

We learned previously that 400 billions reactions take place in one second in our organisms....
\rightarrow many of these reactions MUST TAKE place in strict composition of solutions.
\rightarrow For example, the food must be decomposed in Conditions of STRONG ACIDITY in the stomach
\rightarrow reactions in blood take place in almost so-called NEUTRAL conditions...

Blood pH Levels

Arrhenius -theory of acids and bases

Arrhenius, Svante August
Acid-a substance that is a DONOR of protons or H^{+}ions
$\mathrm{HCl} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}$
Base - a substance that is a DONOR od hydroxide OH^{-}ions
$\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

WE SHOULD BE AWARE THAT the "ACIDITY" of solutions Originates from the so-called "free" $\mathrm{H}^{+}\left(\right.$or $\left.\mathrm{H}_{3} \mathrm{O}^{+}\right)$proton ions

.....while
The "free" OH - hydroxide ions contribute to the alkalinity of water solutions

Definition: STRONG ACIDS are those acids that are COMPLETELY DISSOCIATED in WATER and give equivalent number of protons ($\mathrm{H}+\mathrm{ions} \mathrm{)}$
\rightarrow STRONG BASES are those acids that are COMPLETELY
DISSOCIATED in WATER and give equivalent number of hydroxide OH -ions

6 Strong Acids		6 Strong Bases	
HClO_{4}	perchloric acid	LiOH	lithium hydroxide
HCl	hydrochloric acid	NaOH	sodium hydroxide
HBr	hydrobromic acid	KOH	potassium hydroxide
HI	hydroiodic acid	$\mathrm{Ca}(\mathrm{OH})_{2}$	calcium hydroxide
HNO_{3}	nitric acid	$\mathrm{Sr}(\mathrm{OH})_{2}$	strontium hydroxide
$\mathrm{H}_{2} \mathrm{SO}_{4}$	sulfuric acid	$\mathrm{Ba}(\mathrm{OH})_{2}$	barium hydroxide

This is the table of STRONG ACIDS and STRONG BASES..

YOU MUST KNOW THE NAMES of these strong acids and strong bases!!!

DIFFERENCE between STRONG and WEAK ACIDS

teachoo

STRONG AND WEAK ACID

Strong Acid

HCl Strong Acid

Weak Acid

$\mathrm{CH}_{3} \mathrm{COOH}$ Weak Acid

properties of some STRONG ACIDS

In reaction of neutralization, acids react with bases Acid + base---> "salt" + water
$\mathrm{HCl}+\mathrm{NaOH}--->\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$

Barbie Soap

Sulfuric Acid

$$
\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{SO}_{4}
$$

Phosphoric Acid---not very dangerous used in many cola-like beverages as a conservating substance

$$
\mathrm{P}_{4} \mathrm{O}_{10(\mathrm{~s})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})}-\cdots \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})}
$$

HCl-Hydrochloric Acid-very dangerous But VERY IMPORTANT

Digestion

Seven Important Functions of HCl In Stomach

SYMPTOMS ASSOCIATED WITH LOW STOMACH ACID LEVELS

\square Bloating
- Belching
- Flatulence (gas)
\square Indigestion
- Diarrhea
\square Constipation
\square Chronic Fatigue
- Adrenal Fatigue
■ Auto-Immunity
- Rectal Itching
\square Candida

Hair Loss in Women
\square Heartburn

- Iron/B12 Deficiency
- Multiple Food Sensitivities
\square Acne
- Week, Peeling \&

Cracked Fingernails
\square Allergies and/or Sensitivities

- Dry Skin/Dandruff

DRJOCKERS Som $^{\text {and }}$

NITRIC ACID-Highly dangerous acid and oxidizing agent!!! It damages easily the skin very if in contact It is harmful for the lungs

Equilibrium in water and concept of pH
\rightarrow water is a very weak electrolyte, but it dissociates and gives equal amounts of $\mathrm{H}+$ and OH - ions

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}<=>\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-} \\
& K=\frac{C\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \mathrm{c}\left[\mathrm{OH}^{-}\right]}{\mathrm{c}^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& \mathbf{K}_{\mathbf{w}}=\mathrm{K} \mathrm{c}^{2}\left[\mathrm{H}_{2} \mathrm{O}\right]=\mathrm{c}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \times \mathrm{c}\left[\mathrm{OH}^{-}\right]= \\
& =1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
\end{aligned}
$$

So, in PURE WTAER, it holds that $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

...и ако ова се замени во изразот претходен за K_{w}, добиваме дека
$c\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \mathrm{c}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}$ or

$$
\mathrm{c}^{2}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
$$

$$
\text { Or } \mathrm{c}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7} \mathrm{moldm}^{-3}
$$

...if we make "- $\log ()$ " operation from both sides of last equations, we get

$$
-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log \left(1.0 \times 10^{-7}\right)
$$

$\mathrm{pH}=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=7.00 \rightarrow$ for pure water

REMEMBER

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{dm}^{-6}
$$

If we make - log from both sides of last equation, we get $-\log (\mathrm{Kw})=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]$

If we define that: $-\log (K w)=$ pKw; or pKw $=-\log \left(10^{-14}\right)=14$and if we define
pH $=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] ; \quad$ while
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] ;$ Remember that $\mathrm{pH}+\mathrm{pOH}=14$

1. if $\mathbf{p H}=\mathbf{p O H}$, neutral solutions; then, it holds that $\mathbf{c}\left[\mathrm{OH}^{-}\right]=\mathbf{c}\left[\mathbf{H}_{3} \mathrm{O}^{+}\right]$

A SCALE of pH of water solutions \rightarrow

 \rightarrow REMEMBER these expressions for estimating of $\mathrm{pH}!!!!$
"[]" - is a symbol of equilibrium molar concentration,,,",
$\mathrm{pH}+\mathrm{pOH}=\mathbf{1 4}$

$\left[\mathrm{H}^{+1}\right]$	$\left[\mathrm{OH}^{-1}\right]$	pH	pOH
10^{0}	10^{-14}	0	14
10^{-1}	10^{-13}	1	13
10^{-2}	10^{-12}	2	12
10^{-3}	10^{-11}	3	11
10^{-4}	10^{-10}	4	10
10^{-5}	10^{-9}	5	9
10^{-6}	10^{-8}	6	8
10^{-7}	10^{-7}	7	7
10^{-8}	10^{-6}	8	6
10^{-9}	10^{-5}	9	5
10^{-10}	10^{-4}	10	4
10^{-11}	10^{-3}	11	3
10^{-12}	10^{-2}	12	2
10^{-13}	10^{-1}	13	1
10^{-14}	10^{0}	14	0

pH SCALE!!!!

if pH goes from 7 to $\mathbf{1 ,}$ ACIDITY of solutions is INCREASED;
if pH goes from 7 to 14, ALKALINITY of solutions INCREASES

STRONG vs WEAK ACIDS...

\rightarrow imagine we have same concentrations of one strong (HCl), one weak $(\mathrm{CH} 3 \mathrm{COOH})$ and one very weak (HCN) acids... All are dissolved in water \rightarrow take a look in pH of those solutions!!!

Some important Acids in Medicine

$$
\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}
$$

These acids are contribuents in ATP production in the cells

Bile Acids-Cholesterol Derivatives

Bioavailability of many lipophilic substances Is restricted and only in form of micelles they can enter into the cells

AMINOACIDS-MAJOR CONSTITUENTS of PROTEINS

All Enzymes that Catalyze billions of chemical reactions in the cells are made of AMINOACIDS

Amino acid (2)

Dipeptide

-LACTIC ACID

Lactic Acid Fermentation

- Lactic acid build up in muscle is what causes muscle ache / pain
- Carried to liver where it can be converted back to pyruvate

Which processes produce Reactive Oxygen Species in Our Body?

Scheme of how ROSes Damage the Cell Membrane....

Antioxidants-mainly weak acids such as Vitamin C, Polyphenols, Glutathione...are major DEFENDERS agains Reactive Oxygen Species

Carbonic acid $\mathrm{H}_{2} \mathrm{CO}_{3}$ (i.e. HCO_{3} - ions or hydrogencarbonates) Are very important for keeping pH constant in the blood They are constitutents of so-called "carbonate buffer" in the blood

NORMAL ACID-BASE PHYSIOLOGY

KETO-ACIDS-important systems that always emerge In PATIENT HAVING diabetes \rightarrow excess of glucose in blood

Feeling tired
and sleepy

Confusion,
passing out

Stomach
pain, feeling
or being sick

Needing to pee more often, high ketones

Blurred vision

Being very thirsty,
sweet smelling
breath (like nail
varnish or pear
drop sweets)
More glucose
in the blood

amphetamine (stimulant, decongestant) (Benzedrine)

phenobarbital (sedative, anticonvulsant)

N,N-diethyl-meta-toluamide
(mosquito repellant)

secobarbital
(seconal, soporific)

primaquine (antimalarial)

sodium pentothal (anaesthetic)

Weak Bases Amines $\mathrm{R}-\mathrm{NH}_{2}$... Present in Structure of AMINO ACIDS...but Many as adrenaline, Dopamine Drugs such as morphine, codeine...are Weak bases

chlorpromazine (tranquilizer)

chlordiazepoxide (tranquilizer) (Librium)

procaine
(local anaesthetic)
(Novocaine)

Adrenaline

many drugs used in medical therapies are weak acids or bases Here are some of those substances...

Table 2.5 pKa Values for Selected Drugs

REFERENCES

1. R Gulaboski, F Borges, CM Pereira, M Cordeiro, J Garrido, AF Silva, Combinatorial Chemistry \& High Throughput Screening 10 (2007) 514-526
2. R Gulaboski, ES Ferreira, CM Pereira, MNDS Cordeiro, A Garau, Vito Lippolis, A Fernando Silva, J. Phys. Chem. C 112 (2008) 153-161
3. V. Mirceski, R. Gulaboski, The Journal of Physical Chemistry B 110 (2006) 2812-2820
4. M Janeva, P. Kokoskarova, V. Maksimova, R.

Gulaboski, Electroanalysis 31 (2019) 2488-2506
5. R Gulaboski, V Mirčeski, S Mitrev, Food Chemistry 138 (2013) 116-121
6. P. Kokoskarova, R. Gulaboski, Electroanalysis 32 (2020) 333-344.
7. R. Gulaboski, K. Caban, Z. Stojek. F. Scholz, Electrochemistry Communications 6 (2004) 215218

