CHARACTERIZATION OF MERLOT WINES BASED ON PHENOLIC **COMPOSITION DETERMINED BY HPLC-DAD-ESI-MS AND MS/MS** TECHNIQUE

Violeta Ivanova-Petropulos¹, Isidro Hermosín-Gutiérrez², Borimir Vojnoski³

¹Faculty of Agriculture, University "Goce Delčev"- Štip, Krste Misirkov bb, 2000 Štip, Republic of N. Macedonia ²Instituto Regional de Investigacio n Cienti fica Aplicada (IRICA), Escuela de Ingenieros Agro nomos, Universidad de Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain

³Department of Enology, Institute of Agriculture, Ss. Cyril and Methodius University, Blvd Aleksandar Makedonski bb, 1000 Skopje, Republic of N. Macedonia

e-mail: violeta.ivanova@ugd.edu.mk

INTRODUCTION

The concentration of phenolic compounds in wine depends on many factors, such as the variety, climate, soil, oenological practices applied

^{mAU} ^{mAU} ⁸⁰⁰ ³²⁰ mmanu ³²⁰ nm ³²⁰ nm ³²⁰ nm ³²⁰ nm ³²⁰ nm ³²⁰ nm
--

for winemaking, aging and storage conditions. The purpose of this investigation was to determine the detailed phenolic profile of Merlot wines (vintage 2008), produced in Tikveš wine region in Republic of N. Macedonia. High-performance liquid chromatography with diode array detection coupled to mass spectrometry (HPLC-DAD-ESI-MS/MS) was used to identify and quantify the phenolic compounds in wines. Identification of the individual phenolic compounds was carried out by comparison of their UV/Vis spectra and retention times with those of the available standards, as well as by comparing the ESI-MS and MS/MS data with the standards analyzed under the same experimental conditions and those found in the literature.

MATERIALS AND METHODS

Wine samples: Merlot wines (vintage 2008)

HPLC-DAD-ESI-MS/MS

Solid-phase extraction of non-anthocyanin phenolics in wine. Mobile phase: solvent A (acetonitrile/water/formic acid, 3:88.5:8.5, solvent B V/V/V, (acetonitrile/water/formic 50:41.5:8.5, acid, V/V/V, solvent and (methanol/water/formic acid, 90:1.5:8.5, V/V/V). For analysis of anthocyanins and related pigments, samples were only diluted with 0.1 M HCI solution (1:4, V/V). Mobile phase: solvent A (water/acetonitrile/formic acid, 87:3:10, V/V/V) and B solvent (water/acetonitrile/formic acid, 40:50:10, V/V/V).

RESULTS AND DISCUSSION

HPLC results for pigments in Merlot wines (vintage 2008)

Anthocyanins (molar %)		Vitisins and hydroxyphenyl-pyranoanthocyanins (molar %)		Nonflavonoids (molar %)	
Compounds/Wines	Merlot, 2008			Hydroxycinnamic acid derivatives	Merlot, 2008
Dp-3-alc	4 83 + 0 03	Compounds/Wines	Merlot, 2008	trans-Caftaric acid	59.3 ± 0.5
v-3-qlc	0.52 ± 0.01	Vitisin-A	465+043	trans-Coutaric acid	14.9 ± 0.12
t-3-glc	5.74 ± 0.03	Ac-vitisin-A	-70.0 ± 0.40 $2/10 \pm 0.21$	cis-Coutaric acid	5.3 ± 0.05
n-3-glc	4.51 ± 0.02	n-Cm-vitisin-A	24.0 ± 0.21	Caffeic acid	9.7 ± 0.09
v-3-glc	48.9 ± 0.55	Vitisin-R	11.0 ± 0.10 10.4 ± 0.00	trans-Fertaric acid	6.7 ± 0.06
p-3-acglc	1.83 ± 0.01	Ac viticin B	10.4 ± 0.09	<i>p</i> -Coumaric acid	1.0 ± 0.01
-3-acglc	1.63 ± 0.01	AC-VILISIII-B Totol viticino*	8.17 ± 0.07	Ethyl caffeoate	1.5 ± 0.01
n-3-acglc	1.98 ± 0.02		41.6 ± 0.35	Ethyl coumarate	1.5 ± 0.01
v-3-acglc	20.7 ± 0.38	10-DHP-pymv-3-gic(pinotin A)	29.3 ± 0.30	Total HCAD (mmol/L)	248 ± 3.29
p-3-cmalc	0.56 ± 0.01	10-DHP-pymv-3-acglc	nd	Stilbenes	
v-3-cmalc	nd	10-DHP-pymv-3-cmglc	nd	trans-piceid	40.2 ± 0.41
t-3-cmalc	0.68 ± 0.01	10-MHP-pymv-3-glc	40.1 ± 0.37	trans-resveratrol	14.6 ± 0.15
n-3-cmalc	1.30 ± 0.01	10-MHP-pymv-3-acglc	19.1 ± 0.15	cis-piceid	38.9 ± 0.39
v-3-cmalc	6.81 + 0.04	10-MHP-pymv-3-cmglc	11.5 ± 0.09	cis-resveratrol	6.2 ± 0.06
otal anthocyanins (mg/l)	194 + 2.3	Total HP-pyranoanthocyanins (mg/L)	6.28 ± 0.06	Total stilbenes (mmol/L)	19.2 ± 0.14

- ✓ A total of 52 phenolic compounds have been identified and quantified in the wine samples applying HPLC-DAD-MS and MS/MS technique which included 14 anthocyanins, 16 pyranoanthocyanins, 16 flavonols, 8 hydroxycinnamic acids and their derivatives and 4 stilbenes
- \checkmark Malvidin-3-glucoside and its derivatives were the major compounds.
- ✓ 10-carboxy-pyranomalvidin-3-glucoside (vitisin A) and 10-p-hydroxyphenyl-pyranomalvidin-3-glucoside were the main compounds from the family of vitisin-like and hydroxyphenyl-like pyranoanthocyanins, respectively.

2nd Scientific conference for critical environmental issues of the West Balkan Countries, Štip, Republic of N. Macedonia, October 28-30, 2021