

Examples of Gases

A gas is a state of matter with no fixed volume or shape.

Gasses and

Medical Gasses
Elemental Gases

Gasses are simpler for

consideration than solids and liquids
---their properties can be defined by four parameters> Pressure, Volume, Temperature and mass of defined gas

Characteristics of Gases

- Gases expand to fill any container. a random motion, no attraction
- Gases are fluids (like liquids). - no attraction
- Gases have very low densities.
- no volume = lots of empty space

We breath air...and in the air we

 have...| | Percentage
 by Volume | Gas | Percentage
 by Volume |
| :--- | :---: | :--- | :---: |
| Gitrogen | 78.084 | Krypton | 0.0001 |
| Oxygen | 20.948 | Carbon monoxide | 0.00001^{2} |
| Argon | 0.934 | Xenon | 0.00008 |
| Carbon dioxide | 0.033^{1} | Ozone | 0.00002^{2} |
| Neon | 0.00182 | Ammonia | 0.00001 |
| Hydrogen | 0.0010 | Nitrogen dioxide | 0.000001^{2} |
| Helium | 0.00052 | Sulfur dioxide | 0.0000002^{2} |
| Methane | 0.0002^{1} | | |

Force

Area

Units of pressure P

Important Units of Pressure

(a) Low pressure

(b) High pressure

Unit
Pascal (Pa)
Atmosphere (atm)
mmHg , or torr

Relationship or Definition
$\mathrm{kg} /\left(\mathrm{m} \cdot \mathrm{s}^{2}\right)$
$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa} \simeq 100 \mathrm{kPa}$
, $760 \mathrm{mmHg}=1 \mathrm{~atm}$
© Houghton Mifflin Company. All rights reserved.

Important Gas Laws---we gonna see how the volume of given gas is function of other parameters...

1. Boyle's law

- At constant temperature, the VOLUME (V) of a given gas is inversely proportional to the applied pressure (P)

Va1/P
$\mathrm{V}=\mathrm{a}$ * $1 / \mathrm{P}$
" a " is a constant that depends on the nature of gas
$\mathrm{VP}=$ const
$V_{1} P_{1}=a=V_{2} P_{2}$

$$
V_{1} P_{1}=V_{2} P_{2}
$$

1. Boyle's law

2. Charles' law---it holds at constant

 pressure and massThe volume of given gas is proportional to the temperature

$$
\begin{gathered}
\mathrm{V} \alpha \mathrm{~T} \\
\mathrm{~V}=\mathrm{b}^{*} \mathrm{~T}
\end{gathered}
$$

" b " is a constant that depends on the nature of

$$
\begin{gathered}
\text { gas } \\
\mathrm{V} / \mathrm{T}=\mathrm{b} \\
\mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{b}=\mathrm{V}_{2} / \mathrm{T}_{2} \\
\mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{V}_{2} / \mathrm{T}_{2}
\end{gathered}
$$

Charles' law

Avogadro's law

At constant Pressure and constant temperature (T), the Volume of given gas is proportional to the amount (moles) of that gas (n)

$$
\begin{gathered}
V \alpha n \\
V=g^{*} n
\end{gathered}
$$

where " g " is constant that depends on the gas present in the system

$$
\begin{gathered}
\mathrm{V} / \mathrm{n}=\mathrm{g} \\
\mathrm{~V}_{1} / \mathrm{n}_{1}=\mathrm{g}=\mathrm{V}_{2} / \mathrm{n}_{2} \\
\mathrm{~V}_{1} / \mathrm{n}_{1}=\mathrm{V}_{2} / \mathrm{n}_{2}
\end{gathered}
$$

Consequence of Avogadro's law is definition of so-called MOLAR VOLUME Vm :

At normal consgtant pressure $\mathrm{P}(\mathrm{P}=101325 \mathrm{~Pa})$ and constant Temperature $\mathrm{T}(\mathrm{T}=273 \mathrm{~K}), 1 \mathrm{~mol}(1 \mathrm{~mol})$ of any gas has a volume of $22.4 \mathrm{dm}^{3}(22.4 \mathrm{~L})$ - this is called MOLAR VOLUME-Vm Definition of molar volume: $\mathrm{Vm}=\mathrm{V} / \mathrm{n}\left(\mathrm{Vm}\right.$ has unitsdm $\left.{ }^{3} / \mathrm{mol}\right)$

Volume
Pressure
Temperature Mass of gas Number of gas molecules

1 atm
$0 \circ \mathrm{C}$
39.95 g 6.022×10^{23}

22.4 L

1 atm
1 atm
$0 \circ \mathrm{C}$
$0 \circ \mathrm{C}$
28.01 g
2.02 g $6.022 \times 10^{23} 6.022 \times 10^{23}$

3. Закон за идеални гасови
-идеален гас е оној кај кого нема привлечни сили меѓу
молекулите на тој гас

$$
\begin{gathered}
V \alpha\left(n^{*} T\right) / P \\
V=R^{*}\left(n^{*} T\right) / P
\end{gathered}
$$

where " R " $=8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$ is universal gas constant

$$
\frac{P^{*} V=n^{*} R^{*} T}{\left(P^{*} V\right) /\left(n^{*} T\right)=R}
$$

n is amount (mols) of given gas
T is thermodynamic temperature in Kelvin (K) $\mathbf{T}(\mathrm{K})=\mathbf{2 7 3 , 1 5} \mathrm{K}+\mathbf{T}\left({ }^{\circ} \mathrm{C}\right)$;

What can be used this equation for?

$$
\text { Density of gas }(\rho)=m(\text { gas }) / V(\text { gas })
$$

$$
\begin{gathered}
P V=n R T \\
\text { каде } n=m / M \\
P V=(m / M)^{\star} R T \\
M=\left(\rho^{*} R^{*} T\right) /\left(P^{*} V\right)
\end{gathered}
$$

M-is molar mass of given gas and it can be used to identify some unknown gas present in container or in some room etc.

Medical gasses useful and toxic

- We breath earth's atmosphere composed of:
- Nitrogen (78\%) N2
- Oxygen (21\%) O2
- Carbon Dioxide (0.03\%) CO2
- Argon and trace gases (0.93\%) Ar

How Oxygen is produced

Fractional Distillation

Physical Separation -Nitrogen Molecular sieve Semi-Permeable membrane

Oxygen

-0_{2}

- Molecular Weight 32
- Colorless, odorless, tasteless
- Slightly heavier than air
- Density of $1.29 \mathrm{~g} / \mathrm{L}$
- Nonflammable but supports combustion

What happens if we have lack of Oxygen?

Hypoxia

(hi-pok'se-ah)
: a condition in which the body as a whole or a region of the body is deprived of adequate oxygen supply

Hypoxia-major cause for death of Covi-19 Patients

Scheme of phospholipid cell membrane

REMEMBER: EXCESS of OXYGEN in our body is ALSO HARMFULL!!!

 What happens if we supply Oxygen at large scales in our body?...-Highly Aggressive so-called Reactive Oxygen Species are formed, like Superoxide radical, hydroxide radical, hydrogen peroxide...that mainly attack The MEMBRANE of THE CELLS, while damaging it and making it peremable

Mitochondrial

Damage of cell membranes

Hepatocyte damage

Apoptosis \rightarrow A type of programmed cell death in which a series of molecular steps in a cell lead to its death. This is one method the body uses to get rid of unneeded or abnormal cells.

Necroptosis is an alternative mode of regulated cell death mimicking features of apoptosis and necrosis

Major energy production happens in MITOCHONDRIA

The energy is generated via creating molecules of ATP In a complex process in which oxygen plays a major role

Glycolysis and Oxidative Phosphorylation are major

Processes in which food turns to ATP

Different forms of Cytochromes (except Cytochrome P-450) are involved in the electron transfer process leading to ATP synthesis and conversion of O_{2} to $\mathrm{H}_{2} \mathrm{O}$

See youtube video 'cellular respiration (electron transfer chain)'

Actual structure of ATP synthase unit (a molecular machine!)

Cytochromes a and a_{3}	Cytochrome c oxidase with electrons dilivered to complex by soluble cytrochrome c (hence the name)
Cytochromes b and c_{1}	Cytochrome c reductase

O2 is stored in Myoglobin (Haem-like protein) in our body.

Do not forget: Iron of the Haem has ability to bind toxic gasses CO and HCN much much stronger than O2!!!

Protein (globin)

Other Medical gases (useful and harmful) SeS

Oxygen, Carbon Dioxide, Helium, Nitrous Oxide, Nitric Oxide, Nitrogen, Carbon Monoxide

O2; CO2; He; NO; N2O; N2; CO

-----Molar weight $44 \mathrm{~g} / \mathrm{mol}$
-----important to regulate pH of the blood (via HCO_{3} - hydrogencarbonates) in form of Carbonate buffer
CO_{2}
Colorless and Odorless
Does not support combustion

- Used in fire extinguishers
- More soluble in liquids than oxygen
- Easier transporting in blood then oxygen Used to treat hiccups (singulation)

Helium

- He

- Odorless, tasteless, non-flammable
- Second lightest of gases
- Combined with oxygen (heliox) to reduce work of breathing with swollen upper airways

After selversl minutes

-----Molar Weight $44 \mathrm{~g} / \mathrm{mol}$
---------It is combined with O 2 in anesthetic processes ---"laughing gas,,

- NO
- Is nonflammable but supports combustion
- Used experimentally in low concentrations (ppm) for pulmonary vasodilation
- Recently has had excellent results with premature babies

Nitrogen

N_{2} inert gas, most abandoned in the atmosphere

- Used as lab gas (liquid) for freezing tissue

Carbon Monoxide

- Very diffusible - used to test how easily gas will pass through the lung membranes

TAKE CARE on "TWIN BROTHERS" i.e. EXTREMLY TOXIC GASSES CO (carbon monoxide0 and HCN (hydrocyanide)

Slobodan Praljak-war criminal convicted in den Hague trial in 2017 drank KCN

Cyclopropane

- Strictly an anesthesia gas

Ethylene Oxide

- Used to gas sterilize medical equipment
- Useful for equipment that can't handle high temperatures or immersion in water

Containers of O 2 always green

Types of cylinders for holding gasses

AGAIN---Be CAREFUL of twin-toxic brothers

EFFECTS OF THE TOXIC TWINS

CO \& HCN

- CARDIAC ARREST
- HINDERING OF RESUSCITATION
- STRANGE AND IRRATIONAL BEHAVIOR
- LETHARGY
- WEAKNESS
- SHORTNESS OF BREATH
- SMELL OF ALMOND EXTRACT ON BREATH
- CHEST TIGHTENING
- HEADACHE
- DROWSINESS
- DISORIENTATION
- BRIGHT RED SKIN
- SOOT OR BURNS AROUND THE MOUTH AND NOSE
- COUGHING UP CARBONACEOUS MUCUS

в в С Cricket
 SPORT Live text coverage, scores, analysis \& fixtures
 Latest News

Germany Arnstein: Carbon monoxide killed six teens found in hut

(1) 1 February 2017
$<$

: 18-year-old, 16-year-old found dead in garage; police investigate possible CO poisoning

канал 5 тB

Девојка починала од труење со јаглероден моноксид - спиела во просторија која се затоплувала со печка на дрва (обновено)

Девојка на возраст од дваесет и една година починала од труење најверојатно со јаглерод моноксид а нејзината дваесет и двегодишна сестра се затрула од истата причина додека спиеле во помошна просторија од нивната семејна куќа што се затоплувала со печка на дрва. Трагедијата се случила вчера во долнореканското село Скудриње во периодот од полноќ до пладне.

Откриена причината за смртта на осумте млади за време на

8 Young Teens And been Poisoned by Silvester Night in Bosnia in 2020

Слободен печат
Пред 2 гохини

Zamapavncovne
15.9 .2001 . Vrpolie Posulife

IVAM MmuCrvic
29.8.2001, Poldietank, Posulie

STIPEROMEAC
27.9 .2001 . Poldietani. Posusfe

REFERENCES

1. R Gulaboski, F Borges, CM Pereira, M Cordeiro, J Garrido, AF Silva Combinatorial chemistry \& high throughput screening 10 (2007), 514-526
2. R Gulaboski, ES Ferreira, CM Pereira, MNDS Cordeiro, A Garau, Vito Lippolis, A Fernando Silva, J. Phys. Chem. C 112 (2008), 153-161
3. V. Mirceski, R. Gulaboski, The Journal of Physical Chemistry B 110 (2006), 2812-2820
4. M Janeva, P. Kokoskarova, V. Maksimova, R. Gulaboski, Electroanalysis 31 (2019), 2488-2506
5. R Gulaboski, V Mirčeski, S Mitrev, Food Chemistry 138 (2013), 116-121
6. P. Kokoskarova, R. Gulaboski, Electroanalysis 32 (2020), 333-344
