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Abstract 
This paper will review important topics on the subject of auction theory and 

mechanism design, these include: efficiency first and foremost, also revenue 

comparison between different types of auctions and the issue of incentive 

compatibility, individual rationality with the general idea and proof that bilateral 

trade is inefficient. Mechanism design theory tells us that if buyers and sellers both 

have private information full efficiency is impossible, however Vickrey auction (single 

unit auction) will be efficient i.e. will put the goods in the hands of the buyers that 

value them most. However, the conclusion from this paper is that because of 

overvaluation of bidders the main result is inefficient, i.e. bids are too high. When 

weak and strong bidders are compared the main conclusion is that strong bidders’ 

expected payoff is higher in second price auction (SPA), while weak bidder prefers 

first price auction (FPA) bid. 
 

Keywords: asymmetric auctions, first price auction, Green-Laffont, Myerson-

Satterthwaite, second price auction. 
 

JEL classification: D44, D82. 

DOI: 10.2478/crebss-2021-0004 
 

Received: November 2, 2020 

Accepted: March 17, 2021 
 

 

Introduction 
This paper will provide technical survey of the auction theory and mechanism design 

theory. A game of auction and mechanism design is a game of private information 

types (private cumulative distribution functions). In First price auctions bidders may 

be bid shading and in Second price auctions bidders are bidding their true 

valuation. In the asymmetric type of auctions Revenue equivalence theorem does 

not hold and bidders do not know the other bidders’ valuation. The result is not 

socially optimal i.e. is not Pareto efficient. In general, Vickrey-Clarke-Groves (VCG) 

mechanism (Vickrey, 1961, Clarke, 1971, Groves, 1973) is an auction that performs 

specific task of dividing items between people where the goal is to maximize the 
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sum of values of all agents. Previous type of mechanism is opposed by (Myerson, 

Satterthwaite, 1983) that proposes that all bilateral trade is inefficient. 

The paper is organized as follows; Literature review on auction theory and auction 

game mechanisms is followed by the research methodology. Next a chapter in 

symmetric auctions follows, with a sequent subchapter(s) on first price auction (FPA), 

second price auction (SPA), and revenue equivalence theorem (RET) theorem. Next 

chapter is on asymmetric auctions with subchapters on weak and strong bidders 

with some examples is completed. And finally, Vickrey-Clarke-Groves (VCG) 

mechanism is compared with Myerson-Satterthwaite mechanism. Final chapter is 

conclusion. 

 

Literature review 
Auction theory was founded in 1960’s although early research had little impact on 

practice. Most notable advances in the theory of auctions from that era (1960’s and 

1970’s) include: Vickrey (1961, 1962, 1976), Wilson (1967, 1969, 1977, 1979), Cassady 

(1967), Griesmer, Levitan, Shubik (1967), Ortega (1968), Rothkopf (1969), Hurwicz 

(1973), Holmstrom (1977, 1979), Green and Laffont (1977), Milgrom (1979), Myerson 

(1979), etc. In the next decade a benchmark model of auction was defined in 

(McAfee, McMillan, 1987). In that model all bidders are risk neutral, each bidder has 

a private valuation different from the others (different cumulative distribution 

functions and probability density functions), the bidders possess symmetric 

information, expected payments are functions of their bids. At the beginning of the 

decade (Laffont, Maskin, 1980), proposed differentiable approach to a dominant 

strategy mechanism, (Myerson, 1981) designed Bayesian-optimal mechanism that 

makes use of virtual valuations (virtual values are the derivative of the revenue 

curve). Riley and Samuelson (1981) provided a more general result on Revenue 

equivalence theorem. Other notable research from the 1980’s on the auctions topic 

includes: Grossman and Sanford (1981), Milgrom and Weber (1982, a-b), Rassenti, 

Bulfin and Smith (1982), Engelbrecht-Wiggans, Milgrom and Weber (1983), Gabrielle, 

Gale and Sotomayor (1986), where the subject of multidimensional auctions has 

been investigated (Milgrom, 1986, Graham, Marshall, 1987, Holmstrom, Milgrom, 

1987, McAfee, McMillan, 1987, Bullow, Roberts, 1989, Hansen, 1988, Klemperer, 

Meyer, 1989). 

Auctions are type of games where players payoff depends on other’s types of 

market participants e.g., Akerlof (1970), and this market models where participants 

have information that affects other player’s payoffs are called adverse selection 

models. Although the treatment of adverse selection in auction theory has history 

since 1960’s, yet the largest part of the auction theory, puts adverse selection aside 

to focus on the private values case, in which every type of participants’ utility 

depends on its own type. The 1990’s were an era of “putting auction theory at work” 

(Milgrom, 2004). Since 1994 auction theorist have designed a spectrum of sales for 

countries everywhere in the world. By 1996 auction theory became so influential that 

its founder William Vickrey was awarded a Nobel prize in economic sciences. More 

distinguished research on auctions in 1990’s and 2000’s (not all, the aim of this part is 

just the introduction to the essential literature on the subject) includes: Kerry, Zender, 

1993, Levin, Smith, 1994, Avery, 1998, Ausubel, Schwartz, 1999, Dasgupta, Maskin, 

2000, Faruk, Stacchetti, 2000, Maskin, Riley, 2000, etc. 

Although is a theoretical field in the economics, auction theory is also being used 

as a tool to inform the design of the real-world auctions, and most notably auctions 

for the privatization of the public sector companies or the sale of licenses for use in 

the telecommunications or more general in the electromagnetic spectrum. Then we 
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turn our analysis on the auction mechanisms namely VCG mechanism we are 

opposing to Green-Laffont and Myerson-Satterthwaite. 

 

Research methodology 
Тhis paper makes a use of simulation on auctions, and use of mathematics in proofs 

of the theorems associated with the auction mechanism. Auctions that were 

simulated were First price auction (FPA), Second price auction (SPA), and 

asymmetric auctions. Mathematical proofs are included on the Revenue 

equivalence theorem, proof on the expected payoffs in FPA and SPA that expected 

payoff is higher for the weak bidder in the FPA auction. Proof on Green-Laffont 

theorem (Green, Laffont, 1977, 1979) is also included, followed by the proof on 

Myerson- Satterthwaite theorem.  

 

Symmetric auctions: Introduction to the analysis of the 

common auction types  
Here we take into consideration auctions with Independent private values (IPV). The 

number of bidders is n, N ≡ {1, … n}, and the set of possible bids is [0, ∞). Player’s bid is 

denoted as bi where subscript i denotes ith bidder. The bidder’s valuation is denoted 

as vi . The bidder’s distributions are denoted by F. 

 

First price auction sealed bid  
In the Sealed bid First Price auction the bidders submit their bids in envelopes. The 

highest bidder is the wined when the auction has ended, and he pays the price that 

he bids: 

bi = Πi = {
vi − bi, if bi = max

i∈N 
bi

0, if bi ≠ max
i∈N 

bi
 (1) 

Bidder i wins the auction whenever he submits the highest bid, but only when 

max
i≠1 

β(vi) = β(max
i≠1

vi) < b, where β here represents the bidder’s strategy. Since β is 

increasing then max
i=1

β(vi) = β(Yi), where Yi is some random variable, and Y1 ≡ Y1
N−1, 

the highest of N − 1 values. Bidder 1 wins whenever β(Y1) < b, ⋁ ≡ ∀Y1 < β1(b). His 

expected payoff is therefore: 

Πi = F(β−1(b)) × (v − b) (2) 

When maximizing this with respect to b yields: 
f(β−1(b))

β′(β−1(b))
(v − b) − F(β−1(b)) = 0 (3) 

where f = F′ is the density the random variable Y1. When a symmetric equilibrium 

exists i.e., when β(v) = b which yields following differential equation: 

 F(v)β′(v) + f(v)β(v) = vf(v) ≡
d

dv
(F(v)β(v)) = vf(v)  (4) 

And then since β(0) = 0 gives β(v) =
1

Fn−1(v)
∫ Fn−1(s)

v

0
ds. In the previous expression s is 

signal and s = v, or s ≠ v , or s = y. Then: 

 β(v) =
1

Fn−1(v)
∫ yf(y)

v

0
dy = E[Y1|Y1 < v]  (5) 

If the valuation is not equal to signal i.e., if bidder cheats, then: b(vi) = v −
1

Fn−1(v)
∫ Fn−1(s)

v

r
ds. Variance of the rice in the First Price auction that is equivalent to 

the Dutch type of auction is given as in (Vickrey, 1961): 

σpd
2 = ∫(pd − p̅d)2dp(v) = ∫ (

n−1

n
v −

n−1

n+1
)

2
nvn−1dv =

(n−1)(1−n)

n2

1

0
  (6) 
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In the Dutch model of auction (Dutch type of auction. is a type of auction, that 

begins with highest bid that decreases until some auctioneer does accept the price, 

or accepts proposed reserve price), buyers gain is v − p = v − [
n−1

n
] v =

v

n
, where v is 

the highest drawn value, range of possible gains is from 0 to 
1

n
 . 

 

Sealed bid second price auction 
This auction is also known as Vickrey type auction (English auction) (English auctions 

are such type where it is begun with lowest (reserve prices) and it is going to higher 

price. English auctions are of open type). In Vickrey type of auction, bidders submit 

their bids sealed, without knowing other members in the auction bids, and in this 

type of auction highest bid wins, but the price paid is second highest bid. This result is 

Pareto optimal. This auction is efficient because the winner is the auctioneer for 

whom the lot has highest value. In the SPA each bidder submits its bid, and strategy 

for a bidder is a function:βi: [0, ω] → ℝ++,which determines his or her any bid.  

 Πi = {
vi − max

i∈N 
bi  if bi > max

j≠i
bj

0, if bi < max
j≠i

bj 
  (7) 

In the SPA auction weakly, dominant strategy is to bid in accordance with β(v) = v. 
For the SPA auction variance is given as: 

 σcd
2 = ∫ (v −

n−1

n+1
)

2
n(n − 1)(vn−2 −

1

0
vn−1)dv (8) 

 

Revenue equivalence theorem 
Mechanisms with the same outcome in BNE (Bayesian Nash Equilibria) have the 

same expected revenue. This theory confirms that if there are n risk neutral agents, 

that do independent and personal evaluation of some auction good , and valuation 

follows cumulative distribution F(v), which is ascending probability distribution of a 

continuous set of choices (v, v̅) .Than every auction mechanism (every institution 

auction), in which lot will be allocated towards the agent for which it has highest 

value v̅, and every agent with a valuation of good v has utility 0, generates exact 

same revenue, which lead every bidder to make the same payment. Revenue 

equivalence theorem N ≡ {1, … , n}, CDF = F(∙),winning bid: bi = max
i∈N 

bi bi > max
j≠i

bj, ωl →

Πi = 0, with all these settings different types of auction generate same expected 

revenues (profit) from any auction chosen. 

Proof of the theorem provided in (Levine, 2014), from the Fundamental theorem of 

calculus: 

 ∃ Π(v) = Π(0) + ∫ Π′(s)ds = ∫ sds =
1

2
v2v

0

v

0
  (9) 

Previous tells the expected profit of bidder with valuation v. The average profit of 

bidder is given as: 

 Εv[Π(v)] = ∫ Π(v)dv = ∫
1

2
v2dv =

1

6

1

0

1

0
  (10) 

An average bidder 1 can expect profit of 1/6 and a bidder 2 can expect profit of 

1/6 and therefore the expected total bidder profit is 1/3. Or, ∑ Π(v) = 2 ∙n
i=1 Εv[Π(v)] =

1

3
. The value of surplus (the value that is created by transferring the object to the 

winner) is max {v1, v2} is given as Ε(S) = Ε max{v1, v2} =
2

3
, this means that the total 

surplus is S = 2/3, and the bidders expect each 1/6 profit, which makes 1/3 left over. 

This must go to seller as revenue since: surplus = total revenue + bidders profit so: 

Ε[∑ Π(v)n
i=1 ] = Ε[S] − Ε[Π(v)]  (11) 
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First price auctions Nash equilibrium 
A Bayes Nash equilibrium for an auction is a bid-function profile such that : b =  (b1(·
), . . . , bn(·)) such that for each bidder i and each possible value vi for bidder i, the bid 

bi(vi) maximizes bidder i’s expected payoff given the vector bi  =  (b1(·), . . . , bi−1(·
), bi + 1(·), . . . , bn(·)) of bid functions for the other n −  1 bidders.  

 β(v) = x − ∫ (
F(y)

F(x)
)

n−1
dy

ωh

ωl
  (12) 

where in previous expression F(y) = 1 − F(v), F(v) is a CDF function. And, x are signals 

drawn from private values so x = v. The maximal bid is given with the following 

expression: b̅ = b(1) = 1 − ∫ Fn−1(s)
1

0
ds. Probability to win is given as: 

 Pr(vi ≤ β−1(b)) = F(β−1(b)) ∧ Pr (vj≠1 ≤ β−1(b))
n−1

= F(β−1(b))
n−1

  (13) 

Earnings of the player are given as (vi − b)(F(β−1(b))
n−1

. Each player bid is 

calculated as first derivative with respect to b: 

 
∂

∂b
(vi − b)(F(β−1(b))

n−1
= v − ∫ (

F(x)

F(v)
)

n−1
dx

ωh

ωl
  (14) 

In the case of uniform distribution, where CDF is F(x) =
x−ωL

ωH−ωL
 , and PDF is given as: 

f(x) =
1

ωH−ωL
. Boundaries are [0,1], and F(v) = v ,so by proposition: 

 β(v) = x − ∫ (
F(x)

F(v)
)

n−1
dx = v − ∫ (

x

v
)

n−1
dx = v −

1

n
∙ v =

(n−1)

n
∙ v

ωh

0

ωh

ωl
  (15) 

In the FPA distributions expected revenues are calculated as: 

 E(b(vi)) = vi ∗
(bi)n−1

(
n−1

n−1+a
)

n−1 or EE(b(vi)) = vi ∗
(bi)n−1

αn−1   (16) 

where a is CRRA coefficient, and α = (
n−1

n−1+a
) =

bi

vi
 this is because bi = α ∗ vi. The CRRA 

utility function is given as (Arrow, 1965): 

 u = {
1

1−α
c1−α if α > 0 , α ≠ 1 

lnc if α = 1 
 when α = 1 ⇒ lim

n→∞

c1−α−1

1−α
= ln(c)  (17) 

Elasticity of substitution is σ =
1

α
 , and MRS =

c2

c1
= (

p1

p2
)

σ
,when α ∈ [0,1] than FPA-bid 

functions are in form: 

 b(vi) = v −
1

F
n−1
1−a(v)

∫ F
n−1

1−a(x)
v

r
dx or when r = 0 ⇒ b(vi) =

n−1

n−1+a
(vi)  (18) 

In the previous expression r is a reserve price. Reserve price is a hidden minimum 

price that the seller is willing to accept for an item. In a reserve price auction, the 

seller is only obligated to sell the item once the bid amount meets or exceeds the 

reserve price. A seller can lower, but cannot raise, the reserve price. The general bid 

function when r > 0 and a ≠ 0 is given as: 

 b(vi) = v −
1

F
n−1
1−a(v)

∗
(a−1)

(a−n)
[v

a−n

a−1 − v
a−n

a−1] (19) 

If the coefficient of risk aversion is CARA (Constant absolute risk aversion), i.e., u(c) =
1 − e−ac, where a > 0 , then the bidding function is given as 

 b(vi) = v +
1

a
ln (1 −

e−av

Fn−1(v)
∫ [F(a−1lnx]N−1dx

eav

ear   (20) 

Or when the reserve price and CARA coefficient are set:  

 b(vi) = v +
1

a
ln (1 −

e−av

vn−1 ∗
1

2a
∗ (e2av − e2ar) ∗ log(v)n−1)  (21) 

 

Second price auctions Nash equilibrium 
For the SPA auctions weakly, dominant strategy is to bid truthfully 𝐛 = 𝐯𝐢. SPA with 

uncertain number of bidders will still have the same strategy and Nash equilibrium 
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since it will not change the uncertainty of players attendance. The probability to win 

an auction is given as: 𝐏(𝐯𝐢) = 𝐯𝐢, the expected payoff if 𝐛𝐢wins is given as: 
𝐯𝐢

𝟐

𝟐
. The 

expected profit in SPA auction is given as: 

 E(b(vi)) = vi (vi −
vi

2
) =

vi
2

2
  (22) 

Expected revenue in CDF of SPA by (Kunimoto, 2008), is given as: 

 Revenue(SPA,r=0,a∈ℝ+)  = F(y)n + nF(y)n−1(1 − F(y)) = nF(y)n−1 − (n − 1)F(y)n (23) 

Or in the reserve price auction SPA auction CDF of revenue is given as; 

 Revenue(SPA,r∈ℝ,a∈ℝ+)  = r ∗ rn−1 + nF(y)n−1 − (n − 1)F(y)n  (24) 

 

Expected revenue from first price auctions and Second price 

auctions 
Bidder with lowest bid has expected profit zero E(b(vl) = 0,therefore: 

 E(b(vi) = E(b(vl) + ∫ b′(x)dx = 0 +
v

0
 ∫ xdx

v

0
=

v2

2
  (25) 

The expected profit for each bidder is: 

 E(b1(v)) = E(b2(v)) = ∫ b(v)dv = ∫
v2

2
dv =

1

6

1

0

1

0
 (26) 

Total bidder profit is 
1

3
 , and expected revenue is equal to expected surplus minus 

expected total bidder profit E(R) =
2

3
−

1

3
=

1

3
. 

 

First price auctions with uncertain number of bidders  
Let p1(1) denotes the probability that player 1 believe that he will be only one 

present at the auction (the only participant). Since this is symmetric auction with only 

two bidders we can write this as follows: p1(1) = p, p1(2) = 1 − p. CDF of the 

distributed values will be: 

F(v) = p(v − b) + (1 − p)F(β−1(b))(v − b)  (27) 

One can maximize by taking derivative with respect to b: 
dF(v)

d(b)
= −p − (1 − p)F(β−1(b)) + (1 − p)(1 − v)f(β−1(b)) ∙

1

β′(β−1(b))
= 0 (28) 

Since v = β−1(b) : 
dF(v)

d(b)
= −p − (1 − p)F(v) +∙

(1−p)(v−β(v)f(v))

β′ = 0  (29) 

Or: 
dF(v)

d(b)
= ((p(1 − p)F)β)

′
= (1 − p)vf(v)  (30) 

The equilibrium bid function is given as: 

 β =
(1−p) ∫ xf(x)dx 

v

o

p(1−p)F(v)
  (31) 

Uncertain number of bidder Nash-bid equilibrium is: 

 bi,FPA =
(1−p)v2

2(p(1−p)∙v )
=

0.5v2

2(1+v)
  (32) 

 

Symmetric equilibrium “Envelope theorem” Approach  
Often convenient approach to identify the necessary conditions for symmetric 

equilibrium is to exploit the envelope theorem (Levin, 2014). Let’s suppose that b(s) is 

a symmetric equilibrium in increasing differentiable strategies, then bidders i 
equilibrium payoff signal si is given as: 

 [π(si)] = (si − b(si))Fn−1(si) (33) 

 

 



  

 

 

49 

Croatian Review of Economic, Business and Social Statistics (CREBSS) 

UDK: 33;519,2; DOI: 10.1515/crebss; ISSN 1849-8531 (Print); ISSN 2459-5616 (Online) 

 

 

Vol. 7, No. 1, 2021, pp. 43-59 

Best response in equilibrium because i is playing is given as: 

 [π(si)] = max
bi

(si − bi)Fn−1 (bi
−1(bi)) (34) 

Applying the envelope theorem one can obtain following: 

 
d

ds
π(si)s=si

= Fn−1(b−1b(si)) = Fn−1(si) (35) 

And also, from previous expression we obtain that: 

 [π(si)] = π(s) + ∫ Fn−1(s̃)d s̃
s

s
  (36) 

And here just to make a remark that: as bs is increasing, a bidder with signal s will 

never win the auction and henceforth π(s) = 0. If we combine previous two 

expressions we will get the equilibrium bidding strategy (again also by dropping 

subscript (i) : 

 b(s) = s −
∫ Fn−1(s̃)d s̃

s

s

Fn−1(s) 
 (37) 

Again, we have showed necessary conditions for an equilibrium i.e., any 

increasing differentiable symmetric equilibrium must involve the strategy b(s). To 

check sufficiency (that b(s) actually is an equilibrium), we can exploit the fact that 

b(s) is increasing (Since the CDF is an increasing function, with a fact that F^(n-1) (s ̃) 

is probability that bidder’s true value is s or less), and satisfies the envelope formula to 

show that it must be a selection from i’s best response given the other bidder’s use 

the strategy b(s). Now as a proposition here we may put that both the First order 

conditions (FOC’s). Now the revenue from the First price auction (FPA) it is the 

expected winning bid of the bidder with the highest signal 𝔼[s1:n], now Fn−1(s) is the 

probability that if one takes n − 1 draws from F, all will be below s i.e.,: 

 b(s) = s −
∫ Fn−1(s̃)d s̃

s

s

Fn−1(s) 
=

1

Fn−1(s)
∫ s̃dFn−1(s̃) = 𝔼[s1:n−1|s1:n−1 ≤ s]

s

s
  (38) 

That solves if a bidder has a signal s , he sets his bid to equal the highest 

expectation of the highest of other n − 1 values, conditional on the notion that all 

those values are being less than his own, so now the expected revenue is: 

 𝔼[b(s1:n)] = 𝔼[s1:n−1|s1:n−1 ≤ s1:n] = 𝔼[s2:n] (39) 

 

Asymmetric auctions 
Basic setup 
There exist set: Θ = {1,2, … , N} ,of types of bidders. And ∀θ ∈  {1,2, … , N} and ∃n(θ) ≥ 1 , 
which are bidders of type θ . Bidders of type θ draw an IPV for the object from CDF 

F: [ωH, ωL] → R .It is assumed that F ∈ C2((ωH, ωL)) and f ≡ F′ > 0, on ωH. The inverse of 

equilibrium bidding strategy (Maskin, Riley, 2000, Fibich, Gavish, 2011)) is given as: 

v’i(b) =
Fi(β−1(b))

fi(β−1(b))
= [(

1

n−1
∑

1

vj(b)−b
n
j=1 ) −

1

vi(b)−b
] , i = 1, … , n  (40) 

Inverse bid functions are solutions that gives profit maximization problem: 
∂Ui(b;vi)

∂b 
= (vi − b) ∑ (∏ Fk(vk(b))n

k=1,k≠1 ) n
j=1,j≠1 fj (vj(b)) vj

′ (b) − ∏ Fj (vj(b))n
j=1,j≠1 = 0 (41) 

Maximization problem here is given as in: 

 max
b

Ui(b;vi)  =(vi-b) ∏ Fj (vj(b))n
j=1,j≠1 ,i=1,…n  (42) 

where one solution is: 

 ∑
fj(vj(b))vj

′(b)

Fj(vj(b))
−

1

vi(b)−b
 , i = 1, … n n

j=1,j≠1   (43) 

Or bidder chooses to maximize his expected surplus S = πi as in (McAfee, McMillan, 

1987): 

 πi = (vi − bi)F(v)n−1  ∂πi/ ∂bi = 0, 
dy

dx
 =

∂πi

∂vi
= F(β−1(b1))

n−1 
 (44) 
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Bidders expected revenue in FPA asymmetric auction is given as: 

 Ei (p, bi, vi) = ki ∫ [Fi
−1(ℓi(v)) − v] ∙

ℓi
′(v)

ℓi(v)

b(ωh)

r
∏ [ℓj(v)]

kj 
dvn

j=1   (45) 

where in previous expression k: =
(2−λ+μ)

1−λ
 , and bidder maximizes: 

β (β−1(b1)) = arg max
u∈(0,ωh) 

(v − u) ∙ [Fi(λi(u))]
ki−1

∏ [Fj (λj(u))]
kj

j≠1  (46) 

∃u = ∑ ui
n
i=1  , where ui denotes the player of type i. Where in previous expressions 

ℓi(v) = Fi(λi(v)), and probabilities of winning the reserve price auction are given as: 

 pi(r) = ki ∫
ℓi

′(v)

ℓi(v)

ωh

r
∏ [ℓj(v)]

kj 
dvn

j=1  (47) 

Auctioneer expected revenue is given with the following expression: 

 E(p, bi, vi) = ωh − r ∏ [Fj(r)]
kjn

j=1 − ∫
ℓi

′(v)

ℓi(v)

b(ωh)

r
∏ [ℓj(v)]

kj 
dvn

j=1  (48) 

Here U(pi, Ei, r) = pi ∙ (r − Ei), by the envelope theorem optimal values are denoted 

by asterisk U∗′(r) = p∗(r) and one can integrate to obtain the previous result. 

U∗(x) = ∫ p∗(v)dv
r

0
 (49) 

Following is sort of prove of RET, that in a way expected revenue depends on the 

optimal auction price and that revenue does not depend on the auction 

mechanism. 

 

Equilibrium for strong and weak bidders 
Now, let bS be an equilibrium bid of a strong bidder and bw is an equilibrium bid of a 

weak bidder. We have following problem to maximize: 

 max
b

Fw (bw
−1(b))(vS − b) (50) 

FOC for previous expression is given as: 

 
fw(bw

−1(b))

Fw(bw
−1(b))

∙ (bw
−1)′(b) −

1

bS
−1(b)−b

 (51) 

In the previous expression bS
−1(b) = vS or the weak bidder valuation. Now, the 

weak bidder’s problem is given as in the following expression: 

 max
b

FS (bS
−1(b)) (vw − b) (52) 

Weak bidder’s FOC is given as: 

 
fS(bS

−1(b))

FS(bS
−1(b))

∙ (bS
−1)′(b) −

1

bw
−1(b)−b

  (53) 

In the previous expression if we set that vw = bw
−1(b) and that the last expression 

equals zero than we get: 

 
fS(bS

−1(b))

FS(bS
−1(b))

∙ (bS
−1)′(b) =

1

vw−b
  (54) 

Theorem: Suppose that FS(v) ≤ Fw(v), meaning that FS conditionally first-order 

stochastically dominates Fw. Then when one compares FPA and SPA, both uniformly 

distributed following applies: ∀bS
−1(b) = vS, ∵ E(bFPA(v)) < E(bSPA(v)) for bS

−1(b) = vS and 

∀bw
−1(b) ≠ vw, ∵ E(bFPA(v)) > E(bSPA(v)) for bw

−1(b) ≠ vw. 

Proof: For purposes of the proof bS(v), bw(v) have the same range so a matching 

function is defined as: m(v) ≡ bw
−1(bS(v)) or as a weak bidder that bids equal to strong 

bidder in FPA. Since from previous we know that bS(v) < bw(v) in FPA, now we know 

that m(v) = v. The strong bidder expected payoff is given as:  

E[π(vi)] = Pr(bw(vw) < b)(v − b) (55) 

If we take derivative with respect to v we get: Ev[π(vi)] = Pr(bw(vw) < b) and by 

replacing b = bS(v), which gives us the following identity: 

Ev[π(vi)] = Pr(bw(vw) < bS(v)) = Pr(vw < m(v)) = Fw(m(v)) (56) 
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Because Pr(v < a) = F(a) when distribution of values is uniform. By the envelope 

theorem value function for FPA is given as: 

 VS
FPA(v) = ∫ Fw(m(w))dv

ωh

ωl
  (57) 

And for the SPA, where bidder’s bid their true valuation (there is no bid shading): 

 VS
SPA(v) = ∫ Fw(v)dv

ωh

ωl
  (58) 

Since m(v) < v and that Fw is strictly increasing, the strong bidder prefers SPA. For 

the weak bidders expected payoff for the FPA is given as: 

 Vw
FPA(v) = ∫ FS (

v

m
) ds

ωh

ωl
  (59) 

And for the SPA we have got: 

 VS
SPA(v) = ∫ Fs(v)dv

ωh

ωl
  (60) 

Since m−1(v) > v , expected payoff is higher for the weak bidder in the FPA. 

 

Revenue Equivalence Theorem in Asymmetric Auctions 
Here we set proposition that with asymmetric bidders, the expected revenue in FPA 

may exceed that of SPA (English auction). Now Let’s suppose that weak bidder and 

strong bidder follow uniform distribution and that interval for the weak bidder values 

is: bw ∼ [0,
1

1+x
] , and that strong bidder valuation is distributed as bs ∼ [0,

1

1−x
]. So that 

the strong bidder has wider interval than the weak bidder. If x = 0 both bw, bS ∼
Uni[0,1] and that inverse equilibrium bid function in the First price auction is given as 

b−1(b) = 2b. A buyer with valuation 2b has a probability to win: Pr(win|vi = 2b) = 2b 

and therefore, expected payment of: Pr(win|vi = 2b) = 2b(vi − bi) = 2b(2b − b) = 2b2. 

When x becomes positive, in English auction, the weak buyer with valuation b wins 

with probability 2b(1 − x), and the expected payment is 2b2(1 − x). In a high-bid 

auction, bidders do not use b−1(b) = 2b, if they did the strong bidder would outbid 

the weak one by [
1

2(1−x)
,

1

2(1+x)
], and he can reduce his bid n win with probability 1.  

For an equilibrium the strong bidder must reduce his bid as a function of his 

valuation. Then this reduction will make weak bidder to bid more aggressively than 

b−1(2b) = 2b , since the strong buyers bids are distributed more densely than before. 

In equilibrium the weak and the strong bid functions are given as: 

 bw
−1(b) =

1

1+(2b)2 and bs
−1(b) =

1

1−(2b)2 (61) 

The CDF for the winning bid in FPA is: 

 FFPA(b) = Fs(bs
−1(b)Fw(bw

−1(b)) = (1 − x)bs
−1(b)(1 + x)bw

−1(b) =
(1−x2)(2b)2

1=x2(2b)4  (62) 

For the SPA or English auction (EA) the second valuation is less than b if it’s not the 

case that both valuations are higher. Then we have: 

 FSPA(b) = 1 − (1 − Fs(b))(1 − Fw(b)) = (1 − x)b − (1 − x2)b2 = 2b − (1 − x)b2 (63) 

The CDF in an open auction is ever increasing in x. If x = 0 both auctions yield 

revenue. When x > 0 the expected revenue is strictly greater for the first price 

auction than for the English auction. 

 

Examples of asymmetric auctions: Different length of interval 

values in uniform distribution  
In the following case we compare same auction type (uniform distribution) with 

different length of interval values. In this case there are two players p1 ∼ Uni(0,1) and 

p2 ∼ Uni(0,1) (figure 1). 
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Figure 1 Nash equilibrium for  𝐩𝟏 and 𝐩𝟐 for any given value at [𝟎, 𝟐] 

Source: Authors own calculations. 

 

So, in the previous example BNE or Bayesian Nash equilibrium is b̅ = 0.666596687674 ≈
2

3
 for both p1 and p2 if p1 value is 1 and p2 value is 2.  

 

Example 1: Same length of interval of values, but different distributions: Normal and 

Uniform distributions 

In this case we are comparing normal and uniform distribution both spanned in the 

interval (0,1) where CDF of a normal distribution function is given as: F(x) =
C

√2π
e−

(x−0.11)

0.67  and for the uniform distribution CDF of a function is given as: F(x) =
x−ωl

ωh−ωl
 

(figure 2).  

 
Figure 2 Nash equilibrium for  𝐩𝟏 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥 (𝟎, 𝟏) and 𝐩𝟐 ∼  𝐔𝐧𝐢(𝟎, 𝟏) for any given 

value at [𝟎, 𝟏] 
Source: Authors own calculations. 

 

Example 2: Same length of interval of values, but different distributions: Exponential 

and Uniform distributions 

CDF of the bidder that follows exponential distribution is given as: F(x) =
1−exp (−λ(x−ωL)

1−exp (−λ(ωH−ωL)
 (figure 3). 

 
Figure 3 Nash equilibrium for  𝐩𝟏 ∼ 𝐞𝐱𝐩𝐨𝐧𝐞𝐧𝐭𝐢𝐚𝐥 (𝟎, 𝟏) and 𝐩𝟐 ∼  𝐔𝐧𝐢(𝟎, 𝟏) for any given 

value at [𝟎, 𝟏] 
Source: Authors own calculations. 
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BNE or Bayesian Nash equilibrium is b̅ =  0.4127418494605614 ≈
2

5
 , for both p1 and p2. 

 

Example 3: Three bidders’ case: Exponential, Normal and Uniform 

BNE is b̅ =  0.617585303682194 ≈
3

5
 , for both p1 and p2 and p3 (figure 4). 

 

 
Figure 4 Nash equilibrium for  𝐩𝟏 ∼ 𝐞𝐱𝐩𝐨𝐧𝐞𝐧𝐭𝐢𝐚𝐥 (𝟎, 𝟏) and 𝐩𝟐 ∼  𝐍𝐨𝐫𝐦𝐚𝐥(𝟎, 𝟏) and 𝐔𝐧𝐢 ∼

(𝟎, 𝟏) for any given value at [𝟎, 𝟏] 
Source: Authors own calculations. 

 

Example 4: Two players uniform distributed over (𝟎, 𝟏), and one player uniformly 

distributed over (𝟎, 𝟐)  
On figure 5 two bidders follow p1 = p2 ∼ Uni (0,1), and p3 ∼ Uni (0,2), at any given 

value (0,2) In this auction BNE equilibrium is equal to: b̅ = 0.8 ∼
4

5
 . 

 

 
Figure 5 Nash equilibrium for  𝐩𝟏 ∼ 𝐔𝐧𝐢 (𝟎, 𝟏) and 𝐩𝟐 ∼  𝐔𝐧𝐢(𝟎, 𝟏) and 𝐩𝟑 ∼ 𝐔𝐧𝐢(𝟎, 𝟐) for 

any given value at [𝟎, 𝟐] 
Source: Authors own calculations. 

 

 
Figure 6 Nash equilibrium for  𝐩𝟏 ∼ 𝐔𝐧𝐢 (𝟎, 𝟏) and 𝐩𝟐 ∼  𝐔𝐧𝐢(𝟎, 𝟐) and 𝐩𝟑 ∼ 𝐍𝐨𝐫𝐦𝐚𝐥(𝟎, 𝟏) 

for any given value at [𝟎, 𝟐] 
Source: Authors own calculations. 
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On figure 6 two bidders follow p1 = p2 ∼ Uni (0,1), and p3 ∼ Normal (0,1), at any given 

value (0,2) In this auction BNE equilibrium is equal to: b̅ = 0.8. 

 

Mechanism design - VCG auction mechanism vs Green-

Laffont and Myerson-Satterthwaite theorem  
Vickrey-Clarke-Groves, auction is named after (Vickrey, 1961, Clarke, 1971, Groves, 

1973) for their papers that generalized the idea. VCG mechanism is a direct quasi-

linear mechanism: 

(χ, ṽ) = arg max
x

∑ v̅i(x)

i

 

 pi(v̂) = ∑ v̂jj≠i (χ(v̂−i)) − ∑ v̂j(χ(v̂))j≠i  (64) 

where v̅ = (v̅−i, v̂i) denotes some best bidder strategy. Here bidder wants to maximize 

 max
v̂i

(vi(χ(v̂)) − p(v̂)) or max
v̂i

 (vi(χ(v̂)) + ∑ v̂j(χ(v̂))j≠i )  (65) 

If x ∈ X than we have: 

 max
x

 (vi(x) + ∑ v̂j(x)j≠i )  (66) 

And under the Groves mechanism we have: 

 χ(v̂) = arg max
x

(∑ v̂i(x)i ) = arg max
x

(v̂i(x) + ∑ v̂j(x)j≠i )  (67) 

In the Groves mechanism price constraint is given as following: 

 pi(v̂) = hi(v̂i−1) − ∑ v̂j(χ(v̂))j≠i   (68) 

Theorem (Green, Laffont, 1977, 1979): An efficient social choice function C: ℝXn →
X × ℝn can be implemented in dominant strategies for agents with quasilinear utilities 

only if pi(v) = hi(v−1) − ∑ v(χ(v))j≠i  where hi(∙) is an arbitrary function of v−1, v: X → ℝ, a 

social choice function is :f(⋅) = (X∗F(⋅)) with an efficient valuation is implemented in 

dominant strategies only if Fi(⋅) is given by Groves payments. Let’s suppose that 

∀i, ∃{vi(⋅, θi)|θi ∈ Θi} = Ⅎ, where the last is the set of all valuation functions. 

Proof: Fi(θi, θi−1) = ∑ vj(x∗(θi, θi−1)j≠i , θj) + hi(θi, θi−1),∃θi, θ̂i, θ−1 ∋ hi(θi, θ−i) ≠

hi(θ̂i, θ−i), now we consider the following case: x∗(θi, θi−1) = x∗(θ̂i, θi−1), by the IC 

dominant strategies follows: 

vi(x∗(θi, θi−1), θi) + Fi(θi, θ−i) ≥ vi(x∗(θ̂i, θi−1), θi) + F_i(θ̂i, θ−i)  

vi(x∗(θi, θi−1), θi) + F_i(θi, θ−i) ≥ vi(x∗(θ̂i, θi−1), θi) + F_i(θ̂i, θ−i)  (69) 

Previous implies that Fi(θi, θi−1) = Fi(θ̂i, θi−1), and therefore hi(θi, θ−i) = hi(θ̂i, θ−i), 

that is a contradiction. In the previous theorem statement social choice function has 

a following meaning: The social choice function f is a function: f: Θ1 × … … .× Θi →
Y that for each profile of agents ‘types assign a collective choice f(θ1, … , θi) ∈ Y and 

a mechanism is Γ = (θ1, … , θi),g(⋅) is a collection of sets (θ1, … , θi) and an outcome of 

the function f: θ1 × … … .× θi → Y. Myerson and Satterthwaite (1983) theorem states 

that there is no efficient way for two parties to trade when they each do not know 

other party probabilistic varying valuation for it without the forcing of one party to 

trade at loss. The Myerson-Satterthwaite theorem is a negativity in economics and 

impossibility that states that no mechanism can be Bayes-Nash incentive compatible 

(a direct mechanism is Bayesian-Incentive compatible if honest reporting forms a 

Bayesian-Nash equilibrium). Myerson and Satterthwaite (1983) theorem belong to 

the class of negativity results in economics (Gibbard, 1973, Satterthwaite, 1975, 

Arrow, 1970, Green, Laffont, 1977). Theorem states that in many bilateral trade 

situations with asymmetric information, ex post efficiency is inconsistent with 

incentive compatibility and individual rationality.  
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Theorem Myerson-Satterwhaite (notation): ∃s ∼ Fs(s, s ) > 0; ∃b ∼ Fb(b, b), where 

Fs and Fb are common knowledge. In the DRG (direct revelation game) traders s-

seller and b-bidder report their values and the outcome is selected, an outcome 

specifies probability of trade p ,and the terms of trade x (payoffs). A DRG is a pair of 

outcome functions where (p, x) :p(s, b) is a probability of trade and x(s, b) are thus the 

expected payments from buyer to seller. Utilities are given as: 
u(s, b) = x(s, b) − s(p, b) 

v(b, s) = bp(s, b) − x(s, b) 
(70) 

Payoffs are defined as: 

 X(s) = ∫ x(s, b)fb(b)db ; X(b) = ∫ x(s, b)fs(s)ds
s

s

b

b
 (71) 

Probabilities of trade are given as: 

 P(s) = ∫ p(s, b)fb(b)db ; P(b) = ∫ p(s, b)fs(s)ds
s

s

b

b
  (72) 

Interim utilities are given as: 

 U(s) = X(s) − P(s); V(b) = bP(b) − X(b)  (73) 

Incentive compatible mechanism (IC) (p, x)is given as: 

 IC: U(s) ≥ X(s′) − P(s′); V(b) ≥ P(b) − X(b)  (74) 

Incentive rational mechanism (IR) is: 

 ∀s ∈ [s, s] ∨ ∀b ∈ [b, b] , U(s) ≥ 0 ; V(b) ≥ 0  (75) 

Lemma IC: The mechanism is IC if and only if P(s) is increasing and P(b) 

decreasing: 

 {
U(s) = U(s) + ∫ P(s)(θ)dθ

s

s

V(b) = V(b) + ∫ P
b

b
(b)(θ)dθ

   (76) 

Lemma 1 proof: From previous definition we know that U(s′) ≥ X(s′) − s′P(s′); U(s) ≥
X(s) − sP(s) 

 {
U(s) ≥ X(s′)  −  sP(s′)  =  U(s′)  +  (s′ −  s)P(s′),

U(s′) ≥  X(s)  −  s′P(s)  =  U(s) + (s −  s′)P(s)
  (77) 

If we subtract these inequalities it will yield: 

 (s′ −  s)P(s)  U(s) −  U(s′)  (s′ −  s)P(s′)  (78)  

Now if we take that s′ >  s implies that P(s) is decreasing, if we divide by (s′ − s) 

and letting s′ → s yields 
dU(s)

ds
= −P(s) and integrating produces IC(s’). The same is true 

for the buyer. To prove the IC for the seller it is suffice to show that following applies: 

 s[P(s) −  P(s′)] +  [X(s′) −  X(s)] ≤ 0 ∀ s, s’ ∈ [s, s ]  (79) 

From previous by substituting for X(s) and X(s′) and by using IC(s’) the following will 

yield: 

 X(s) = sP(s) + U(s) + ∫ P(θ)dθ 
s

s
  (80) 

And following to hold: 

0 ≥ s[P(s)P(s )] +  s P(s ) + ∫ P(θ)dθ 
s

s′
− sP(s)

− ∫ P(θ)dθ = (s′ − s)P(s′) + ∫ P(θ)dθ 
s

s′
= ∫ [P(θ) − P(s′)]dθ 

s

s′
 

s

s

 

(81) 

Previous holds only because P(∙) is decreasing.  

Lemma IR: IC mechanism is individually rational IR if and only if: 

 U(s) ≥ 0 ∨ V(b) ≥ 0  (82) 

Corollary: 

 U(s) + V(b) = ∫ ∫ [b −
1−F(b)

F(b)
− s −

1−F(s)

F(s)
 ] p(s, b)f(s)f(b)dsdb ≥ 0

s

s

b

b
  (83) 

Proof: From the IC we know that following holds: 
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 X(s) = sP(s) + U(s) + ∫ P(θ)dθ 
s

s
  (84) 

Now from the corollary: 

∫ ∫ x(s, b)f(s)f(b)dsdb = U(s) + ∫ ∫ sp(s, b)f(s)f(b)dsdb + ∫ ∫ p(s, b)F(s)f(b)dsdb
s

s

b

b

s

s

b

b

s

s

b

b
 (85) 

The third term in the right side follows since: 

∫ ∫ p(θ, b)F(s)f(b)dθdb =
s

s

b

b ∫ ∫ p(θ, b)F(s)f(b)dθdb = ∫ p(s, b)F(s)f(b)dsdb
s

s

θ

s

b

b
  (86) 

Analogously for the buyer follows that: 

∫ ∫ x(s, b)f(s)f(b)dsdb = −V(b) + ∫ ∫ bp(s, b)F(s)f(b)dsdb
s

s

b

b
− ∫ ∫ p(s, b)F(s)(1 − F(b))dsdb

s

s

b

b
 

s

s

b

b
 (87) 

Now if we equate the both right hand sides proof is completed: 

V(b) = ∫ ∫ p(s, b)F(s)(1 − F(b))dsdb
s

s

b

b
− ∫ ∫ bp(s, b)F(s)f(b)dsdb

s

s

b

b
= ∫ p(s, b)F(s)f(b)dsdb

s

s
 (88) 

IR mechanism is proved since V(b) ≥ 0.  

Theorem Myerson-Satterthwaite (continued): It is not common knowledge that if 

trade gains exist i.e., the supports of the CDF functions of traders have non-empty 

intersections) then no IC and IR trading mechanism can be ex-post efficient. 

Proof: A trading mechanism is ex-post efficient if and only if trade occurs 

whenever s ≤ b 

p(s, b) = {
1 if s ≤  b
0 if s > b 

 (89) 

In the previous expression p(s, b) is a probability of trade which takes value 1 if 

trade occurs and zero if it doesn’t. To prove that ex-post efficiency cannot be 

attained, it is enough to show that inequality (∗) in the corollary hence: 

 ∫ ∫ [b −
1−F(b)

f(b)
− s −

F(s)

f(s)
] f(s)f(b)dsdb

min(b,s)

s

b

b
  (90) 

Previous expression equals to: 

∫ ∫ [bf(b) + F(b) − 1]f(s)dsdb −
min(b,s)

s

b

b

∫ ∫ [sf(s) + F(s)]f(b)dsd =
min(b,s)

s

b

b

− ∫ [1 − F(θ)]F(θ)dθ < 0, b < s 
s 

b

 

(91) 

Previous result is proof of Myerson-Satterthwaite theorem about trade inefficiency. 

Some weaker efficiency criterion is Pareto optimality, one may use that criterion if ex-

post efficiency does not work.  

 

Conclusion 
Vickrey-Clarke-Groves mechanism provides insight into what mechanism design can 

achieve. VCG mechanism provides every participant with a dominant strategy and 

that is to bid truthfully. Incentive compatible direct mechanisms are the center of the 

attention here because for any Bayesian equilibrium in any bargaining game, there 

is an equivalent incentive compatible direct mechanism that always yields the same 

outcomes. This result is called revelation principle. It is difficult to solve for Bayesian 

equilibria because that includes solving for agents’ best response strategies. 

On the other hand, Myerson and Satterthwaite (1983), show that there is no 

efficient way for two parties to trade when each party does not know other party, 

when the two trade parties have secret and varying valuations for the subject, 

without forcing one party too trade at loss. This theorem is negativity in economics a 

negative mirror of the fundamental welfare theorem. In asymmetric auction bidders 

with asymmetrically distributed private values, second price auctions allocate the 

item efficiently, whereas the first price auction does not. The revenue is 

approximately the same, and is independent of bidding rules, as long as at 
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equilibrium wins bidder with highest reservation price and the bidder with lowest 

reservation price has zero surplus i.e. vi − b = p − c = 0. More striking is that for i.i.d., 

regular single-item environments the second price auction with reserve price is 

revenue optimal. Mechanisms differ from auctions in a way that: they are not 

universal (they can differ from time to time because both the allocation and 

payment rules depend on a comparison of virtual valuations, that in turn depend on 

buyers’ value distributions), nor they are anonymous (in mechanisms buyers identities 

matter). Variations in the rules in auctions can affect the participation. Mechanisms 

are a set of rules created essentially to govern the interactions of the parties. 

Also, one important result that was tested and present in this paper (in the 

Asymmetric auctions section) is the equilibrium of the asymmetric First price auction, 

this result was most famously reported in (Maskin, Riley 2000). Basic result here is that 

one’s bidder value function stochastically dominates other players’ value function. 

Proposition from the comparisons of mechanism designs is that there in a balanced 

trade problem there is no mechanism that is efficient, incentive compatible, 

individually rational, and at a same time balances budget. 

Auctions can be approached from different angles from game theory 

perspective, auctions are Bayesian games of incomplete information, and in 

mechanism design theory, auctions are allocation mechanisms, furthermore 

applications of auctions include: procurement, public finance etc. all of which 

should be evident in the game theoretic and mechanism design approach that we 

utilized in this paper.  
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