20th International Symposium and Summer School on Bioanalysis Pécs, Hungary, June 24-30, 2022

CHEMICAL AND PHENOLIC PROFILE OF STANUŠINA RED WINES DETERMINED BY HPLC-DAD

CEEPUS

Violeta Ivanova-Petropulos¹*, Sanja Durakova¹, Arianna Ricci², Giuseppina P. Parpinello², Andrea Versari²

¹Faculty of Agriculture, University "Goce Delčev", Štip, Republic of N. Macedonia ²Department of Agricultural and Food Sciences, University of Bologna, Italy *e-mail: <u>violeta.ivanova@ugd.edu.mk</u>

Wine production in Macedonia takes place in 149 officially registered wineries

- > The total bottling capacity is about 650,000 hl per year.
- Macedonia is mainly export-oriented country (Germany, Croatia, Slovakia, Poland, China, UK....).

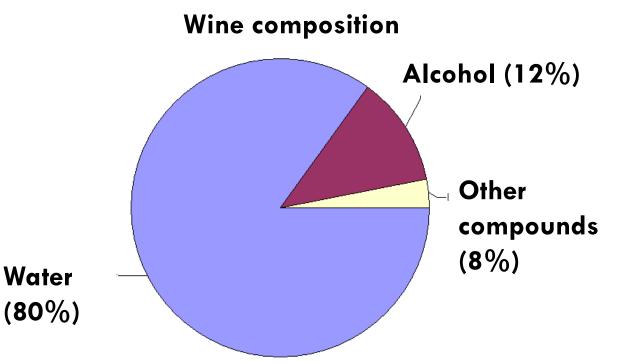
Regarding the export value of agricultural products, WINE is:

- In first place in terms of export of alcoholic beverages, and
- In second place immediately after the tobacco.

To determine the chemical composition of wines, the following methods are used:

- Methods published and recommended by the International organization of vine and wine (OIV), and
- Methods compliant with the standards recommended by the International Organization for Standardization (ISO).

A bottle of red wine contains over 1000 chemical compounds


Quite amazing when you consider wine is >80% water + alcohol

Wine is a complex matrix of many components:

- Water, Alcohols, Organic acids, Carbohydrates, Aldehydes, Esters
- ✓ Minerals, Nitrogen compounds
- ✓ Phenolic compounds
- ✓ Aromas

✓ Vitamins

✓ The chemistry of flavour, colour and astringency in wine is **enormously complicated.**

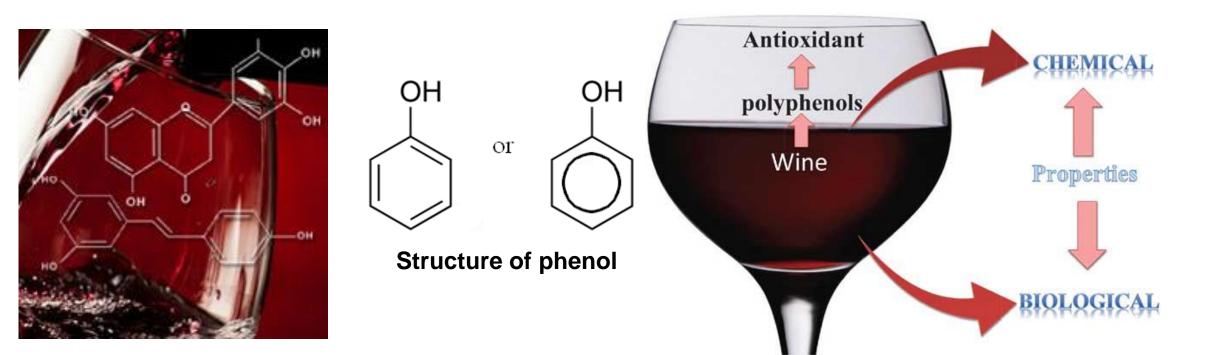
✓ Many chemical and biochemical pathways are not well understood.

Ethanol

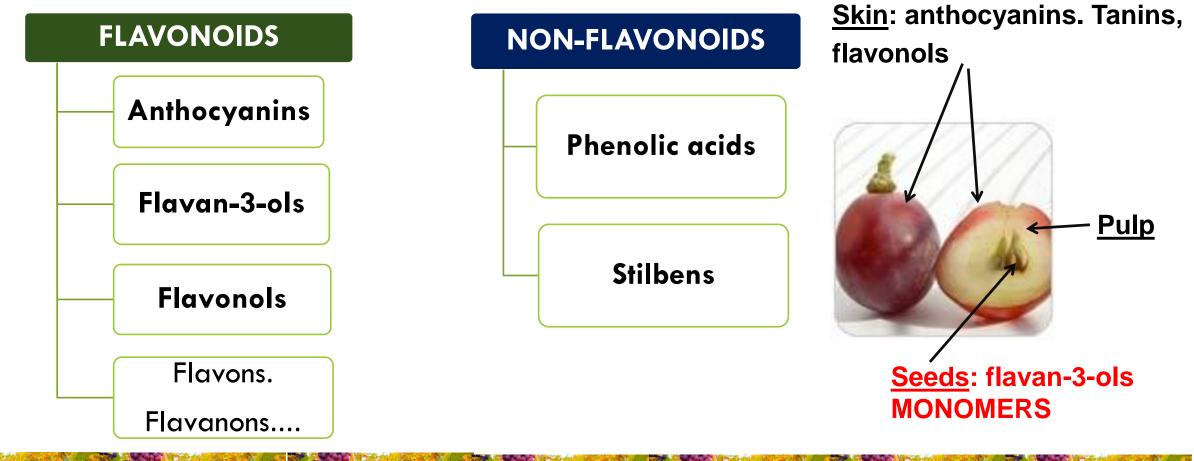
✓ Affects the quality of the wine: the stability of the wine - sensory characteristics

Carbohydrates (sugars) and sweetness of wine

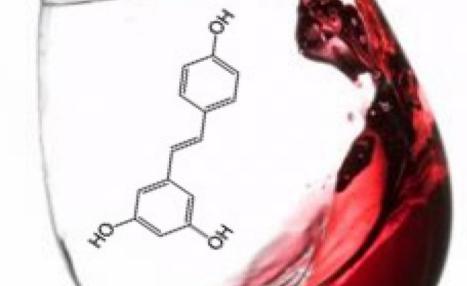
- ✓ Reducing sugars: Glucose and fructose
- ✓ Dry wines contain small amounts of unfermented sugar

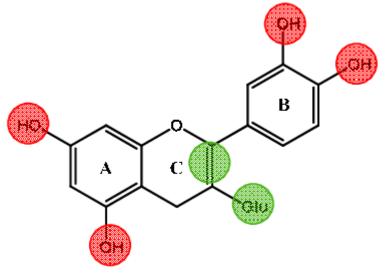

Acids and Acidity

- > The main acids in wine are: tartaric, malic, lactic, citric.
- These acids and other minor acids which determine the acidity of the wine.
- Total acidity is determined in grape juice, must and wine.
- > Acetic acid is the main volatile acid which determines the volatile acidity.

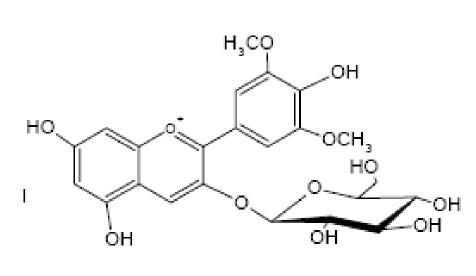

PHENOLIC COMPOSITION OF WINE

Very important components in wine and grapes responsible for the quality of wine,

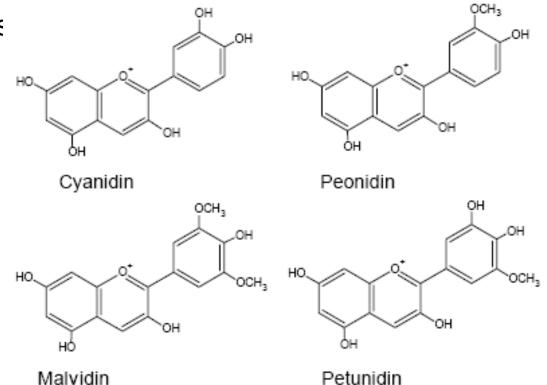

- > Beneficial effects on health: antioxidant, antimicrobial, anticancer ...
- Determine the color, taste, astringency and bitterness of the wine.
- They are responsible for the differences between red and white wines, especially the color and taste of reds.
- These substances are present in different parts of the grapes and are extracted during vinification.


PHENOLIC COMPOSITION OF WINE

FLAVONOIDS



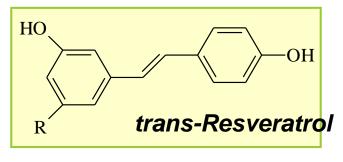
- Includes over 2000 phenolic compounds in the plant world
- Many are brightly coloured
- In grapes, source is seeds/skins and tissue
- Much of the structure and colour of wine is from this group of compounds
- Anthocyanins (red pigments), procyanidins (colour co-factors and tannin precursors)
- Flavonols (anti-oxidant compounds)
- Catechins (yellow pigments)

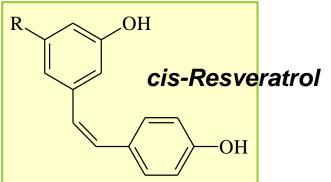


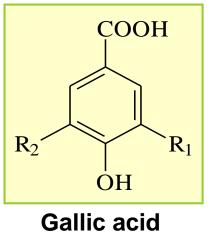
ANTHOCYANINS - RED WINE PIGMENTS

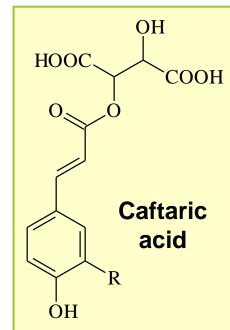
- ✓ Dominant anthocyanin in all varieties is malvidin.
- ✓ Total anthocyanins in young reds typically 500 mg/L.
- ✓ Highly reactive compounds
- ✓ Colour, hue and density of young red wines result of a complex series of delicately balanced equilibria
- ✓ Particularly sensitive to pH and SO₂ levels

Malvidin 3-glucoside

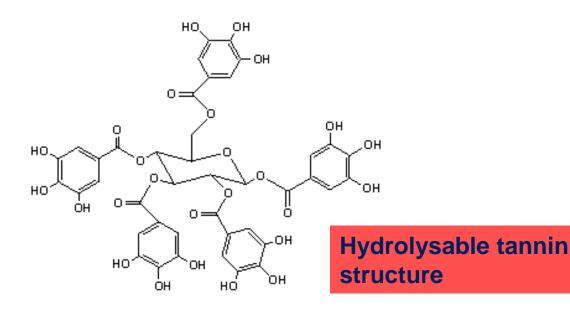

NON-FLAVONOIDS — BITTERNESS COMPOUNDS

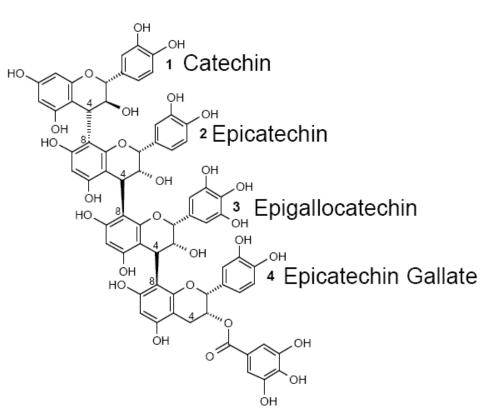

Benzoic and cinnamic acid derivatives


- Compounds that oxidise to cause browning in wines (oxidised form is yellow/brown)
- ✓ Generally odourless (but can be precursors to volatile phenol fault compounds)
- ✓ Have a bitter flavour
- ✓ Also Coumarins from oak,
- ✓ Can exist as the glycoside (bitter) or aglycone (acidic)


Stilbenes

- $\checkmark\,$ They are synthesized in the vine
- ✓ Defense system against fungal infection, most commonly *Botrytis cinerea*, and for protection against UV radiation.




WHAT ARE TANNINS?

- ✓ Large molecular weight compounds made up of smaller phenolic units.
- Characterised by their precipitation reaction with proteins.
- $\checkmark\,$ Tannins react with saliva proteins.
- ✓ Molecular weights range from 500 to over 3000.
- Act as 'oxygen' soaks assist in preventing oxidation of red wines

- Condensed tannins from grape (skins/seeds)
- Hydrolysable tannins less from grapes but extracted from oak barrels

Condensed Tannin Structure

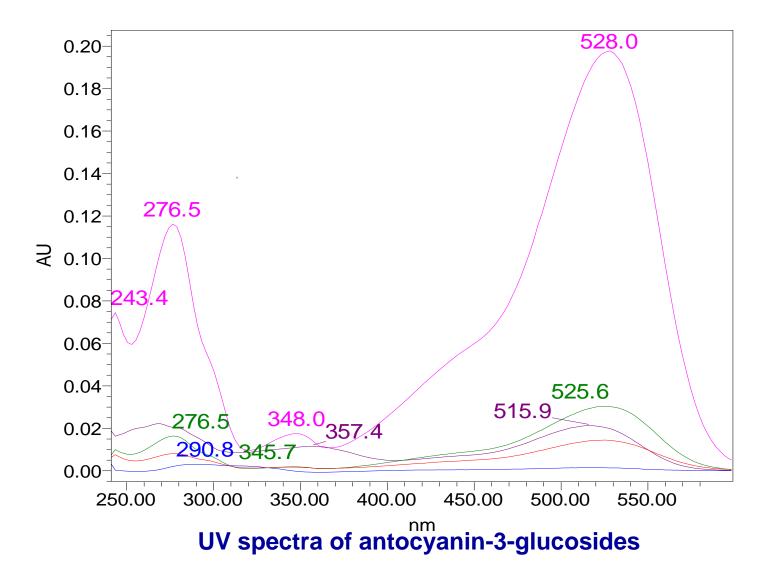
STANUŠINA GRAPE VARIETY MK. СТАНУШИНА

- > Red grape variety **indigenous** to the Republic of Macedonia and is found nowhere else in the world.
- Little known outside of the native country.
- > It is capable of producing very **high quality wines** and is mainly grown in the Tikveš region.
- The introduction of international grape varieties have caused a sharp decline of Stanušina from the country's vineyards in recent times.
- Local wineries have begun initiatives to reintroduce this uniquely old Macedonian domestic variety back into the region.
- > The grapevine is highly resistant to drought and pests and can be cultivated without irrigation.
- > The fruit ripens very late but gives good yields. Producing on average 15-20 t/ha.
- > The juice obtained contains approx 18-20% sugar and 6-9 g/l acids.
- During a good year it can provide a base for wine of high quality and medium strength with 11-12% of alcohol.

ANALYTICAL TECHNOLOGIES FOR ANALYSIS OF POLYPHENOLS

HPLC-DAD HPLC-DAD-MS

(high-performance liquid chromatography coupled with diode-array detector, mass detector)



UV-VIS SPECTRA OF PHENOLICS

Phenolic compounds show characteristic absorbances in the UV/Vis region:

- Anthocyanins: 520 nm,
- Flavonols: 360 nm,
- Hydroxycinnamic acids: 320 nm.
- Flavan-3-ols: at 280 nm

THE AIM OF THE WORK

- 1. To study the phenolic composition of wines of the Stanušina variety using UV-Vis spectroscopy and HPLC-DAD
- 2. To study the influence of maceration time on phenolic composition

EXPERIMENTAL

Winemaking

- Yeast for fermentation, Excellence SP Saccharomyces cerevisiae (LamotheAbiet, Canejan/Bordeaux, France)
- 80 mg/L **SO₂**
- **Nutrients**: 20 g/hL Oenostim activator, Lamothe-Abiet, France)

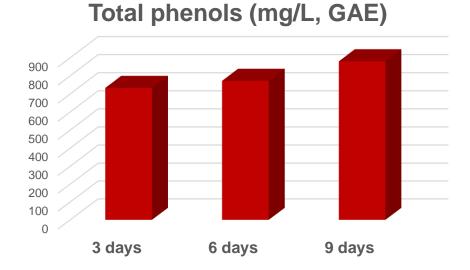
Basic chemical parameters

Alcohol (OIVMA-AS312-01 A), dry extract (OIV-MA-AS2-03B), specific density (OIV-MA-AS2-01), total acidity (OIV-MAAS313– 01), volatile acidity (OIV-MA-AS313–02), free and total SO₂ (Ivanova-Petropulos and Mitrev 2014)

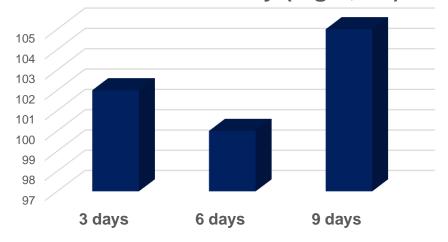
Spectrophotometric analyses

- Total phenols, 280 nm
- Antioxidant activity, DPPH method, 515 nm
- Colour and hue: 420 nm (browning degree), 520 nm и 620 nm (anthocyanins)

HPLC analyses


HPLC-DAD system: Dionex DX500

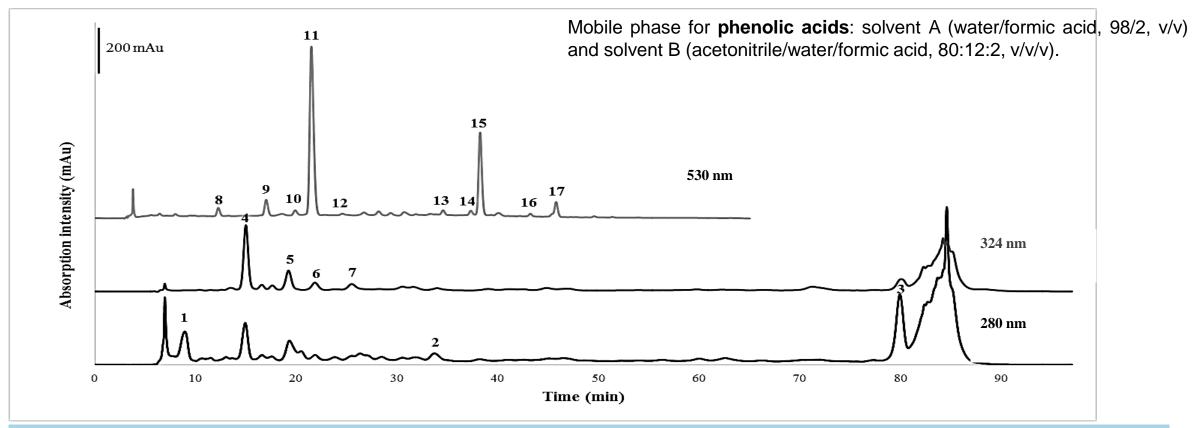
- Anthocyanins and related pigments: column Gemini RP-C18 (250 × 4,6 mm; 5 μm)
- Hydroxycinnamic acids
- Flavan-3-ols column Aquapore ODS-300 RP-C18, (250 \times 4,6 mm; 7 $\mu m)$


RESULTS AND DISSECTION BASIC CHEMICAL COMPOSITION


Parameters/Wines	Stanušina		
Days of maceration	3	6	9
Alcohol (%,v/v)	13.58	13.51	13.64
Total dry extract (g/L)	27.3	26.06	26.96
Specific density	0.9928	0.9924	0.9926
Volatile acidity (g/L)	0.52	0.63	0.68
Total acidity (g/L)	5.8	5.5	6.0
Free SO ₂ (mg/L)	15	23	42
Total SO ₂ (mg/L)	59	62	68

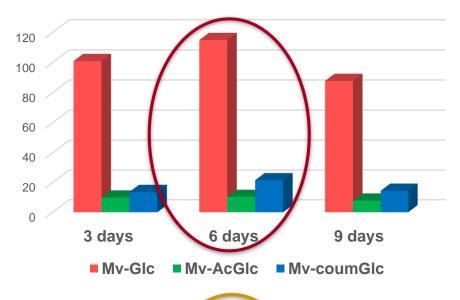

RESULTS AND DISSECTION SPECTROPHOTOMETRIC PARAMETERS

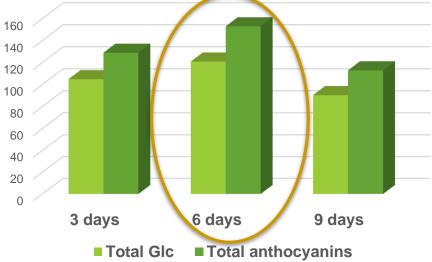
Antioxidant activity (mg/L, TE)



RESULTS AND DISSECTION HPLC PARAMETERS Mobile phase ml /L of 70

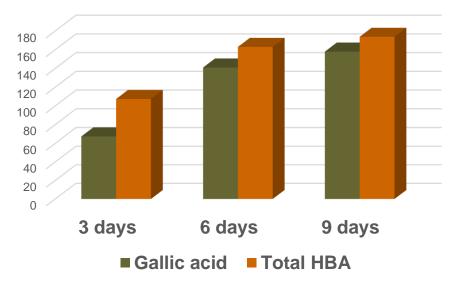
Mobile phase for **anthocyanins**: water/methanol (70/30, v/v) containing 6 mL/L of 70 % perchloric acid (solvent A) and water/ methanol (25/75, v/v) containing 6 mL/L of 70 % perchloric acid (solvent B).

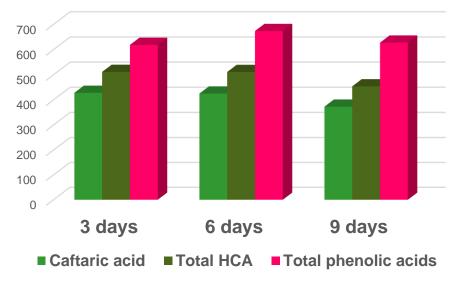


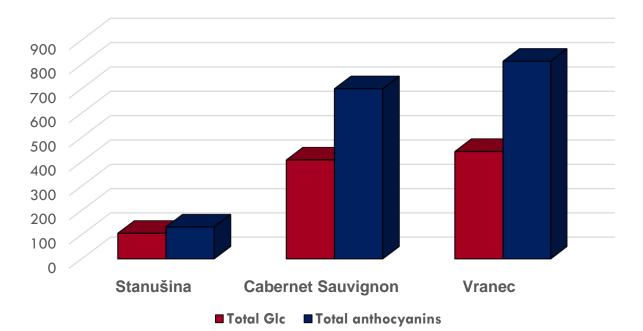

UV-Vis chromatogram of Stanušina wine

- 530 nm for separation and quantification of anthocyanins (10 compounds)
- > 324 nm for separation and quantification of flavan-3-ols and hydroxybenzoic acids (4 compounds)
- > 280 nm for separation and quantification of hydroxybcinnamic acids (2 compounds).

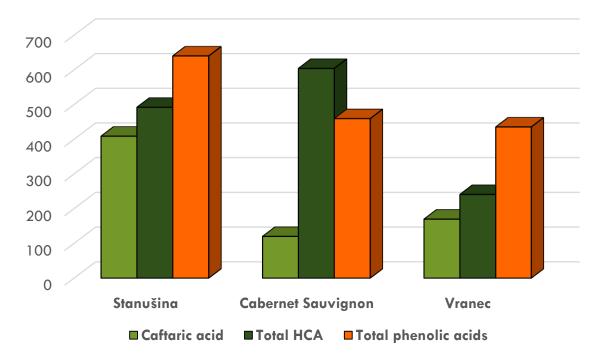
RESULTS AND DISSECTION QUANTIFICATION OF ANTHOCYANINS


Parameters (mg/L)	Stanušina		
Time of maceration	3 days	6 days	9 days
Dp-Glc	n.d.	n.d.	n.d.
Pt-Glc	4.34	5.13	2.62
Pn-Glc	0.00	0.00	0.00
Mv-Glc	101	115	87.8
Total Glc	105	121	90.5
Pt-AcGlc	n.d.	n.d.	n.d.
Pn-AcGlc	n.d.	n.d.	n.d.
Mv-AcGlc	9.92	10.4	7.88
Total AcGlc	9.92	10.4	7.88
PncoumGlc	0.00	1.16	0.15
Mv-coumGlc	13.7	21.6	14.5
Total coumGlc	13.7	22.7	14.6
Total anthocyanins	129	153	113
ΣGIc/ΣAcGIc	10.6	11.6	11.5
ΣGlc/ΣcoumGlc	7.68	5.30	6.19
ΣAcGlc/ΣcoumGlc	0.72	0.46	0.54




RESULTS AND DISSECTION QUANTIFICATION OF PHENOLIC ACIDS AND FLAVAN-3-OLS

Parameters (mg/L)		Stanušina	
Time of maceration	3 days	6 days	9 days
Protocatechuic acid	18.2	n.d.	15.8
Gallic acid	67.4	141	158
Syringic acid	21.8	22	n.d.
Total HBA	107	163	174
<i>p</i> -Coumaric acid	2.24	3.45	4.51
Caftaric acid	428	425	373
Coutaric acid	18.5	26.2	24.4
Caffeic acid	47.7	35.7	30.1
Fertraric acid	14.9	20.5	21.8
Total HCA	511	511	454
Total phenolic acids	619	674	628
(+)-Catechin	21.8	22	n.d.

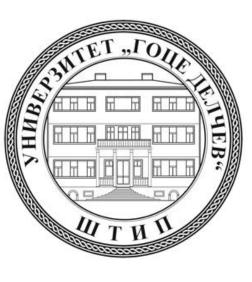


RESULTS AND DISSECTION COMPARISON OF STANUŠINA WITH CABERNET SAUVIGNON AND VRANEC

Anthocyanins

Hydorxycinnamic acids

CONCLUSIONS


- HPLC-DAD is valuable technique for monitoring of winemaking
- A **complex** extraction pattern was observed that vary with maceration time.
- Hydroxycinnamic acids and anthocyanins were observed to be present in the highest content after **3 and 6 days** of maceration, respectively, followed by a slight decrease with time.
- Hydroxybenzoic acids and (+)-catechin content was highest at **9 days** of maceration.
- Stanušina wines showed low level of anthocyanins, but relatively high content of hydroxycinnamic acids, such as caftaric and caffeic acids, and antioxidant activity as well.

20th International Symposium and Summer School on Bioanalysis, Pécs. Hungary. June 24-30. 2022

ACKNOWLEDGMENT

CEEPUS Network: Teaching and learning bioanalysis

www.ugd.edu.mk

Bilateral project between Macedonia and China: "Dynamic monitoring of ethyl carbamate and its precursors synthesis during wine production and developing a control strategy"

With wine and hope anything is possible

Thank you for your attention!

20th International Symposium and Summer School on Bioanalysis, Pécs. Hungary. June 24-30. 2022