli Studi di Firenze, Sesto Fiorentino, Italy; 3INFN-Firenze, Sesto Fiorentino, Italy; 4ARPA Lombardia, Milan, Italy

ATAS-4-05 Size and time-resolved source contributions and oxidative potential of non-exhaust sources in Barcelona

ANGIE ALBARRACIN MELO1, Angeliki Karanasiou1, Barend L. Van Drooge1, Veronica Moreno1, Xavier Querol1, Natalia Moreno1, Oriol Font1, Rafael Bartroli1, Ana Oliete2, Frank Kelly2, Franco Lucarelli3, Giulia Pazzi3, Fabio Giardi3, Fulvio Amato1 | 1Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain; 2Imperial College of London, United Kingdom; 3University of Florence, Italy

ATAS-4-06 Source Attribution and Magnitude Model: A new perspective for fugitive PM10 emissions

Greg Yarwood1, Bart Brashers1, Tasko Olevski1, Chris Atherly1, Martin Parsons2, RUTH PEIFFER3 | 1Ramboll US Consulting, Novato, USA; 2Ramboll Australia Pty Ltd, Perth, Australia; 3BHP Iron Ore Pty Ltd, Perth, Australia

Sources of ambient particulate matter in Skopje urban area

Dejan Mirakovski¹, Blazo Boev¹, Afrodita Zendelska¹, Marija Hadzi-Nikolova¹, Ivan Boev¹ and Tena Shijakova¹

¹Ambicon Lab, Faculty of Natural and Technical Sciences, University Goce Delcev, Stip, 2000, North Macedonia Keywords: air pollution, particulate matter, source apportionment, PMF Presenting author email: <u>dejan.mirakovski@ugd.edu.mk</u>

In recent years, high air pollution episodes in most of North Macedonia's cities have dominated the headlines, confirming popular view that dirty air is by far the most serious environmental and health issue confronting the country's urban population. The country's capital and most populous city Skopje is frequently at the top of numerous pollution rankings and is among the cities in Eastern Europe and Central Asia that significantly exceed the EU yearly limit value for PM 2.5. (Almeida *et al* 2020). However, the restricted scope and temporally scattered data about pollution sources, allow for scepticism, thwarting any efforts to apply effective abatement techniques.

Main goal of Source Apportionment (SA) study for Skopje Agglomeration was to derive information about pollution sources and the amount they contribute to ambient air pollution levels. The study includes selection of representative receptor/monitoring site, sampling, chemical speciation, and construction of multivariate receptor model, following the European Guide on Air Pollution Source Apportionment with Receptor Models, Revised version, JRC (2019).

Karposh urban background monitoring station, a part of national monitoring network, was selected as representative receptor exposed to the mix of sources in the urban area.

Sampling process was performed fully in line with the requirements of standard gravimetric measurement method for determination of the PM10/PM2,5 mass concentration of suspended particulate matter (EN 12341:2014). The sampling program began on October 29, 2020 and finished on December 4, 2021. A total of 376 daily samples were obtained throughout this period.

The elemental analysis was conducted using energy dispersive X-ray fluorescence spectrometer Rigaku NEX CG according to the EPA/625/R-96/010a Compendium Method IO-3.3. Black Carbon or Elemental Carbon was determined using Magee Scientific, SootScanTM Model OT21 Optical Transmissometer with dual wavelength light source, by applying EPA empirical EC relation for Teflon FRM filters. Water-soluble ions, including sulphate (SO₄²⁻), nitrate (NO³⁻), ammonium (NH4⁺), were determined using internally developed extraction procedure and photometric methods.

Receptor model for PM 2.5 mass concentration was developed using positive matrix factorisation software, EPA PMF version 5.0.14. Data set included 34 species and 332 day samples. Analytical uncertainty estimates by species and sample were provided from the lab. In addition to the analytical uncertainty, 10 % extra uncertainty was added to account for the sampling uncertainty.

In total 7 major factors that contribute to PM 2.5 mass were identified, including: traffic, industry, fuel oil burning, soil (mineral) dust, open fire burning, biomass burning and secondary aerosols.

Monthly source contributions for PM 2.5 at both sites clearly indicate high seasonal variability for most of the sources. As identified in previous works, biomass burning remain the largest single source of ambient air pollution, and due to specific temporal distribution, the main driver of high wintertime pollution episodes.

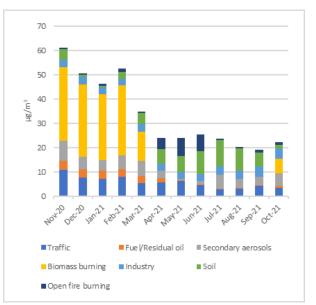


Figure 1. Monthly source contribution for PM 2.5

This work was performed as part of Tackling Air Pollution in the City of Skopje Project, implemented by UNDP-Skopje and SIDA- Sweden's government agency for development cooperation.

- Almeida et al (2020) Ambient particulate matter source apportionment using receptor modelling in European and Central Asia urban areas, Environmental Pollution, Volume 266, Part 3, <u>https://doi.org/10.</u> <u>1016/j.envpol.2020.115199</u>
- Mirakovski et al (2019) Wintertime urban air pollution in Macedonia – composition and source contribution of air particulate matter, Proceedings of the 18th World Clean Air Congress 2019, pp 492-500.