The correlation of the pKa equalization principle to Charge-assisted Hydrogen bonds in differentiation of the molecular salts from cocrystals

Aleksandar Cvetkovskia, Valerio Bertolasib, Valeria Ferrettib
${ }^{a}$ aFaculty of Medical Sciences, University Goce Delcev, Krste Misirkov bb, 2000 PO 201, Štip, N. Macedonia, aleksandar.cvetkovski@ugd.edu.mk
${ }^{\text {b D Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17, Ferrara 1-44121, Italy }}$

Introduction

The estimation of the extent of proton transfer between proton donor/electron acceptors and proton acceptor/electron donor moieties, both in intra- and inter-molecular cases, can be considered an emerging approach in crystal engineering, aimed at predicting the strength and the nature of hydrogen bonding interactions. ${ }^{1}$
On the basis of the pKa equalization principle, the strongest hydrogen bonds are associated with a very low $\triangle \mathrm{pKa}$ value, i.e. the difference between donor and acceptor acidic constants. [1,2] The $\Delta \mathrm{pKa}$ value associated with a general $\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$ interaction is calculated as:
$\Delta \mathrm{pKa}(\mathrm{D}-\mathrm{H} \cdots \mathrm{A})=\mathrm{pKAH}(\mathrm{D}-\mathrm{H})-\mathrm{pK}+\mathrm{BH}\left(\mathrm{A}-\mathrm{H}^{+}\right)$
Thia is applied to correlate the wide range $\mathrm{O} \cdots \mathrm{N}$ distance distribution to chemical diversity, expressed in terms of acidity constant, displayed by the conformer molecules in Phloroglucinol (PHL) cocrystals and pyridoxime (vitamin B6) molecular salts. $[3,4]$. The presented crystal structure packing motifs between cocrystallized, both neutral N -heterocycles coformers and O-type of acidic drug model (PHL), as well between protonated and nonprotonated N -heterocycle (pyridine type of drug model pyridoxine) and aromatic carboxylic acids confirm that the bond distances correlate to the nature of the hydrogen bond in range from week charge-assisted H -bonds in PHL/N-heterocycles cocrystals ($\Delta \mathrm{pKa}$ <0), toward the so-called "salt-cocrystal continuum" in unprotonated pyridine derivative ($\Delta \mathrm{pKa} 0-1$), till to formation strong charge-assisted H -bonds in molecular salts of the same protonated pyridine ($\mathrm{p} \mathrm{pKa}>3$). [5]

2-hydroxy-pyridine

2,3,5,6- tetramethylpyrazine E - cigarette aroma

Drug model Pyridoxine (PN) Vitamin B6

Coformer
Gallic acid
Nutraceutic acid

Sample Preparation

An equimolar quantity of PHL and co-crystal partner was dissolved in the minimum quantity of ethanol and left for slow evaporation at room temperature. Colourless crystals were observed after a few days.

Methods

Single crystals of PCC were obtained by slow evaporation of the solvent:

Crystal Structures of Cocrystals
Packing determined by number od H-bond acceptors, relative size of PHL and coformer molecules

One H -bond acceptor Coformer
PHL-4-phenylpyridine 1:2 M/M

Two H-bond acceptor coformers

PHL - 2-hydroxy-pyridine coformer 1: 2 M/M
PHL-2,3,5,6- tetramethylpyrazine 2:3 M/M

zigzag ribbon motif (alternating PHL- coformer molecule layers)

$\mathrm{Cg} 1=$ centroid of the $\mathrm{N} 1-\mathrm{C} 5$ ring; $\mathrm{Cg} 2=$ centroid of the $\mathrm{C} 9-\mathrm{C} 14$ ring
$\Delta \mathrm{p} K_{\mathrm{a}}$ vs N ... O distances (\AA) in PHL cocrystals

References

1. Childs, S. L., Stahly, G. P., Park A., , Mol. Pharmaceutics 2007, 4 (3), 323-338
2. Childs, S. L., Stahly, G. P., Park A., , Mol. Pharmaceutics 2007, 4 (3), 323-338
3. Gilli, P., Pretto, L., Bertolasi, V. \& Gilli, G. (2009). Acc. Chem. Res. 42, 33-44
4. Gilif, P., Pretto, L., Bertolasi, V. \& Gilli, G. (2009). Acc. Chem. Res. 42, $33-44$
3 Cvetkovski, A., Bertolasi, V. Ferretti, V. Acta Cryst.(2016). B72, 326-334

4 Cvetkovski, A., Ferretti, V. \& Bertolasi, V. (2017). Acta Cryst. C73, 1064-1070. Aitipamula, S., et al., Crystal Growth \& Design (2012) 12 (5), 2147-2152

