Chemical Nomenclature of Inorganic Compounds-Part 2

Table 3.6: Some common, simple and polyatomic ions

Vale- ncy	Name of ion	Symbol	Non- metallic element	Symbol	Polyatomic ions	Symbol
1.	Sodium Potassium Silver Copper (I)*	Na ⁺ K ⁺ Ag ⁺ Cu ⁺	Hydrogen Hydride Chloride Bromide Iodide	H* H- Cl ⁻ Br- I-	Ammonium Hydroxide Nitrate Hydrogen carbonate	NH ⁺ OH ⁻ NO ₃ ⁻ HCO ₃ ⁻
2.	Magnesium Calcium Zinc Iron (II)* Copper (II)*	Mg ²⁺ Ca ²⁺ Zn ²⁺ Fe ²⁺ Cu ²⁺	Oxide Sulphide	O ²⁻ S ²⁻	Carbonate Sulphite Sulphate	CO ₃ ²⁻ SO ₃ ²⁻ SO ₄ ²⁻
3.	Aluminium Iron (III)*	Al ³⁺ Fe ³⁺	Nitride	N ³⁻	Phosphate	PO4 3-

* Some elements show more than one valency. A Roman numeral shows their valency in a bracket.

_	1	_																18
1	1 H 1.008	2	Γ	Č.	-Atom - Symł	nc nui bol	mper			Metal Semii	metal		13	14	15	16	17	2 He 4.003
2	3 Li 6.941	4 Be 9.012		12.01	-Atom	ic we	ight			Nonm	netal		5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.31	3	4	5	6	7	\$	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 C1 35.45	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54 94	26 Fe	27 Co 58 93	28 Ni 5869	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74 92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	Rb	38 Sr	39 Y	40 Zr	41 Nb	Mo	43 Tc	Ru	45 Rh	Pd	Åg	Cd	In In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	Os	77 Ir	78 Pt	79 Au	80 Hg	81 T1	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr 223.0	88 Ra 226.0	103 Lr 262.1	104 Rf 261.1	105 Db 262,1	106 Sg 263.1	107 Bh 264,1	108 Hs 265.1	109 Mt 268	110 Uun 269	111 Uuu 272	112 Uub 277	113 Uut	114 Uuq 289	115 Uup	116 Uuh 289	117 Uus	118 Uuo 293
		6	57 La 138.	a 58 9 140	e 59 Pr 1 140.9	60 No 144.2	61 Pn 146.9	62 1 Sn 150.4	63 Eu 152.0	1 G 0 157.	65 1 Tb 3 158.9	66 Dy 162.1	67 H 5 164.	68 E 1 9 167.	69 Tn 3 168.	n 70 9 173.	,) 0	
		7	89 A 227	c T1 .0 232.	h Pa .0 231.0	1 92 U U 238,0	93 N 0 237.0	94 PU 244.	95 An 1 243	n Cn 1 247.	97 B 1 247.	98 Cf 1 251	99 E 1 252	100 5 Fn .0 257.	0 10: n M 1 258	1 102 d Nc .1 259	з) .1 к.	(c) 199 romor Pau

SrCl ₂	strontium chloride
CoCl ₂	cobalt(II) chloride
$Pt_3(AsO_2)_4$	platinum(II) arsenate

sciencenotes.org

Naming Oxides of C, S, N, P

Greek prefixes are used to denote the number of atoms of each element present.

TABLE	5.5 Gr	eek Prefixes	
Prefix	Meaning	Prefix	Meaning
Mono-	1	Hexa–	6
Di–	2	Hepta-	7
Tri–	3	Octa-	8
Tetra-	4	Nona-	9
Penta-	5	Deca-	10

Naming Oxides of C, S, N, P

TABLE	5.6 Some Com	Some Compounds Named Using Greek Prefixes				
Compound	Name	Compound	Name			
СО	Carbon monoxide	SO ₃	Sulfur trioxide			
CO_2	Carbon dioxide	NO_2	Nitrogen dioxide			
SO_2	Sulfur dioxide	N_2O_5	Dinitrogen pentoxide			

The prefix mono- is generally omitted for the first element.

For ease of pronunciation, we usually eliminate the last letter of a prefix that ends in "o" or "a" when naming an oxide.

Example: N_2O_5 is *dinitrogen pentoxide* not *dinitrogen pentaoxide*

Another Example: MnO₂

Name the first ion. Since it is a transition metal, you must use a Roman Numeral.

How do you determine the Roman Numeral?

It is the same as the charge.

What is the charge of Mn?

All compounds are neutral.

Oxygen has a "-2" charge.

There are two oxygens and one Mn.

Therefore Mn must have a +4 charge for this compound to be neutral.

Manganese IV oxide

Names and charges of some important lonic Species

TABLE 5.10 Common Polyat	omic lons
Name	Formula/Charge
	Cations
ammonium	NH_4^+
hydronium	H_3O^+
mercury(I)	Hg_2^{2+}
	Anions
acetate	$C_2H_3O_2^-$
azide	N_3^-
carbonate	CO_{3}^{2-}
chlorate	ClO_3^-
chlorite	ClO_2^-
chromate	CrO_4^{2-}
cyanide	CN ⁻
dichromate	$Cr_{2}O_{7}^{2-}$
dihydrogen phosphate	$H_2PO_4^-$
hydrogen carbonate or bicarbonate	HCO_3^-
hydrogen phosphate	HPO_4^{2-}
hydrogen sulfate or bisulfate	HSO ⁻

Names and formulas of important Anionic Species

TABLE 5.10	Common Polyatomic Ions	
	Name	Formula/Charge
hydroxid	le	OH-
hypochlor	rite	ClO-
nitrate		NO_3^-
nitrite		NO_2^-
oxalate	2	$C_2 O_4^{2-}$
perchlora	nte	ClO_4^-
permangar	nate	MnO_4^-
peroxide	e	O_2^{2-}
phosphat	te	PO_4^{3-}
phosphit	te	PO_{3}^{3-}
sulfate		SO_4^{2-}
sulfite		SO_3^{2-}
thiocyana	ate	SCN-

Name the first ion. Since it is a transition metal, you must use a Roman Numeral. Which Roman Numeral? The Roman Numeral is the same as the charge of the ion. How do you find the charge? **Deductive reasoning!** All compounds are neutral Sulfur has a -2 charge (group 16) Copper I There are two coppers. Sulfide Therefore each copper must have a +1 charge for all ions to be neutral

Cu₂S

Familiar Inorganic Compounds

TABLE 5.11	Common and Systematic Names of Some Familiar Inorganic Compounds					
Formula	Common name	Systematic name				
H ₂ O	Water	Dihydrogen monoxide				
NH ₃	Ammonia	Trihydrogen nitride				
CO_2	Dry ice	Solid carbon dioxide				
NaCl	Salt	Sodium chloride				
N ₂ O	Nitrous oxide, laughing gas	Dinitrogen monoxide				
CaCO ₃	Marble, chalk, limestone	Calcium carbonate				
NaHCO ₃	Baking soda	Sodium hydrogen carbonate				
$MgSO_4 \cdot 7H_2O$	Epsom salt	Magnesium sulfate heptahydrate				
$Mg(OH)_2$	Milk of magnesia	Magnesium hydroxide				

How do you write formulas for *binary ionic compounds* given the name?

- Two simple steps:
- 1.Write the symbol and charge of each ion
- 2.Balance the charges by providing subscripts

Magnesium chloride Write the syr

CI⁻¹

Mg⁺²

MgCl₂

- Write the symbol and charge of each ion.
- CI⁻¹ Balance the charges by supplying subscripts. Subscripts tell how many of each atom is present.
 You need a second CI⁻¹ to balance the charges

More examples: Iron III bromide

Fe⁺³

FeBr₃

Write the symbol and charge of Br -1 each ion. The charge of the iron Br -1 **Br** -1 is provided by the Roman Numeral. Balance the charges by supplying subscripts. The subscripts tell how many of each ion is needed to balance the compound.

You'll need three bromine ions to balance the one iron.

Aluminum Sulfide

Al+3

AI+3

S⁻² S⁻² S⁻² Write the symbol and charge of each ion.

Balance the charges by supplying subscripts.

In this case the charges do not evenly divide into each other. You must find the least common multiple. SIX

How many aluminums are needed to arrive at a +6 charge? 2

How many sulfurs are needed to arrive at a -6 charge? 3

- Second Category of compounds Ternary Ionic Compounds. These compounds contain at least one polyatomic ion.
- What is a polyatomic ion?
- Let's look at the name to try to understand.
- It is an **ion** that means it has a charge.
- It is **polyatomic** that means it is made of more than one atom.
- Simple as that!!
- Let's look at some examples of polyatomic ions.

 CO_3^{-2} carbonate This ion is composed of one carbon and three oxygens and the entire group has a charge of -2.

Polyatomic ion – Group of atoms that act as a unit and carry a charge.

More examples:

SO₄-2 Sulfate

SO₃⁻² Sulfite

CIO₄-1 Perchlorate

CIO₃⁻¹ Chlorate

CIO₂⁻¹ Chlorite

CIO⁻¹ Hypochlorite

 PO_{4}^{-3} Phosphate $C_2H_3O_2^{-1}$ Acetate **OH**⁻¹ Hydroxide NO_{3}^{-1} Nitrate NO₂⁻¹ Nitrite NH_{4}^{+1} Ammonium (only positive PI) You need to learn these!!!

How do you recognize Ternary Ionic Compounds?

Composed of two ions in which at least one is a polyatomic ion.

There is only one positive polyatomic ion (NH₄⁺¹)

Three possible types of Ternary Ionic Compounds: Polyatomic Ions

•Ammonium + negative ion (nonmetal)

Metal (positive ion) + negative polyatomic ion

Ammonium + negative polyatomic ion

- How do you name Ternary Ionic Compounds? EASY! PIECE OF CAKE! NO PROBLEM!
- Name the first ion.
- Name the second ion. Isn't that simple??!!

Examples:

- Na₂CO₃
- Sodium carbonate
- Notice that you do *NOT* change the suffix – just name the polyatomic ion

When you look at this compound you should recognize that this is NOT binary. There are THREE elements present. When you see this, immediately look for a polyatomic ion. **Carbonate** is present here.

Name the first ion.

Name the second ion.

A few more examples:

Fe(OH)₃

Iron III hydroxide

Since there are **3 OH groups**, each with a -1

charge, the

charge of the iron must be +3

for the

compound to

be neutral

Name the first ion.

Remember that iron requires a Roman Numeral since it is a transition element. What Roman Numeral should be used?

The Roman Numeral comes from the charge of the ion. How do you find the charge of the iron?

You know two things:

•All compounds are neutral.

•You know the charge of OH (-1)

Name the polyatomic ion.

NH₄Cl Name the first ion.

Ammonium chloride Name the second ion.

Notice that since the second ion is a nonmetal that, like binary ionic compounds, the suffix of the nonmetal changes to -ide.

- $(NH_4)_3PO_4$ Name the first ion.
- Ammonium phosphate Name the second ion.
- Looks like a monster, but it's really a pussycat.

- ONE more example:
- Cu_2SO_4
- Copper I sulfate

Name the first ion.

You should realize that you need a Roman Numeral since copper is a transition metal.

The Roman Numeral is the same as the charge.

What is the charge?

The charge of sulfate is -2.

Since there are two coppers, the charge of the copper must be +1.

Name the second ion.

Aluminum nitrate

 $AI(NO_3)$

 NO_3^{-1}

AI+3

First, you can tell from the name that there is a polyatomic ion present (nitrate). All binary ionic compounds have suffixes of *-ide*.

Write the formula/symbol and charge of each ion.

Balance the charges by supplying subscripts.

Since AI is +3 and NO₃ is -1, you need a total of $3NO_3^{-1}$ to balance one AI⁺³

Since you will need a subscript of 3 for NO_3^{-1} , you need to put this in parentheses with the 3 outside.

Calcium phosphate Ca^{+2} PO_4^{-3} $Ca_3(PO_4)_2$ Write the formula/symbol and charge of each ion.

Balance the charges by supplying subscripts. Since Ca is +2 and PO_4 is -3, you will need 3 Ca+2 to balance 2 PO_4^{-3}

AICI₃

What do you think about this one???

Be careful. This is a metal and nonmetal.

Always keep your Periodic Table in front of you for reference.

You may have been tempted to say "aluminum trichloride". This is INCORRECT! This is a binary IONIC compound. No prefixes are used. Simply aluminum chloride.

Given the names of binary molecular compounds, how do you write the formulas?

Very easy to do!!! The prefixes tell you how to write the formulas. DO NOT CONSIDER CHARGES. NONMETALS ARE ALL NEGATIVE SO TO USE CHARGES DOES NOT WORK!

Silicon dioxide

SiO₂

Silicon and oxygen are both nonmetals.

The lack of a prefix on silicon means that there is only ONE silicon.

 P_2Cl_5

The prefix "di" in front of oxide means that there are TWO oxygens.

Diphosphorous pentachloride

Phosphorous and chloride are both nonmetals.

The prefix "di" means that there are TWO phosphorouses (Is that a word?)

The prefix "penta" before chlorine means that there are five chlorines.

REFERENCES

- R Gulaboski, F Borges, CM Pereira, M Cordeiro, J Garrido, AF Silva, *Combinatorial Chemistry & High Throughput Screening* 10 (2007) 514-526
- R Gulaboski, ES Ferreira, CM Pereira, MNDS Cordeiro, A Garau, Vito Lippolis, A Fernando Silva, *J. Phys. Chem. C* 112 (2008) 153-161
- 3. V. Mirceski, R. Gulaboski, *The Journal of Physical Chemistry B* 110 (2006) 2812-2820
- 4. M Janeva, P. Kokoskarova, V. Maksimova, R. Gulaboski, *Electroanalysis* 31 (2019) 2488-2506
- R Gulaboski, V Mirčeski, S Mitrev, Food Chemistry 138 (2013) 116-121
- P. Kokoskarova, R. Gulaboski, *Electroanalysis* 32 (2020) 333-344.
- 7. R. Gulaboski, K. Caban, Z. Stojek. F. Scholz, *Electrochemistry Communications* 6 (2004) 215-218