

Acids, Bases, and

pH of water solutions

ÔH

Η

We learned previously that 400 billions reactions take place in one second in our organisms....

→many of these reactions MUST TAKE place in strict composition of solutions.

→For example, the food must be decomposed in Conditions of STRONG ACIDITY in the stomach

→reactions in blood take place in almost so-called NEUTRAL conditions...

Arrhenius –theory of acids and bases

Arrhenius, Svante August

Acid–a substance that is a DONOR of protons or H⁺ ions

 $HCl \rightarrow H^+ + Cl^-$

Base – a substance that is a DONOR od hydroxide OH⁻ ions

NaOH \rightarrow Na⁺ + OH⁻

WE SHOULD BE AWARE THAT the "ACIDITY" of solutions Originates from the so-called "free" H⁺ (or H₃O⁺) proton ions

.....while

The "free" OH- hydroxide ions contribute to the alkalinity of water solutions

A Hydroxide ion has a negative charge and is written OH-

<u>Definition</u>: **STRONG ACIDS** are those acids that are COMPLETELY DISSOCIATED in WATER and give equivalent number of protons (H+ ions)

→ STRONG BASES are those acids that are COMPLETELY DISSOCIATED in WATER and give equivalent number of hydroxide OH- ions

6 Strong Acids		6 Strong Bases		This is the table of STRONG ACIDS and STRONG BASES YOU MUST KNOW THE
HCIO ₄	perchloric acid	LiOH	lithium hydroxide	NAMES of these strong acids and strong bases!!!
HCI	hydrochloric acid	NaOH	sodium hydroxide	
HBr	hydrobromic acid	КОН	potassium hydroxide	
н	hydroiodic acid	Ca(OH) ₂	calcium hydroxide	
HNO ₃	nitric acid	Sr(OH) ₂	strontium hydroxide	
H ₂ SO ₄	sulfuric acid	Ba(OH) ₂	barium hydroxide	

DIFFERENCE between STRONG and WEAK ACIDS

teachoo STRONG AND WEAK ACID

Strong Acid

Weak Acid

CH₃COOH Weak Acid

HCI Strong Acid

PROPERTIES OF SOME **STRONG ACIDS**

In reaction of neutralization, acids react with bases Acid + base---> "salt" + water

Barbie Soap

Sulfuric Acid

$SO_3 + H_2O ----> H_2SO_4$

Desitive state

Vegative pla

Attention: Very Dangerous!!!

When we want to dissolve concentrated sulfuric acid

in water

FIRST we PUT WATER and afterwards sulfuric acid in

the container

cathode compartment porous pot anode compartmen

Phosphoric Acid---not very dangerous used in many cola-like beverages as a conservating substance

HCI-Hydrochloric Acid-very dangerous **But VERY IMPORTANT**

Seven Important Functions of HCl In Stomach

SYMPTOMS ASSOCIATED WITH LOW STOMACH ACID LEVELS

Bloating Belching

- Flatulence (gas)
- Indigestion
- Diarrhea
- Constipation
- Chronic Fatigue
- Adrenal Fatigue
- Auto-Immunity
- **Rectal Itching**
- Candida

Heartburn
 Iron/B12 Deficiency
 Multiple Food Sensitivities
 Acne

Hair Loss in Women

- Week, Peeling &
 - **Cracked Fingernails**
- Allergies and/or Sensitivities
- Dry Skin/Dandruff

NITRIC ACID-Highly dangerous acid and oxidizing agent!!! It damages easily the skin very if in contact It is harmful for the lungs

Equilibrium in water and concept of pH →water is a very weak electrolyte, but it dissociates and gives equal amounts of H+ and OH- ions

 $K = \frac{c[H_3O^+]c[OH^-]}{c^2[H_2O]}$ $K_w = K c^2[H_2O] = c[H_3O^+]x c[OH^-] = \frac{1.0 \times 10^{-14} \text{ mol}^2\text{dm}^{-6}}{10^{-14} \text{ mol}^2\text{dm}^{-6}}$

So, in PURE WTAER, it holds that $[H_3O^+]=[OH^-]$

...и ако ова се замени во изразот претходен за К_w, добиваме дека $c[H_3O^+]c[H_3O^+] = K_w = 1.0 \times 10^{-14} \text{ mol}^2 \text{dm}^{-6} \text{ or}$ $c^{2}[H_{3}O^{+}] = 1.0 \times 10^{-14} \text{ mol}^{2} \text{dm}^{-6}$ Or $c[H_3O^+] = 1.0 \times 10^{-7} \text{ moldm}^{-3}$...if we make "-log()" operation from both sides of last equations, we get $-\log([H_3O^+]) = -\log(1.0 \times 10^{-7})$ $pH = -log([H_3O^+]) = 7.00 \rightarrow for pure water$

REMEMBER

$$\begin{split} K_w &= [H_3O^+][OH^-] = 1.0 \ x \ 10^{-14} \ mol^2 dm^{-6} \\ \text{If we make } -\text{log from both sides of last equation, we get} \\ -\log(Kw) &= -\log[H_3O^+] -\log[OH^-] \end{split}$$

If we define that: -log(Kw) = pKw; or pKw =-log(10⁻¹⁴) = 14 ...and if we define pH = -log[H₃O⁺]; while

pOH = -log [OH⁻]; Remember that pH + pOH = 14

1. if $\mathbf{pH} = \mathbf{pOH}$, neutral solutions; then, it holds that $\mathbf{c[OH^{-}]} = \mathbf{c[H_{3}O^{+}]}$

2. If pH < pOH then $c[H_3O^+]$ > [OH⁻] and we have ACIDIC MEDIUM

3. If pH > pOH, then it holds that c[OH⁻] > c[H₃O⁺] and we have ALKALINE (basic) medium

"[]" – is a symbol of equilibrium molar concentration, c,

pH + **pOH** = 14

[H ⁺¹]	[OH ⁻¹]	рН	рОН	
10 ⁰	10 ⁻¹⁴	0	14	
10-1	10-13	1	13	
10-2	10-12	2	12	
10-3	10-11	3	11	
10-4	10-10	4	10	
10 ⁻⁵	10-9	5	9	
10 ⁻⁶	10 ⁻⁸	6	8	
10-7	10-7	7	7	
10 ⁻⁸	10 ⁻⁶	8	6	
10 ⁻⁹	10 ⁻⁵	9	5	
10-10	10-4	10	4	
10-11	10 ⁻³	11	3	
10-12	10-2	12	2	
10-13	10-1	13	1	
10-14	10 ⁰	14	0	

pH SCALE!!!!

if pH goes from 7 to 1, <mark>ACIDITY of solutions is INCREASED</mark>; if pH goes from 7 to 14, <mark>ALKALINITY of solutions INCREASES</mark>

pН

^{#10.} • **pH scale**measure of H⁺

ions (acidity); "**p**ower of **h**ydrogen"

H + = hydroniumion OH- = hydroxideion

STRONG vs WEAK ACIDS...

 \rightarrow imagine we have same concentrations of one **strong** (HCI), one weak (CH3COOH) and one very weak (HCN) acids... All are dissolved in water \rightarrow take a look in pH of those solutions!!!

Some important Acids in Medicine

They are synthesized in the LIVER They help in transferring of lipophilic substances across CELL MEMBRANES via making specific structures so-called MICELLES

Bioavailability of many lipophilic substances Is restricted and only in form of micelles they can enter into the cells

AMINOACIDS-MAJOR CONSTITUENTS of PROTEINS

All Enzymes that Catalyze billions of chemical reactions in the cells are made **of AMINOACIDS**

Oxygen means LIFE, but Molecular Oxygen O2 is major sources of Producing HIGHLY REACTIVE REACTIVE OXYGEN SPECIES ROS'es or FREE RADICALS

→ROS'es are hydroxide radical, superoxid Radical, hydrogen peroxide

→all these Reactive Oxygen Species Attack cell membranes and produce so-called LIPID PEROXIDATION i.e. destruction of Cell MEMBRANES

Which processes produce Reactive Oxygen Species in Our Body?

Scheme of how ROSes Damage the Cell Membrane....

Antioxidants—mainly weak acids such as Vitamin C, Polyphenols, Glutathione...are major DEFENDERS agains Reactive Oxygen Species

Carbonic acid H_2CO_3 (i.e. HCO_3 - ions or hydrogencarbonates) Are very important for keeping pH constant in the blood They are constitutents of so-called "carbonate buffer" in the blood

Urine pH = 5.8 - 6.2

KETO-ACIDS—important systems that always emerge In PATIENT HAVING diabetes \rightarrow excess of glucose in blood

...many drugs used in medical therapies are weak acids or bases Here are some of those substances...

Table 2.5 pKa Values for Selected Drugs

Weak Acids	рКа	N	eak Bases pKb		
Amoxicillin	2.4		Aprenolol	9.6	
Acetazolamide	7.2		Allopurinol	9.4, 12.3	
Ampicillin	2.5		Amphetamine	9.8	
Aspirin	3.5		Atropine	9.7	
Chlorothiazide	6.8, 9.4*		Chlorpheniramine	9.2	
Ciprofloxacin	6.1, 8.7*		Cocaine	8.5	
Cephalexin	3.6		Codeine	8.2	
Ethacrynic acid	2.5		Diazepam	3.0	
Furosemide	3.9		Diphenhydramine	8.8	
Ibuprofen	4.4, 5.2*		Amoxicillin	7.4	
Levodopa	2.3		Ephedrine	9.6	
Methotrexate	4.8		Epinephrine	8.7	
Methyldopa	2.2, 9.2*		Imipramine	9.5	
Penicillamine	1.8		Lidocaine	7.9	
Pentobarbital	8.1		Methadone	8.4	
Phenobarbital	7.4		Methamphetamine	10.0	
Phenytoin	8.3		Methyldopa	10.6	
Propylthiouracil	8.3		Metoprolol	9.8	
Salicylic acid	3.0		Morphine	7.9	
Sulfadiazine	6.5		Nicotine	7.9, 3.1*	
Sulfapyridine	8.4		Norepinephrine	8.6	
Theophylline	8.8		Phenylephrine	9.8	
Tolbutamide	5.3		Pilocarpine	6.9, 1.4*	
Warfarin	5.0		Pseudoephedrine	9.8	
* denotes more than one ionizable group					

REFERENCES

- R Gulaboski, F Borges, CM Pereira, M Cordeiro, J Garrido, AF Silva, *Combinatorial Chemistry & High Throughput Screening* 10 (2007) 514-526
- R Gulaboski, ES Ferreira, CM Pereira, MNDS Cordeiro, A Garau, Vito Lippolis, A Fernando Silva, *J. Phys. Chem. C* 112 (2008) 153-161
- V. Mirceski, R. Gulaboski, *The Journal of Physical Chemistry B* 110 (2006) 2812-2820
- M Janeva, P. Kokoskarova, V. Maksimova, R. Gulaboski, *Electroanalysis* 31 (2019) 2488-2506
- R Gulaboski, V Mirčeski, S Mitrev, Food Chemistry 138 (2013) 116-121
- P. Kokoskarova, R. Gulaboski, *Electroanalysis* 32 (2020) 333-344.
- R. Gulaboski, K. Caban, Z. Stojek. F. Scholz,
 Electrochemistry Communications 6 (2004) 215-218