SOLUTIONS

why solutions are important in medicine b

Solution Definition

A Solution in science
is a homogenous mixture of two or more substances.
$\xrightarrow{\text { salt }}=$

Solvent

Solution

Osmosis

Semipermeable layer

- Solute molecules
- Water molecules

All processes in living organisms take place from solutions!!!

,,full blood

Blood is an ideal solution in which Different important systems (glucose, Cholesterol, enzyme, ions $\mathrm{Na}+, \mathrm{Ca} 2+$, RBC, hemoglobin...) are dissolved

Cell Membrane is a Barrier that allows only specific substances to get in the cytosol or to get out of the cytosol of the cell

Solutions-importance in biological systems

 -in osmosis processes-movement of water across membrane -in buffers-systems keeping constant pH in blood, in cells -solutions are medium in which all biochemical processes take place

Hypertonic

Isotonic

Hypotonic

Turgid

Low Sugar Concentration High Sugar Concentration High Water Concentration Low Water Concentration

Ions of $\mathrm{Na}+$ are responsible for Increased blood Pressure... lons of K_{+} Regulate the intake of $\mathrm{Na}+$ and $\mathrm{Cl}-$ Ions inside the cell

Cell Resting
Membrane Potential extrocelluar
$\mathrm{Na}++$

action potential propagation

distance

5\% of all mistakes in Medicine Are due to wrong solutions

A Review of Medical Errors in Laboratory Diagnostics and Where We Are Today
Julie A. Hammerling
Laboratory Medicine, Volume 43, Issue 2, February 2012, Pages 41-44,
https://doi.org/10.1309/LM6ER9WJR1IHQAUY
Published: 01 February 2012 Article history v
(1) PDF II Split View 66 Cite $\boldsymbol{\rho}$ Permissions $<$ Share

Abstract

While many areas of health care are still struggling with the issue of patient safety, laboratory diagnostics has always been a forerunner in pursuing this issue. Significant progress has been made since the release of "To Err is Human." ${ }^{1}$ This article briefly reviews laboratory quality assessment and looks at recent statistics concerning laboratory errors.

- \qquad
10% of COVID-19 tests globally are wrong!!!

Many Mistakes in medicine Are due to wrong solutions

Incompatible drug combination

Non appropriate diluent

Incompatible material

Mixture of incompatible drugs

Hick

Medication Errors wat Infusion Pumps

Definitions of Solutions

- Solutions are homogeneous mixtures of two or more pure substances.
- In a solution, the solute (commonly is a substance present in smaller amount) is dispersed uniformly throughout the solvent (water)

State of Solution	State of Solvent	State of Solute	Example
Gas	Gas	Gas	Air
Liquid	Liquid	Gas	Oxygen in water
Liquid	Liquid	Liquid	Alcoholin water
Liquid	Liquid	Solid	Saltin water
Solid	Solid	Gas	Hydrogen in pulladium
Solid	Solid	Liquid	Mercury insilver
Solid	Solid	Solid	Silver ingold

Solutions

The intermolecular forces

 between solute particles and solvent particles must be strong enough in order given solute to be dissolved in given solvent (water is the most important solvent)SOLVENT we are mainly interested in---is the WATER

How Does a Solution Form?

Remember: water is a polar molecule (+ -)

(a)

(b)

(c)

A saturated solution contains the maximum amount of a solute that will dissolve in a given solvent at a specific temperature.

An unsaturated solution contains less solute than the solvent has the capacity to dissolve at a specific temperature.

A supersaturated solution contains more solute than is present in a saturated solution at a specific temperature.

Sodium acetate crystals rapidly form when a seed crystal is added to a supersaturated solution of sodium acetate.

Types of Solutions

- Saturated
> Solvent holds as much solute as is possible at that temperature.
> Dissolved solute is in dynamic equilibrium with solid solute particles.

Types of Solutions

- Unsaturated
> Less than the maximum amount of solute for that temperature is dissolved in the solvent.

Types of Solutions

- Supersaturated ? Are these solutions? hmmmm
> Solvent holds more solute than is normally possible at that temperature.
> These solutions are unstable; crystallization can usually be stimulated by adding a "seed crystal" or scratching the side of the flask.

Factors Affecting Solubility

- Chemists use the axiom "like dissolves like":
> Polar substances tend to dissolve in polar solvents.
> Nonpolar substances tend to dissolve in nonpolar solvents.

| TABLE 13.3 | Solubilities of Some Alcohols in Water and in Hexane* |
| :--- | :--- | :--- |

Factors Affecting Solubility

The more similar the intermolecular attractions, the more likely one substance is to be soluble in another.

Factors Affecting Solubility

Glucose (which has groups that can make hydrogen bonding) is very soluble in water, while cyclohexane (which only has dispersion forces) is not.

Factors Affecting Solubility

- Vitamin A is oil-like substance and is soluble in nonpolar compounds (like fats).
- Vitamin C is polar substance and it is soluble in water.

Vitamin A

Temperature

Generally, the solubility of solid solutes in liquid solvents increases with increasing temperature.

Gases in Solution

- In general, the solubility of gases in water increases with increasing mass.
- Larger molecules have stronger dispersion forces.

TABLE 13.2 Solubilities of Gases in Water at $20^{\circ} \mathrm{C}$, with 1 atm Gas Pressure

Gas	Solubility (M)
N_{2}	0.69×10^{-3}
CO	1.04×10^{-3}
O_{2}	1.38×10^{-3}
Ar	1.50×10^{-3}
Kr	2.79×10^{-3}

Ways of Expressing Concentration of SOLUTE (assigned with "B") in Solutions

- mass percentage of " B " $w(B)$
- mass concentration ($y(B)$)
- molar concentration ($c(B)$)
- The
concentration of a solute is the amount of solute present in a given quantity of solvent or solution

Mass Percentage (w) of solute "B" \rightarrow w(B)

Mass \% of B or $w(B)=\frac{\text { mass of } B \text { in solution }}{\text { total mass of solution }} \times 100$

Task: In 180 grams of water, we dissolve 5 grams of Vitamin C and 15 grams of glucose.
\rightarrow Estimate what is the mass percentage of Vitamin C and the mass percentage of glucose in this solution?

Molar concentration (c(B)) (also known as "molarity")

Mass concentration of B or $y(B)$

$$
y(\mathrm{~B})=\frac{\text { mass of } \mathrm{B} \text { in solution }}{\text { total volume of solution }}
$$

Units are g / L

$$
y(B)=\frac{m(B)}{V(\text { solution })}
$$

$\cdot \mathrm{Na}^{+} \bullet \mathrm{Cl}^{-}$

$0.90 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{NaCl}$

$20 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{NaCl}$

$100 \mathrm{~g} \mathrm{~L}^{-1} \mathrm{NaCl}$
a little bit of solute

a lot of solute

Concentrated
Solutions solution

Preparing a Solution of Known Molarity

Dilution is the procedure for preparing a less concentrated solution from a more concentrated solution.

In dilution process the condition is that the mass (or moles n_{i}) of solute "B" before dilution MUST BE EQUAL to the mass (or moles $n f$) of solute " B " AFTER the dilution or $\mathbf{n}_{\mathrm{i}}=\mathbf{n}_{\mathrm{f}}$

Moles of solute $\mathbf{n}_{\mathbf{i}}$ before dilution ($\mathbf{i}=$ initial $)=\quad$ after dilution $(\mathbf{f}=$ =final $)$

REMEMBER: this is formula for dilution
$C i_{(B)} \mathrm{Vi}($ solution $)=C f_{(B)} \vee f($ solution $)$

Or...
 DILUTION
 $\mathrm{c}_{1} \cdot \mathrm{~V}_{1}=\mathrm{C}_{\mathbf{2}} \cdot \mathrm{V}_{\mathbf{2}}$

CONCENTRATED SOLUTION
DILUTE SOLUTION

Remember: Dilution means

 addition of defined volume of waterto the initial volume of solution

Before dilution

Remember
" C_{2} " is final molar
concentration of solute "B" AFTER we add water Jumons

$$
V_{2}=V_{1}+V(\text { added water })
$$ HNO_{3} from a stock solution of $4.00 \mathrm{~mol} / \mathrm{L} \mathrm{HNO}_{3}$? How much volume of stock solution should I get?

$$
\begin{aligned}
& \begin{array}{l}
c_{i}=4.00 \mathrm{~mol} / \mathrm{L} \\
c_{f}=0.200 \mathrm{~mol} / \mathrm{L} \\
\mathrm{~V}_{\mathrm{f}}=0.06 \mathrm{~L} \quad \mathrm{~V}_{\mathrm{i}}=? \mathrm{~L} \quad
\end{array} \begin{array}{c}
\text { Formula for dilution is: } \\
c_{i} \mathrm{~V}_{\mathrm{i}}=c_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}
\end{array} \\
& \qquad \mathrm{~V}_{\mathrm{i}}=\frac{c_{f} \mathrm{~V}_{\mathrm{f}}}{c_{\mathrm{i}}}=\frac{0.200 \mathrm{~mol} / \mathrm{L} \times 0.06 \mathrm{~L}}{4.00 \mathrm{~mol} / \mathrm{L} \quad=0.003 \mathrm{~L}=3 \mathrm{~mL}}
\end{aligned}
$$

3 mL of acid +57 mL of water $=60 \mathrm{~mL}$ of solution

REFERENCES

1. R Gulaboski, F Borges, CM Pereira, M Cordeiro, J Garrido, AF Silva Combinatorial chemistry \& high throughput screening 10 (2007), 514-526
2. R Gulaboski, ES Ferreira, CM Pereira, MNDS Cordeiro, A Garau, Vito Lippolis, A Fernando Silva, J. Phys. Chem. C 112 (2008), 153-161
3. V. Mirceski, R. Gulaboski, The Journal of Physical Chemistry B 110 (2006), 2812-2820
4. M Janeva, P Kokoskarova, V Maksimova, R Gulaboski, Electroanalysis 31 (2019), 2488-2506
