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Abstract: Motivated by the increasing availability of open and free Earth observation data through
the Copernicus Sentinel missions, this study investigates the capacity of advanced computational
models to automatically generate thematic layers, which in turn contribute to and facilitate the
creation of land cover products. In concrete terms, we assess the practical and computational aspects
of multi-class Sentinel-2 image segmentation based on a convolutional neural network and random
forest approaches. The annotated learning set derives from data that is made available as result
of the implementation of European Union’s INSPIRE Directive. Since this network of data sets
remains incomplete in regard to some geographic areas, another objective of this work was to provide
consistent and reproducible ways for machine-driven mapping of these gaps and a potential update
of the existing ones. Finally, the performance analysis identifies the most important hyper-parameters,
and provides hints on the models’ deployment and their transferability.

Keywords: INSPIRE; Sentinel-2; land cover; machine learning; convolutional neural network;
random forest; segmentation; supervised learning; performance analysis

1. Introduction

Detecting changes in land use and land cover (LULC) from space has long been the main goal of
satellite remote sensing [1]. In particular, Sentinel-1 and Sentinel-2 directly contribute to land and
agricultural monitoring, emergency response, and security services [2]. Land cover refers to the surface
cover on the ground, which represents the systematic identification and mapping of regions which
are covered by forests, vegetation, wetlands, bare soil, impervious surfaces, and other land and water
types. Land cover changes can be determined by field surveys or by analyzing satellite and aerial
imagery. While field surveys are more authoritative, they come with higher costs and lead to manual
delineation and mapping activities. The most efficient way to map the Earth’s surface is by space and
satellite-based measurements.

Automating the process of Earth observation (EO)/remotely-sensed (RS) data classification and
translating the extracted information into thematic maps (semantic classes) is not an effortless task,
and has many challenges [3–5]:

• Signal discrepancies due to varying environmental conditions;
• Degree of land cover fragmentation and direct correspondence to the respective class definition;

Remote Sens. 2019, 11, 907; doi:10.3390/rs11080907 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-2262-0580
https://orcid.org/0000-0003-0411-741X
https://orcid.org/0000-0002-8479-9205
http://www.mdpi.com/2072-4292/11/8/907?type=check_update&version=1
http://dx.doi.org/10.3390/rs11080907
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 907 2 of 29

• Human activities, climate, landscape morphology, and slope create an inhomogeneous mosaic
(land-cover complexity), especially when the study area is larger;

• With respect to the spatial resolution of Sentinel-2 and Landsat, the area depicted by a single pixel
is often represented by a mixture of signals referring to diverse classes; in addition, the range of
spatial resolution at which an object becomes recognizable (for instance, a building, terrain, or
field) varies remarkably (wide range between coarse and fine resolution);

• Clouds and artefacts make apparent the shift from single-image processing to time-series analysis,
a fact that, although it resolves some issues, introduces additional complications in terms of
computational resources and data analysis;

• Image analysis techniques that fit the technical specifications and the functional methods of
a specific sensor cannot be transferred, and adapt, without effort, to different sensing and
operational modes;

• There is still a lack of large-scale, time-specific, and multi-purpose annotated data sets, and a
strong imbalance in favour of a few dominant classes; moreover, the high cost of field campaigns
prevents the frequent update of the validation maps;

• Complex modelling is required to capture the distinct non-linear feature relations due to
atmospheric and geometric distortions;

• The learning mechanism of some of the most efficient complex models is not transparent; the
theoretical understanding of deep-learning models and the interpretation of feature extraction is
an ongoing research process;

• Data-driven approaches, like machine and statistical learning, are extremely dependant on the
quality of the input and reference data;

• The processing of the requisite data volume challenges the conventional computing systems
in terms of memory and processing power, and invites exceptional treatment by means of
cloud-based and high-performance infrastructures (scalability).

Recent studies indicate that the feature representations learned by Convolutional Neural
Networks (CNN) are greatly effective in large-scale image recognition, object detection, and semantic
segmentation [6,7]. In particular, deep learning has proven to be both a major breakthrough and
an extremely powerful tool in many fields [8].

The main objectives of this work are summarized as follows: (1) To examine the potential
of Sentinel-2 imagery jointly with standardized data sets, like the ones made available within the
pan-European spatial data infrastructure established by the Infrastructure for Spatial Information
in Europe (INSPIRE); (2) to assess the performance and the generalization capability of advanced
computational algorithms, such as the convolutional neural networks and the random forests;
(3) likewise, to better understand the practical issues that surround the training and use of these
models, and to identify barriers to entry and provide insights; and lastly, (4) to validate the
model transferability and robustness against different reference sets (e.g., Corine Land Cover 2018).
The volume, geographical extent, and characteristics of the data, as well as the high requirements for
computational resources place the specific case study inside the big data framework.

The paper is organised as follows. Background information on the Infrastructure for Spatial
Information in Europe and the concept of national Spatial Data Infrastructure is provided in Section 2.
Input satellite data, reference data used for the learning phase as well as the convolutional neural
networks and random forest classifiers experimented in this study are described in Section 3.
The experimental analysis is presented in Section 4 with details on the training phase, the selected
evaluation metrics and performance comparisons. The findings of the experimental analysis are
discussed in Section 5. Concluding remarks and next steps are provided in Section 6.
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2. Background

2.1. INSPIRE

The Infrastructure for Spatial Information in Europe (INSPIRE (https://inspire.ec.europa.eu/))
is a European Union (EU) Directive that entered into force on 15 May 2007. It drives the progressive
building of a spatial data infrastructure for the purposes of EU environmental policies that control,
regulate, monitor, and evaluate activities which may have an impact on the environment. It formalizes
a general framework within which qualitative geographical information has been harmonized and
standardized, the minimum requirements that allow the relevant data sets to become cohesive,
interoperable, and accessible in a transboundary and/or interdisciplinary context. The INSPIRE
infrastructure builds on the infrastructures for spatial information established and operated by the
Member States of the European Union. Data sets within the scope of INSPIRE are subdivided into
34 spatial data themes grouped into three Annexes; each Annex comes with a set of milestones
referring to the availability and provision time for metadata, data, and network services for data
sets. The central European access point to the data, metadata, and the surrounding services is the
INSPIRE Geoportal (http://inspire-geoportal.ec.europa.eu/), an information system developed and
maintained by the European Commission (EC) Joint Research Centre (https://ec.europa.eu/jrc/).
The INSPIRE initiative and its activities have been conceived and built around the key pillars of the
internal market: free flow of data, transparency, and fair competition. In practice, this means that
the information collected, produced, or paid for by the public bodies of the EU, Member States, and
collaborative parties is freely available for re-use for any purpose and provided upon the concept of
the open-sourced data movement.

2.2. Spatial Data Infrastructure

The INSPIRE Directive and its specifications are directly linked to the definition and context
of national Spatial Data Infrastructures (SDI). In fact, it constitutes the follow-up of the European
Commission SDI initiative launched in 2001, which is considered the formal development of SDI in
Europe. Over the years, the term SDI has evolved to express contemporary needs, and has adapted
to the new advancements of information and communication technology. The term was originally
introduced in the USA as “the technology, policies, standards, human resources, and related activities
necessary to acquire, process, distribute, use, maintain, and preserve spatial data”, referring actually
to the national SDI (NSDI); by then, it has been revised several times, with the most recent one
(Circular No. A-16 Revised [9]) stating that, “the NSDI assures that spatial data from multiple sources
(federal, state, local, and tribal governments, academia, and the private sector) are available and easily
integrated to enhance the understanding of our physical and cultural world”. Apart from definitions
focusing on national endeavours, there are many similar definitions in the literature, the essential
meaning of which puts forward the need for a framework or collection of technologies, specifications,
institutional arrangements, and policies that facilitate the interoperability, exchange, posting, discovery,
access, distribution, and preservation of geospatial data, metadata, and any other relevant information.
The main difference between the NSDI and SDI is grades of implementation—the former focuses
on the roadmaps, strategies, and developments that specifically cover the needs at national level,
as opposed to the latter which enables the sharing of geospatial information in various ranges, starting
from the narrow level of an organization and then reaching a continental or global scale. Similarly,
classifications that distinguish SDIs in first- and second-generation systems can be found in [10,11],
reflecting the transition from product-orientation and focusing more on the development or completion
of spatial data-based priorities, toward activities that are more application/process-oriented, and
which emphasize partnerships and stakeholder involvement. The establishment of a well-defined and
sustained SDI improves data governance, which can be translated into a series of factors such as data
integrity and security maintenance, decreased time and redundancy of data production, and flexible
geospatial data discovery and retrieval.

https://inspire.ec.europa.eu/
http://inspire-geoportal.ec.europa.eu/
https://ec.europa.eu/jrc/
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The so-called “Global Monitoring for Environment and Security” (GMES) initiative [12] and
its descendant Copernicus Programme (https://www.copernicus.eu/en) operate within the same
framework under which sustainable information infrastructures allow for the production and free
sharing of EO data and derived information. It provides and implements EO data services, aiming at
improving the management of the environment, understanding and mitigating the effects of climate
change, and ensuring civil security. The data delivered by the Copernicus Sentinel satellites play
an essential role in achieving the aforementioned goals. In this study, we employ Sentinel-2 (S2)
products derived from the twin satellites S2A and S2B, which provide wide-swath, high-resolution,
and multi-spectral imagery. The two identical S2 satellites operate simultaneously, phased at 180◦

to each other, and have been designed to give a high revisit frequency of five days at the Equator.
The aim of the observation data is to aid the creation of operational products, such as land-cover maps,
land-change detection maps, and geophysical variables.

3. Materials and Methods

The purpose of this work is to exploit the characteristics of the S2 imagery (open data, moderate
spatial resolution, short revisit time, and systematic acquisition of global land mass, to mention a few)
and investigate if and how S2 can be combined with different sources of information, such as the data
sets made available in INSPIRE, through advanced computational models for updating or completing
existing products. In the subsequent sections, we describe the data sets and the computational
approaches we worked with.

3.1. The INSPIRE TOP10NL

From the collection of INSPIRE data sets, we selected the one provided by the Dutch National
Geoportal. The country maintains one of the most well-organized cartographic services, with frequent
and uniform updates, continuous improvement of the source base data, and detailed mapping of
various thematic classes. The so-called TOP10NL data set is the digital topographic base file of the
National Cadastre. It is the object-oriented version of the TOP10vector, which was completed in 2007
and is in the most detailed scale of 1:10,000 [13]. The file is uniform and consistent, and its coverage is
country-wide. TOP10NL originated from aerial photographs, field recordings, and information from
external files. The data represent various topographic elements; road polygons, water polygons, and
land use polygons form a full partition of space. Elements denoting buildings (including aggregated
buildings) form a separate layer on top of these features. Land use polygons that are located below
buildings are predominantly classified as “other”. The data set is provided in a Geographical Markup
Language (GML) format and can be downloaded from [14].

For the needs of the present study, we first translated the features of the vector layer into raster
data projected through the Amersfoort/RD New projection (EPSG:28992). Since the S2 imagery, which
covers the Netherlands, have been originally projected in the 31st and 32nd Universal Transverse
Mercator (UTM) zones, we accordingly projected the raster layer into a 10 m spatial resolution by
producing two warped raster files matching the two UTM zones, respectively. These operations were
executed once via the open-source Geospatial Data Abstraction software Library (GDAL/OGR) [15].
In order to finalize the reference layer used in the study, we re-classified 22 features from the
original layer to form a new grouping of eight classes. The re-classification outcome is shown in
Table 1. The TOP10NL data set comes with several features denoting water, such as “sea water”
and “watercourse”; however, the class “water” in the left-most column of the Table 1 represents the
aggregation of all the initial water sub-classes. The “NODATA” group consists of all the unlabelled
pixels with zero value that were derived from the rasterization process.

https://www.copernicus.eu/en
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Table 1. Re-classification of the 22 original features of the INSPIRE TOP10NL data set.

Class Names in Dutch Class Names in English Class Labels (%) Pixels

NODATA NODATA 0 7.91%
boomgaard, boomkwekerij, fruitkwekerij low-density vegetation 1 0.92%
grasland grassland 2 28.66%
akkerland, braakliggend cropland 3 15.51%
bebouwd gebied built-up 4 0.11%
bos:gemengd bos, bos:griend, bos:loofbos, bos:naaldbos forest 5 7.80%
overig other 6 9.66%
water water 7 27.27%
aanlegsteiger, ‘basaltblokken, steenglooiing’, dodenakker,
‘dodenakker met bos’, duin, heide, populieren, remaining classes 8 2.15%
spoorbaanlichaam, zand

3.2. The Sentinel-2 Imagery

The Sentinel 2 satellites have a Multi-Spectral Instrument (MSI) which guarantees systematic
acquisition in a single observation mode over land and coastal areas (revisit and coverage at https://
sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/revisit-coverage), and provides 13 spectral
bands that range from the visible range to the short-wave infrared. Since the purpose herein is to
provide a classification map in the finest possible spatial resolution, we decided to work with the four
spectral bands at 10 m spatial resolution (Table 2).

Table 2. The Sentinel-2 spectral bands considered in the study.

Band
Number

Band
Name

Sentinel-2A Sentinel-2B Resolution
(meters)Central Wavelength (nm) Bandwidth (nm) Central Wavelength (nm) Bandwidth (nm)

2 Blue 496.6 98 492.1 98 10
3 Green 560.0 45 559 46 10
4 Red 664.5 38 665 39 10
8 NIR 835.1 145 833 45 10

The Sentinel-2 products [16] are 100× 100 km2 ortho-images in UTM/WGS84 projection, cut
and delivered in granules (tiles) which are coming in two processing modes: (i) Level-1C: the top of
atmosphere reflectances in a fixed cartographic geometry. These products contain applied radiometric
and geometric corrections (including orthorectification and spatial registration); each tile is composed
of a data volume of 600 MB (The actual average calculated over 5M L1C products hosted currently
by the JEODPP (see Section 4.5) is 472 MB), and (ii) Level-2A: bottom of atmosphere reflectances
in cartographic geometry. These products are considered appropriate to be employed directly in
downstream applications without the need for further processing; each tile corresponds to a data
volume of 800 MB (The actual average calculated over 300K L2A products hosted currently by the
JEODPP (see Section 4.5) is 732 MB). Level-1C products are systematically produced and distributed
at global scale, whereas currently the Level-2A products are systematically generated and delivered
for all acquisitions over Europe since 26 March 2018 and globally since 1 January 2019. For the other
geographical areas, the user can produce Level-2A types of products by utilizing the ESA’s Sentinel-2
Toolbox, and particularly the Sen2Cor (http://step.esa.int/main/third-party-plugins-2/sen2cor/)
surface reflectance and classification algorithm. Both types of products, wherever they have been
generated, can be downloaded via the Copernicus Open Access Hub (https://scihub.copernicus.eu/).
The S2 temporal resolution is five days at the equator in cloud-free conditions. The radiometric
resolution (sensitivity to the magnitude of the electromagnetic energy) of the S2 MSI instrument is
12-bit, enabling the image to be acquired over a range of 0 to 4095 potential light intensity values, a fact
that allows for satisfactory detection of small differences in reflected or emitted energy.

For our experiments, we selected S2 images that completely cover the land extent of the TOP10NL
data set, where their sensing time corresponds to two different seasons and have been characterized as
cloud-free. In total, we performed tests with four groups of S2 images, where each group consists of

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/revisit-coverage
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/revisit-coverage
http://step.esa.int/main/third-party-plugins-2/sen2cor/
https://scihub.copernicus.eu/
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11 products and refers to the combination of one level of processing (L1C or L2A) with one season
(early winter and late spring). For the interest of the reader, we have cited the full list of S2 products in
the Appendix A. Figure 1 shows the geographical extent that has been covered by one of the two S2
Level-2A collections.

(a) TOP10NL re-classification (b) Sentinel-2 coverage

Figure 1. The re-classified (eight classes) rasterized version of the TOP10NL data set (42,508 km2,
∼550 M pixels) and the S2-coverage of the whole country of the Netherlands by one of the two Level-2A
Sentinel-2 collections.

3.3. Remote Sensing and Computational Approaches

Although the standard definition of image classification in computer vision applications refers to
the process of attributing a single label to the entire image, in remote sensing the term classification
signifies the assignment of a categorical label to a single pixel, or to a subset/part of the satellite
image (localized labelling). In the single-pixel-based approach which we are interested in, adjacent or
connected pixels having the same label form agglomerations which correspond partially or completely
to actual objects captured on the image. When the target application is the production of thematic maps
and land cover layers, these image partitions represent semantic classes, such as “water”, “urban area”,
“vegetation”, and “forest”. In practical terms, the satellite image is divided into distinct segments
which, according to human interpretation, convey similar content, and for this reason the classification
process can equally be called “semantic segmentation”.

Various feature extraction methods have been developed over the years, striving mainly to
establish relationships on the distribution of the radiation’s power in space (radiometry, colour), on the
statistical measures describing and summarizing pixel neighbourhoods (texture, corners), on the
geometrical–topological properties of the pixel agglomerations (shape, size, compactness), and on
similarities/differences between adjacent image regions (context). Each method is seeking to exploit
associations along the spectral, spatial, and temporal domain, either separately or in combination.
Then, classification techniques attempt to model the functional relationship between the feature
vectors and the semantic information. Features employed in [17], for instance, include a gray-level
co-occurrence matrix, differential morphological profiles, and an urban complexity index. The study
in [18] demonstrated that the object-based classifier is a significantly better approach than the classical
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per-pixel classifiers when extracting urban land cover using high spatial resolution imagery. Support
Vector Machines (SVM) and geometrical moments for automatic recognition of man-made objects
have been demonstrated in [19]. A multi-layer perceptron and Radial Basis Function Networks have
been used for supervised classification [20]. The use of the Random Forest (RF) classifier for land
cover classification is explored in [21]. In order to map land covers, the authors in [22] evaluated
the potential of multi-temporal Landsat-8 spectral and thermal imageries using an RF classifier.
In a similar application, the classification of high spectral, spatial, and temporal resolution satellite
image time-series is evaluated by means of RF and SVM [23]. Similarly, the performance of the
RF classifier for land cover classification of a complex area has been explored in [24]. The authors
in [25] evaluated the time-weighted dynamic time warping method with Sentinel-2 time-series for
pixel-based and object-based classifications of various crop types. In [26], the aim was the crop
classification using single-date Sentinel-2 imagery, and was performed by RF and SVM. The authors
in [27] tested the ability of Sentinel-2 for forest-type mapping with RF in a Mediterranean environment.
Similarly, the authors in [28] examined and compared the performances of RF, k-Nearest Neighbour,
and SVM for land use/cover classification using Sentinel-2 image data. In the same line, the study
in [29] compared and explored the synergistic use of Landsat-8 and Sentinel-2 data in mapping land
use and land cover of rural areas, and by using three machine learning algorithms: RF, Stochastic
Gradient Boosting, and SVM. In [30], the authors benchmarked nine machine-learning algorithms
in terms of training speed and accuracy classification of land-cover classes in a Sentinel-2 data set.
The authors in [31] demonstrated how a convolutional neural network can be applied to multispectral
orthoimagery and a digital surface model (DSM) of a small city for a full, fast, and accurate per-pixel
classification. Finally, in [32], the Symbolic Machine Learning classifier was applied to investigate the
added-value of Sentinel-2 data compared to Landsat in the frame of the Global Human Settlement
Layer (https://ghsl.jrc.ec.europa.eu/) scope.

The classical processing chain for satellite image classification is depicted in Figure 2.
The feature extraction process involves the computation of quantities referring to spectral (band
combinations), textural (pixel or neighbourhood statistics), morphological (topological properties),
and similarity-based content.

Figure 2. The classical processing chain for satellite image classification.

As opposed to the traditional pixel-based remote-sensing image classification algorithms in which
each single pixel (or pixel vector in the case of images with more than one channel) is individually
evaluated [33], in this work we decided to test two computational modelling approaches (convolutional
neural networks and random forests) which exploit the contextual information of the pixels and manage
to base the classification outcome upon the automatically selected and most discriminative features.

The key characteristics which led us to study and test the specific machine learning techniques
are summarized below:

• Both types of modelling are non-parametric and capable of learning any sophisticated mapping;
• They are fast and easy to implement, and can handle a very large number of input variables by

keeping the risk of overfitting low;
• Hand-crafted feature extraction is substituted by automatic feature generation, a process in which

linear and non-linear mappings are applied to values derived either from the original data or from
successive mathematical operations to derivative values; this process takes place while solving
the optimization problem which builds the relationships between input and reference data;

https://ghsl.jrc.ec.europa.eu/
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• Deep neural networks learn efficiently discriminative features through their natural hierarchical
structure; in a similar way, the random forest builds decision trees at which the relationship
ancestor/descendant is evaluated based on the discriminative power of the original features;

• Convolutional neural networks maintain an inherent capacity to model complex processes via
the use of a high number of parameters (provided that a sufficient number of training data is
available, as it is the case with the abundance of Earth observation data). Although the random
forest is not so demanding in terms of structural parameters, it has been repeatedly proven to
be quite efficient to model complex relationships, mainly due to its streamlined weighting of
contributing factors and its effective synthesis of the output provided by ensemble modelling.

Hence, we think that both modelling approaches can adequately address most of the challenges
already mentioned in Section 1.

3.3.1. Convolutional Neural Networks

Convolutional Neural Networks (CNN) are models which, by design, exhibit the capacity to
represent hierarchically structured data. As the standard neural networks, they consist of a series of
layers at which the constituent nodes (computational units) are mathematical functions (linear and/or
non linear) which transform the input (weighted combinations of features) they received by the nodes
of the previous layer and provide it as input to the next layer. In addition, CNNs are capable of learning
local features—that is, a set of weights and biases are applied successively over small subsets of the
image. In that way, contextual information that exists in the different areas of the image can be captured,
and the most salient features inside the pixel neighbourhoods can be identified. This process is called
convolution, and a specific combination of weights with a bias is called the filter [34]. Hyper-parameters
at this level are the filter size, the stride which determines the movement pace of the filter over the
image, and the mathematical function which translates, point-wise, the outcome of the convolution.
CNN can learn features in several abstract layers through non-linear functions, named pooling or
sub-sampling operators [35]. Their objective is two-fold: to confer local translational invariance on
the already extracted features, and to reduce the computational cost by making the image resolution
coarser. Likewise, the mathematical function that defines the pooling operator, the size of the spatial
domain at which pooling has effect, and its stride define the hyper-parameters of this pooling layer.

The flexibility to build neural networks by applying different combinations of layers, nodes,
operators, ways of connectivity among the computational units, and numerous other parameters
provide the great capacity to model complex phenomena and processes at diverse levels of
sophistication. Another major attribute is the so-called plasticity [36], the fact that specific computational
units across the network layers fire together. In supervised learning, the standard method to properly
weigh the node connections is back-propagation [37]. Particularly, the main advantage of CNNs is
that the entire system is trained end-to-end, from raw pixels to ultimate categories, thereby alleviating
the requirement to manually design a suitable feature extractor [38]. The main disadvantage is the
necessity for a considerable number of high-quality labelled training samples due to the large number
of parameters to be estimated.

In this work, we experimented with four CNN variants for end-to-end, pixel-to-pixel
image segmentation:

1. Standard CNN: a network configuration consisting of a sequence of convolutional/pooling layers,
which receives as input the neighbourhood (for instance, 3× 3, 5× 5 or 15× 15) of the pixel of
interest. At the final layer, the class label of the central pixel of this neighbourhood is predicted;

2. Fully Convolutional Network (FCN): the network consists of convolutional/pooling layers only.
The final layer performs an upsampling operation to reach the input spatial resolution [39];

3. U-net: An extension of the FCN architecture where, among the successive layers of the standard
contracting network, the pooling operators have been replaced by upsampling operators, thus
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increasing the resolution of the output. It has been shown experimentally that the model
parameters converge to satisfying estimations with very few training samples [40].

4. SegNet: The model is a special case of auto-encoder [41], and has a symmetrical architecture
consisting of non-linear processing encoders and decoders followed by a pixel-wise classifier [42].

Figure 3 shows the four basic CNN variants tested in this work. Each network layer is described
by the shape of the array it handles, the number of parameters to be estimated, and the mathematical
operation that has produced the array. In total, eight building blocks (layers) have been employed
to compose the networks: (1) input: the array/tensor which enters the network; (2) 2Dconv: spatial
convolution kernels that are convolved with the layer input; (3) batchNorm: normalization of the
activations of the previous layer at each batch; the layer is the one defined in [43] where a transformation
that maintains the mean activation close to 0 and the activation standard deviation close to 1 is applied.;
(4) dense: a densely-connected layer; (5) 2DMaxpool: application of the maximum operator over
spatial data; (6) 2DMaxUnpool: upsampling of the layer input by inverting the 2DMaxpool operation;
(7) 2DUpsampling: upsampling of the layer input according to a factor applied in rows and columns
of the input array, and then interpolation; (8) concat: concatenation of a list of input arrays. Each layer
is connected, with the next one, via a black arrow, showing the direction of the coupling. A thicker
orange arrow signifies the connection of two layers, where the output array of the first layer has been
upsampled appropriately to match the spatial resolution of the array that the second layer accepts
as input.

(a) CNN variant (b) FCN

Figure 3. Cont.
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(c) SegNet (d) U-net

Figure 3. The four CNN variants tested in this study. Each network layer is described by the shape of
the array it handles, the number of parameters to be estimated, and the mathematical operation that
has produced the array. In total, eight building blocks (layers) are employed to compose the networks:
input, 2Dconv, batchNorm, dense, 2DMaxpool, 2DMaxUnpool, 2DUpsampling, and concat. Each layer
is connected with the next one via a black arrow showing the direction of the coupling. A thicker
orange arrow signifies the connection of two layers where the output array of the first layer has been
upsampled appropriately to match the spatial resolution of the array that the second layer accepts
as input.

The spatial size 244× 244 or 5× 5 of the input array is indicative, since we experimented with
other array shapes as well, like 15× 15, 122× 122 and 366× 366. The number of rows and columns of
the input and the output array for the FCN, SegNet, and U-net networks is the same; only the third
(channel) dimension differs, being 4 matrices as input, 8 matrices as output. The fourth CNN variant
takes as input a 3D-array and returns as output an 8-element vector (each of the 8 values corresponding
to one of the 8 classes). Consequently, in order to achieve end-to-end image segmentation by using
those CNN models, the user needs to either cut the satellite image in blocks of specific size in the case
of FCN, SegNet, and U-net, or to generate blocks following a sliding window approach in the case of
the standard CNN variant.

3.3.2. Random Forest Classifier

Random Forests (RF) is a machine-learning method dealing mostly with classification and
regression problems (supervised learning), but also with unsupervised learning and feature evaluation
tasks. It is based on the concept of ensemble modelling—that is, a certain number of decision trees
acting as base models is growing and the optimal configuration is chosen depending on the synthesis
and aggregation of the individual results and the final predictive accuracy. Herein, we employ the
bagging approach [44] introduced by [45] that combines bootstrapping and aggregation to form the
ensemble model. The generalization error of a forest of tree classifiers depends on the capacity of the
individual trees in the forest and the correlation between them. Selecting a random subset of features
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at each candidate split during the learning process minimizes the correlation among the classifiers
in the ensemble, eliminates the necessity for branch pruning (contrary to the classical decision trees),
and yields progressively lower error rates.

A new feature vector is classified by each of the trees in the forest. Even if the time complexity
of RF is a function of the number of base trees, the prediction response of the ensemble proves to be
considerably fast. Each tree provides a classification outcome and the forest decision accounts the
majority of the votes over all the trees in the forest.

4. Results

One of the objectives of this study was to evaluate how some basic hyper-parameters and
the amount of training samples impact the classification accuracy. Furthermore, dimensions like
training/prediction time, as well as model robustness on different input signals have been taken into
account. Analytically, we elaborated and assessed the following factors:

• Number of training samples: a high number of model parameters requires an even bigger number
of training samples (model complexity), especially when the problem at hand is a multi-class
classification (problem complexity);

• Transfer learning: intentionally, we did not make use of pre-trained layers so as to check the
capacity of the models to extract discriminative features from the input imagery and also to
measure the actual training time. However, we adopted another version of transfer learning by
assessing the model performance either on a different type of input imagery (S2 processing levels),
or against disparate reference data;

• Hyper-parameters: since the models under consideration are multi-parametric, it is practically
impossible to quantify the effect of all the model parameters in an exhaustive way. As it is
described in the following sections, we selected the parameters which, in our opinion, play a
critical role on the model performance. Parameters such as the window size of the convolution or
pooling layers, and the window stride in the case of CNNs, or the minimum number of samples
required to exist at a leaf node, and the minimum number of samples required to split an internal
node in respect of RF did not have a variable value in our experiments. Such parameters certainly
affect the model performance, but we consider them as having the potential to improve the
fine-tuning of the model.

4.1. Pre-Processing and Data Handling

The input imagery from both L1C and L2A products are the 10 m spectral bands. For L1C, the
physical values (Top of the Atmosphere normalized reflectances) have been coded as integers on
15 bits, and range from 1 (minimum reflectance 10−3) to 10,000 (reflectance 1); values higher than 1
can be observed in some cases due to specific angular reflectivity effects. The special value 0 signifies
“no data”. Regarding L2A, the surface reflectance values are coded with the same quantification
value of 10,000 as for L1C products [46]. For this reason, we have applied a factor of 1/10,000 to
retrieve physical reflectance values. In addition, we standardized the data through the z-transform by
subtracting the average value and dividing by the standard deviation in each band. The parameters
of the transformation were always estimated from the training set under consideration; then, the
same z-transform was applied on the respective testing data. To avoid confusion between the valid 0
values and the “no data” values, a separate binary mask D was produced before the application of
the z-transform.

A stratified sampling was adopted for the samples selection, attempting to keep a constant
percentage for every class. The original reference set is highly imbalanced in favour of the classes
“grassland” and “water”, while on the opposite side, the classes “built-up” and “low-density vegetation”
are under-represented (Table 1).
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4.2. Training Phase

During the training phase, a fraction of 0.1 of the training data was reserved for validation in
order for the CNNs to prevent over-fitting. The number of epochs to train the models were defined
to 100 iterations. The weights were initialized based on uniform distribution with bounds [−0.8, 0.8].
We tested two loss functions: the dice loss

L (y, ŷ) = 1− 1
|C| ∑

c∈C

2 ∑n∈N yc,nŷc,n

∑n∈N y2
c,n + ∑n∈N ŷ2

c,n
, (1)

and the categorical cross-entropy

L (y, ŷ) = − 1
|C|∑c∈C

1
|N| ∑

n∈N
yc,n ln (ŷc,n) , (2)

where C is the set of classes, N is the set of the pixels used for the training, y is the matrix of the real
target values of the training set in binary coding, and ŷ is the matrix of the model responses in the
continuous range [0, 1]. We avoided using loss weighting so that we could measure the effect of class
imbalance. The early stopping of the training was activated—that is, training terminates when the
chosen loss function stops improving. In regard to the activation functions, we tested the standard
rectifier function, the hyperbolic tangent function, and the logistic sigmoid function, respectively:

f (x) = max (0, x) , f (x) =
ex − e−x

ex + e−x , f (x) =
1

1 + e−x . (3)

In the last layer, we employed the softmax function:

f (xk) =
exk

∑
|C|
c=1 exc

, k = 1, · · · , |C| (4)

having |C| (cardinality of the set C) denoting the number of classes. For the optimization part, the Adaptive
Moment Estimation method (Adam) was chosen, an algorithm for first-order, gradient-based optimization
of stochastic objective functions based on adaptive estimates of lower-order moments [47]. Since the
model training takes place on a Graphical Processing Unit, the memory of which does not fit in the
amount of training data, the learning occurs in a batch-wise fashion. The size of each mini-batch is variant,
and depends on the model topology and the respective parameters.

To avoid overfitting, RF was adjusted using stratified two-fold cross-validation combined with a
randomized search on the hyper-parameters domain. We focused mainly on the following parameters:
number of trees that compose the forest, the depth of the tree, and the number of features that are
considered when seeking the best split. To reduce, in reasonable levels, the computational cost of
the hyper-parameters optimization, we fixed the number of parameter settings that were sampled to
12 trials. The locally optimal cut-point for each feature was computed based on either the information
gain (the expected amount of information that would be needed to specify whether a new instance
should be classified in one of the categories, given that the example reached that node [48]) or the Gini
impurity [49].

4.3. Evaluation Metrics

Four metrics were used to assess the accuracy and precision of the classification results:
(1) Overall Accuracy:

Accuracy (y, ŷ (x)) =
TP + TN

TP + FP + TN + FN
, (5)

where input x corresponds to the valid pixels that compose the valid data domain of the testing set
D
′ ⊂ D (Section 4.1), y is the vector of the real target values of the testing set, and ŷ is the vector of
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the model responses. TP stands for true positive, TN for true negative, FP for false positive and FN for
false negative, respectively. The overall accuracy metric reflects the actual accuracy when the target
classes are nearly balanced; yet, we provide this metric for reference and cross-comparison reasons;
(2) F1-score (macro):

F1macro (y, ŷ (x)) =
1
|C|

|C|

∑
c=1

(
2

Precisionc · Recallc
Precisionc + Recallc

)
, (6)

where Precisionc = TPc
TPc+FPc

, Recallc = TPc
TPc+FNc

and c ∈ C; this metric works preferably with
uneven class distributions because it better balances a poor precision with an excessive recall;
(3) Weighted Accuracy:

Weighted Accuracy (y, ŷ (x)) =
|C|

∑
c=1

∣∣∣D′c∣∣∣∣∣D′ ∣∣ TPc + TNc

TPc + FPc + TNc + FNc
, (7)

where |C| is the number of classes,
∣∣∣D′ ∣∣∣ is the total number of valid values, and

∣∣∣D′c∣∣∣ is the number of
valid values with respect to class c; (4) F1-score (weighted):

F1weighted (y, ŷ (x)) =
|C|

∑
c=1

∣∣∣D′c∣∣∣∣∣D′ ∣∣
(

2
Precisionc · Recallc

Precisionc + Recallc

)
. (8)

The last two metrics take into consideration the amount of true instances for each class label
(support); hence, they highlight the deeper contribution of each class that is proportional to its size.
All the metrics hold that the better the classification results, the closer the metric values are to 1.

In addition, we provide confusion matrices for several models in order for the reader
to better understand the omission and commission errors produced by each of the presented
model configurations.

4.4. Performance Figures

Table 3 summarizes the experimental results. The meaning of the column headers is described below:

1. Model: The symbolic name “M-L-L-W” of the computational model. The notation is explained
as follows: (i) M refers to the classifier type, i.e., RF, CNN, FCN, Unet, or SegNet; (ii) L denotes
one of the four groups of the S2 products: L1C(winter), L2A(winter), L1C(spring), L2A(spring);
(iii) The first L points at the series of products used for training, and the second L at the products
used for testing purposes. When the letter L appears in both positions, it means firstly that the
group of products for training and testing is the same, and secondly that the classification results
are similar in any of the four cases; also, notation like L1Cmix signifies L1C image blocks taken
from both winter and spring seasons; (iv) W signifies the size of the spatial window. Especially
for the cases of RF and standard CNN, it means: Input: w× w pixels per band; Output: one class
label corresponding to the central input pixel of the spatial window w× w;

2. Training time: the elapsed time in seconds for processing 1M training samples (pixels) and with
respect to the number of processing units described in Section 4.5 (hardware specs);

3. Prediction time: the elapsed time in seconds for processing 1M testing samples (pixels) and with
respect to the number of processing units described in Section 4.5 (hardware specs);

4. OA: Overall Accuracy (range [0 ,1], best value 1);
5. WA: Weighted Accuracy (range [0, 1], best value 1);
6. F1-macro: F1-score (macro) (range [0, 1], best value 1);
7. F1-weighted: F1-score (weighted) (range [0, 1], best value 1).
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The mean ± standard deviation are shown in regard to both training and prediction time, and
any of the four classification metrics. The results refer to five repetitions for every different model
configuration. For instance, for a CNN model tested with three spatial window sizes, 16 options for
training and testing in regard to the S2 products, 12 network topologies by five repetitions results in
2880 trials.

Table 3. Indicative experimental results in terms of classification performance metrics and
training/prediction time. Highest scores have been emphasized in bold type.

Model Training Time (s) * Prediction Time (s) OA WA F1-Macro F1-Weighted

RF-L-L-1x1 1061 ± 93 6.96 ± 0.19 0.75 ± 0.031 0.88 ± 0.025 0.44 ± 0.023 0.70 ± 0.012
RF-L-L-3x3 2170 ± 121 5.49 ± 0.11 0.81 ± 0.003 0.92 ± 0.006 0.57 ± 0.009 0.80 ± 0.007
RF-L-L-5x5 5418 ± 224 6.06 ± 0.06 0.79 ± 0.052 0.91 ± 0.026 0.53 ± 0.064 0.77 ± 0.051
CNN-L-L-5x5 1.88 ± 1.13 0.08 ± 0.03 0.84 ± 0.009 0.92 ± 0.012 0.69 ± 0.017 0.84 ± 0.010
CNN-L-L-15x15 5.66 ± 1.41 0.22 ± 0.04 0.84 ± 0.013 0.92 ± 0.011 0.70 ± 0.012 0.84 ± 0.013
FCN-L-L-244x244 328 ± 0.56 0.78 ± 0.19 0.72 ± 0.021 0.88 ± 0.019 0.52 ± 0.024 0.72 ± 0.016
SegNet-L-L-244x244 164 ± 0.35 1.21 ± 0.16 0.86 ± 0.027 0.95 ± 0.012 0.71 ± 0.011 0.88 ± 0.013
Unet-L-L-122x122 57 ± 23 0.23 ± 0.06 0.68 ± 0.013 0.88 ± 0.018 0.56 ± 0.021 0.78 ± 0.019
Unet-L-L-244x244 75 ± 20 0.46 ± 0.09 0.85 ± 0.015 0.94 ± 0.010 0.68 ± 0.026 0.85 ± 0.015
Unet-L-L-366x366 98 ± 5 1.61 ± 0.11 0.83 ± 0.022 0.93 ± 0.019 0.64 ± 0.020 0.82 ± 0.023

SegNet-L1C-L2A-244x244 0.82 ± 0.009 0.92 ± 0.008 0.62 ± 0.008 0.81 ± 0.010
Unet-L1Cmix-L2A-244x244 0.80 ± 0.012 0.92 ± 0.004 0.61 ± 0.005 0.80 ± 0.005
RF-L1Cmix-L1Cmix-5x5 0.71 ± 0.270 0.86 ± 0.013 0.44 ± 0.233 0.70 ± 0.020
CNN-L1Cmix-L1Cmix-5x5 0.87 ± 0.010 0.94 ± 0.003 0.73 ± 0.014 0.87 ± 0.003
Unet-L1Cmix-L1Cmix-244x244 0.85 ± 0.011 0.94 ± 0.005 0.69 ± 0.012 0.85 ± 0.003
SegNet-L1Cmix-L1Cmix-244x244 0.85 ± 0.009 0.94 ± 0.003 0.65 ± 0.019 0.85 ± 0.005

* The training time of CNNs refers to a single model configuration whereas for RF concerns the 12-trial 2-fold
cross-validation via randomized search.

Figure 4 demonstrates the impact of the training set size on the classification efficiency when
measured on the testing set. The weighted F1-score represents the median values after considering all
model configurations that we tested. As expected, the F1-score improves as the size of the training
set becomes larger, and after a certain point for every model it starts to saturate. In the case of RF,
saturation happens quickly and with a much smaller training set. We noticed that the specific RF
implementation (see Section 4.5) can efficiently handle a high number of training samples. This number
depends on the parameter settings and the memory resources of the hardware; in our tests, this number
could not surpass a certain order of magnitude.

Figure 4. Effect of the training-set size on the weighted F1-score.

Tables 4 and 5 present joint confusion matrices for selected models that cover the most of the cases
and provide a clear picture regarding the plurality of the results that have been produced. The numbers
which appear in the second column correspond to the models at the bottom of the tables. The highest
percentage for each pair of classes has been emphasized in bold type.
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Table 4. Confusion matrix for selected models.

Low-Density
Vegetation Grassland Cropland Built-Up Forest Other Water Remaining

Classes

low-density vegetation

1 0.24 0.37 0.25 0 0.04 0.10 0 0
2 0.19 0.31 0.23 0 0.11 0.16 0 0
3 0.19 0.32 0.36 0 0.03 0.10 0 0
4 0.11 0.28 0.31 0 0.09 0.19 0.01 0.01
5 0.11 0.39 0.37 0 0.03 0.10 0 0
6 0.21 0.38 0.24 0 0.06 0.11 0 0
7 0.25 0.37 0.28 0 0.03 0.07 0 0

grassland

1 0 0.85 0.07 0 0.02 0.05 0.01 0
2 0 0.74 0.15 0 0.02 0.07 0.01 0.01
3 0 0.83 0.10 0 0.02 0.04 0.01 0
4 0 0.75 0.12 0 0.01 0.08 0.02 0.02
5 0 0.86 0.07 0 0.02 0.04 0.01 0
6 0 0.82 0.10 0 0.03 0.04 0.01 0
7 0 0.82 0.10 0 0.03 0.04 0.01 0

cropland

1 0.01 0.18 0.80 0 0 0.01 0 0
2 0.01 0.16 0.79 0 0.01 0.03 0 0
3 0 0.13 0.86 0 0 0.01 0 0
4 0 0.18 0.77 0 0.01 0.03 0.01 0
5 0 0.10 0.89 0 0 0.01 0 0
6 0 0.21 0.77 0 0 0.02 0 0
7 0 0.27 0.70 0 0.01 0.02 0 0

built-up

1 0 0 0 0 0 1.00 0 0
2 0 0 0 0 0 0.98 0.02 0
3 0 0 0 0.19 0 0.81 0 0
4 0 0 0 0.21 0 0.77 0.02 0
5 0 0 0 0.28 0 0.72 0 0
6 0 0 0 0 0 1.00 0 0
7 0 0 0 0 0 0.99 0.01 0

forest

1 0 0.11 0.01 0 0.81 0.05 0 0.02
2 0 0.11 0.02 0 0.76 0.07 0.01 0.03
3 0 0.12 0.01 0 0.81 0.04 0 0.02
4 0 0.14 0.02 0 0.58 0.10 0.01 0.15
5 0 0.12 0.01 0 0.82 0.04 0 0.01
6 0 0.10 0.01 0 0.82 0.05 0 0.02
7 0 0.20 0.03 0 0.70 0.04 0.01 0.02

other

1 0 0.09 0.02 0 0.02 0.86 0.01 0
2 0 0.07 0.01 0 0.02 0.89 0.01 0
3 0 0.10 0.03 0 0.02 0.84 0.01 0
4 0 0.06 0.01 0 0.01 0.89 0.02 0.01
5 0 0.10 0.03 0 0.01 0.85 0.01 0
6 0 0.09 0.02 0 0.02 0.86 0.01 0
7 0 0.25 0.06 0 0.03 0.65 0.01 0

water

1 0 0.02 0 0 0 0.02 0.96 0
2 0 0.02 0.01 0 0 0.02 0.95 0
3 0 0.02 0 0 0 0.02 0.96 0
4 0 0.01 0.01 0 0 0.02 0.95 0.01
5 0 0.02 0 0 0 0.01 0.97 0
6 0 0.02 0 0 0 0.02 0.96 0
7 0 0.04 0.01 0 0 0.01 0.94 0

remaining classes

1 0 0.11 0.02 0 0.13 0.07 0.04 0.63
2 0 0.07 0.04 0 0.14 0.11 0.04 0.60
3 0 0.10 0.02 0 0.11 0.07 0.04 0.66
4 0 0.06 0.03 0 0.09 0.10 0.04 0.68
5 0 0.11 0.02 0 0.11 0.07 0.03 0.66
6 0 0.10 0.02 0 0.15 0.08 0.05 0.60
7 0 0.10 0.02 0 0.15 0.04 0.06 0.63

1. SegNet-L1Cmix-L1Cmix-244x244; 2. SegNet-L1Cmix-L2A-244x244; 3. Unet-L1Cmix-L1Cmix-244x244;
4. Unet-L1Cmix-L2A-244x244; 5. Unet-L1C(spring)-L1C(spring)-244x244; 6. Unet-L1C(winter)-L1C(winter)-
244x244; 7. SegNet-L1C(winter)-L1C(winter)-244x244 (simple auto-encoder without couplings between the
downsampling and upsampling layers; 52,671,433 parameters).
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Table 5. Confusion matrix for selected models.

Low-Density
Vegetation Grassland Cropland Built-Up Forest Other Water Remaining

Classes

low-density vegetation

8 0.09 0.38 0.37 0 0.15 0.01 0 0
9 0.01 0.45 0.29 0 0.17 0.08 0 0

10 0.25 0.40 0.14 0 0.09 0.09 0.01 0.02
11 0.13 0.48 0.13 0 0.16 0.09 0 0.01
12 0.08 0.48 0.12 0 0.21 0.09 0 0.02
13 0.02 0.47 0.12 0 0.25 0.11 0.01 0.02
14 0.11 0.50 0.13 0 0.15 0.10 0 0.01

grassland

8 0 0.79 0.11 0 0.03 0.05 0.02 0
9 0 0.81 0.10 0 0.03 0.05 0.01 0

10 0 0.85 0.06 0 0.03 0.04 0.01 0.01
11 0 0.86 0.07 0 0.03 0.04 0 0
12 0 0.86 0.07 0 0.03 0.04 0 0
13 0 0.81 0.09 0 0.05 0.04 0 0.01
14 0 0.84 0.07 0 0.03 0.05 0.01 0

cropland

8 0 0.27 0.68 0 0.02 0.02 0.01 0
9 0 0.20 0.77 0 0.01 0.02 0 0

10 0.01 0.27 0.69 0 0.01 0.01 0.01 0
11 0 0.28 0.68 0 0.01 0.03 0 0
12 0 0.29 0.66 0 0.01 0.03 0.01 0
13 0 0.33 0.53 0 0.02 0.10 0.01 0.01
14 0 0.29 0.67 0 0.01 0.03 0 0

built-up

8 0 0 0 0 0 0.98 0.02 0
9 0 0 0 0.14 0 0.86 0 0

10 0 0 0 0.13 0 0.87 0 0
11 0 0 0.01 0 0 0.96 0.03 0
12 0 0 0.02 0 0 0.96 0.02 0
13 0 0.04 0.31 0 0.03 0.45 0.16 0.01
14 0 0 0.01 0 0 0.97 0.02 0

forest

8 0 0.23 0.06 0 0.63 0.04 0.01 0.03
9 0 0.12 0.01 0 0.80 0.05 0 0.02

10 0 0.10 0.01 0 0.83 0.04 0 0.02
11 0 0.13 0 0 0.82 0.04 0 0.01
12 0 0.13 0 0 0.82 0.04 0 0.01
13 0 0.17 0.02 0 0.73 0.06 0 0.02
14 0 0.15 0.01 0 0.79 0.04 0 0.01

other

8 0 0.29 0.09 0 0.04 0.56 0.02 0
9 0 0.12 0.02 0 0.03 0.82 0.01 0

10 0 0.12 0.02 0 0.03 0.81 0.01 0.01
11 0 0.14 0.03 0 0.04 0.78 0.01 0
12 0 0.15 0.02 0 0.04 0.78 0.01 0
13 0 0.18 0.22 0 0.10 0.41 0.07 0.02
14 0 0.16 0.03 0 0.04 0.76 0.01 0

water

8 0 0.05 0.01 0 0 0.01 0.93 0
9 0 0.02 0.01 0 0 0.02 0.95 0

10 0 0.02 0 0 0 0.02 0.96 0
11 0 0.02 0.01 0 0 0.02 0.95 0
12 0 0.02 0.01 0 0 0.01 0.96 0
13 0 0.02 0.02 0 0.01 0.02 0.93 0
14 0 0.02 0.01 0 0 0.02 0.95 0

remaining classes

8 0 0.14 0.03 0 0.18 0.05 0.09 0.51
9 0 0.11 0.02 0 0.18 0.07 0.04 0.58

10 0 0.11 0.03 0 0.15 0.06 0.04 0.61
11 0 0.19 0.07 0 0.17 0.18 0.04 0.35
12 0 0.23 0.07 0 0.19 0.16 0.04 0.31
13 0 0.25 0.14 0 0.20 0.16 0.04 0.21
14 0 0.21 0.14 0 0.16 0.18 0.04 0.27

8. FCN-L1C(winter)-L1C(winter)-244x244; 9. Unet-L2A(winter)-L2A(winter)-366x366; 10. CNN-L1C(winter)-
L1C(winter)-15x15; 11. RF-L1C(winter)-L1C(winter)-3x3; 12. RF-L2A(winter)-L2A(winter)-3x3; 13. RF-L2A
(winter)-L2A(winter)-1x1; 14. RF-L2A(spring)-L2A(spring)-5x5.

Figure 5 displays the full confusion matrix of one of the most performant modelling
approaches, the training of which was based on two different seasons (early winter and late spring).
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It summarizes the classification results produced by the not-so-complex model (1,449,352 parameters)
CNN-L1Cmix-L1Cmix-5x5.

Figure 5. Confusion matrix referring to the model CNN-L1Cmix-L1Cmix-5x5.

The following illustrations (Figures 6–8) depict some representative results from six different
locations spread over the Netherlands. They are structured in groups of two columns. Reading from
left to right in each of the six groups, the first row contains the RGB composition of the input image and
the respective re-classified eight-classes map based on the TOP10NL layer. The second row displays
the classification outcome of one instance of the single-season models RF-L1C-1x1 and RF-L2A-3x3,
while the third row the outcome of RF-L1C-5x5 and the one of the simple SegNet-L1C-244x244. Next,
the fourth row shows the output of FCN-L1C-244x244 and SegNet-L1Cmix-244x244, the fifth row the
output of Unet-L1Cmix-244x244 and Unet-L1C(winter)-244x244, and finally the sixth row shows the
output of CNN-L1Cmix-5x5 and CNN-L1C(winter)-5x5, respectively.
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Figure 6. Indicative classification results. Classes: low-density vegetation (dark blue), grassland (blue),
cropland (light blue), built-up (blue-green), forest (green), other (orange), water (red), and remaining
classes (brown).
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Figure 7. Indicative classification results. Classes: low-density vegetation (dark blue), grassland (blue),
cropland (light blue), built-up (blue-green), forest (green), other (orange), water (red), and remaining
classes (brown).
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Figure 8. Indicative classification results. Classes: low-density vegetation (dark blue), grassland (blue),
cropland (light blue), built-up (blue-green), forest (green), other (orange), water (red), and remaining
classes (brown).
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The last experiment is a transfer learning exercise that checks the robustness of the model
when applied on different geographic regions. The study area has been chosen to be a division
of Albania. The S2 imagery (see Appendix A) used as input is of type L1C and has sensing time
stamp 20181113. This exercise actually constitutes a simulation of how possible gaps existing in
the INSPIRE data sets could potentially be filled in by automated methods, the configuration of
which has been based on the standards and nomenclature of different authorities. As a reference
layer, we employed the CORINE (coordination of information on the environment) Land Cover 2018
(https://land.copernicus.eu/pan-european/corine-land-cover/clc2018) product after re-classification
to approximately match the classification schema based on the TOP10NL data set. The re-classification
of CORINE 2018 (for which we do not claim that is universally defined with the proposed schema)
is shown in Table 6. Figure 9 shows some indicative cases from this experiment; the outcome of the
three models SegNet-L1Cmix-244x244, Unet-L1Cmix-244x244, and CNN-L1Cmix-5x5 is also included.
Although we do not make use of the NDVI, we have included it in this figure in order to show
what type of information the standard spectral-based features convey and also to help the reader
to easily identify the green areas as well as the water bodies in the opposite side of the range. The
approximate accordance between the output and the reference layer has been confirmed visually after
qualitative analysis.

Table 6. Re-classification of the CORINE Land Cover 2018 data set according to the TOP10NL-based
reference layer.

TOP10NL (Based Classes) Colour CORINE 2018 Classes

1. low-density vegetation dark blue 141, 333
2. grassland blue 321, 322, 323, 324
3. cropland light blue 211, 212, 213, 221, 222, 223, 231, 241, 242, 243
4. built-up blue-green 111, 112, 121, 122, 123, 124, 142
5. forest green 244, 311, 312, 313
6. other orange 131, 132, 133
7. water red 511, 512, 521, 522, 523
8. remaining classes brown 331, 332, 334, 335, 411, 412, 421, 422, 423

4.5. The Computational Platform: JRC Earth Observation Data and Processing Platform (JEODPP)

Sensitivity analysis of complex models through the exploration of various hypotheses defined by
different parametrizations, together with the models training which is based on big amounts of data,
constitutes a challenging task and invites unconventional computational capacity. CNNs rely heavily
on matrix mathematical operations, and their inherent multi-layered architecture requires tremendous
amounts of floating-point computations. Naturally, this is something that can be done in parallel mode
and especially by exploiting the capacity of Graphical Processing Units. Likewise, Random Forests are
growing numerous tree classifiers in a parallel fashion, and consequently, their performance is boosted
when executing over multi-processing unit configurations.

Cloud working environments (e.g., Google Earth Engine, Amazon Web Services) are platforms
that provide lots of open Earth observation data and where the user can efficiently prototype and
parallelize her workflows. Alongside these developments, the Copernicus cloud-based infrastructure
Data and Information Access Services Operations-DIAS (https://www.copernicus.eu/en/access-
data/dias) is progressively undertaking its prescribed operational role. Despite the availability of
such computational resources and data, the workflow escalation and the broad-range hypotheses
exploration are not straightforward and frequently do not come without cost.

https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://www.copernicus.eu/en/access-data/dias
https://www.copernicus.eu/en/access-data/dias
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Figure 9. Checking the model robustness. Area of study: Albania. Reference layer: CORINE
2018 re-classified. Rows: (1) RGB composition of the input S2 imagery; (2) NDVI; (3) CORINE
2018; (4) CORINE 2018 re-classified; (5) SegNet-L1Cmix-244x244; (6) Unet-L1Cmix-244x244;
(7) CNN-L1Cmix-5x5. The NDVI colormap ranges from value -1 (purple) to value 0 (white) and
then to value 1 (dark green). The CORINE 2018 discrete colormap represents the respective classes
shown in Table 6, 3rd column, as being ordinal values. The re-classified CORINE 2018 colormap as
well as the colormap of the depicted models output follows the colour convention defined in Table 6,
1st and 2nd column.
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The Joint Research Centre of the European Commission has recently developed a versatile
multi-petabyte scale platform based on storage co-located with a high-throughput computing capacity,
the so-called JRC Earth Observation Data and Processing Platform (JEODPP) [50]. The platform
(https://cidportal.jrc.ec.europa.eu/home/) has been built upon the near-data processing concept
which prescribes the computing facility to be placed close to the storage units in order to resolve
the bottleneck of delaying or degrading interconnection. The JEODPP provides a great number of
CPU and GPU-based processing nodes. For the exercise under consideration, the CNNs training
has been performed on Tesla K80 GPUs (Kepler GPU architecture; 4992 NVIDIA CUDA cores with a
dual-GPU design; 2× 12 GB of GDDR5 memory; up to 8.73 teraflops single-precision performance with
NVIDIA GPU Boost), whereas the RFs training over CPU-based processing nodes respectively (Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20 GHz; RAM 512GB DIMM DDR4 Synchronous Registered (Buffered)
2400 MHz; 40 processors (20 CPU cores each); cache size 51,200 KB each processor). Apart from
the hardware configuration, the performance is highly dependent on the used software and the
efficient algorithmic implementations it supports. The JEODPP accommodates and promotes open
source implementations, especially in the Python programming language. For the experiments
demonstrated in this work the following Python packages have been employed: TensorFlowTM as
back-end (https://www.tensorflow.org/) and Keras (https://keras.io/) as front-end for the CNN
tests and scikit-learn (https://scikit-learn.org/stable/) for the RF implementations. Analysis and
prototyping has been carried out via Jupyter (https://jupyter.org/) notebooks. All the trained models
are accessible through the JEODPP and can be made available upon request.

5. Discussion

The findings of the experimental analysis have been consolidated in the following points:

• The results confirmed the high modelling capacity of both RFs and CNN variants for end-to-end
S2 image segmentation, a fact that agrees with the until now experimental evidence stating that
such kind of models are general-purpose accurate learning techniques;

• Basic hyper-parameters of both approaches do not affect the classification performance so much,
exhibiting a high level of stability given the existence of adequate number of training data.
The categorical entropy loss function in the CNN case and the Gini impurity in the RF case slightly
lead to better results. For the deep models Unet, SegNet, and FCN, the rectifier function reduced
the computational cost a lot and resulted in better classification, whereas in the case of the less
deep topologies of the CNN-wxw models, the hyperbolic tangent as activation function was
proven more effective;

• Similarly, the processing level of S2 products (either L1C or L2A) does not have a significant
impact on the classification results;

• On the contrary, variability due to different seasonal conditions can only be captured by
introducing training samples referring to different sensing time stamps. Analysis and modelling
of time-series turns to be key component for such type of tasks. CNNs appear more robust and
capture better the data variability (landscape diversity and variable time) and it is due to the high
number of parameters they come with;

• In the case of Unet, SegNet, and FCN networks, the spatial size of the input tensor has an impact
on the classification results. In lower sizes, a more complex architecture (using a high number
of filters) is required, whereas in greater sizes there is a strong need for an increasing number of
training samples. For the exercise presented herein, a spatial size of 244 × 244 is near to optimal;

• The built-up class cannot be modelled easily due to the inherent mapping issues already mentioned
in Section 3.1. It is confused with the class other. In addition, this happens because of the strong
overlapping of the two signal signatures and due to the shortage of training samples pointing at
the class built-up. The same phenomenon occurs with the class low-density vegetation and the classes
grassland and cropland, especially in the spring season. However, we noticed some exceptional

https://cidportal.jrc.ec.europa.eu/home/
https://www.tensorflow.org/
https://keras.io/
https://scikit-learn.org/stable/
https://jupyter.org/
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cases like the RF-1x1 which confuses grassland and remaining classes but detects sufficiently the
built-up class. In reality, when the class is represented by a high number of training samples as it
is the case of water, any type of the tested modelling approaches is proven efficient;

• Pixel mismatching between the model output and the reference layer is sometimes due to the fact
that the model response is based on the S2 input and its sensing conditions. Actually, the model
output can be seen as an updated version of the reference layer, where there is a trade-off among
the properties of both the input and reference layers;

• The simple SegNet approach returns as response a rather coarse segmentation. In a similar way,
FCN gives an output having the block effect. Both network configurations require more and finer
upsampling layers contracting somehow with the downsampling layers, as it happens in the
architectures of Unet and SegNet. This is also evidence that from one side, a deep neural network
has the flexibility to model complex problems but from the other side, it requires tedious and
long-lasting fine-tuning in order to draw an optimal configuration for the task at hand;

• In most of the cases, RF performs quite well even if it does not make use of the feature localization
attribute provided by the convolutional filters. In order to capture the high variability existing in
the samples, RF tends to grow long trees, a fact which may lead to overfitting. Keeping shorter
the size of the trees results sometimes in a weak modelling. In conclusion, RF inherent capacity
has an upper bound that puts a ceiling on the modelling of complex processes.

• The results from the transfer learning exercise show an acceptable level of classification agreement
given the geographical and morphological discrepancies of the two countries (Netherlands and
Albania). Nevertheless, when the target application is a European land cover map, the exploitation
of additional information sources and databases like the BigEarthNet [51] or Corine Land Cover
2018 is imperative;

• For big training sets, CPU or GPU-based parallelization is necessary for both CNNs and RFs; the
prediction time remains in a sufficient level. The former fact confirms the need for specialized
computational resources and dedicated Earth Observation exploitation platforms. With this work,
we demonstrate that JEODPP, the EC JRC high-throughput and high-performance computational
platform that is gradually being built, is evolving in the proper direction.

Among the CNN variants, we found the CNN-5x5 model (especially the one trained on samples
from both winter and spring seasons) quite performant given the relatively low architecture complexity
and robust enough to varying conditions.

6. Conclusions

Satellite missions compliant with the open and free data distribution regime like Sentinel and
Landsat continuously acquire data and compose satellite image time-series which serve in a plethora
of applications, such as environmental management and monitoring, climate change, agriculture,
urban planning, biodiversity conservation, and land change detection, to mention some. Human-based
analysis of large areas and manual inspection of multiple images have been proven costly and time
consuming. The emergence of machine learning facilitates the automation of Earth observation
analysis, helps to uncover complex spatio-temporal patterns and results in insightful and profound
understanding of the physical processes.

Working in the machine learning framework, this paper demonstrates the modelling capacity of
two state-of-the-art classifiers, the Convolutional Neural Networks and the Random Forests, whilst
tackling the multi-class, “end-to-end”, 10 m Sentinel-2 image segmentation. The class annotations
have been derived from a re-classified layer based on the Dutch country-level data set made available
in the INSPIRE infrastructure. Extensive performance and sensitivity analysis of the most significant
hyper-parameters demonstrates a quite stabilized performance. The classification results can be
considered satisfactory for such kind of exercise, and confirm in a positive way the high performance
of those classifiers, a finding that remote sensing studies gradually verify. Furthermore, the proposed
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approach illustrates the potential of combining open data from multiple sources for the acquisition
of new knowledge. From the perspective of spatial data infrastructures the benefits are manifold:
(i) generation of new data with high spatial and temporal resolution, (ii) ability to use Sentinel data for
different geographic regions where other data sets are not available, and (iii) possibility for quality
validation and updating of the input (e.g., INSPIRE) data.

Keeping the current study as baseline, the next step is to elaborate the production of an European
land cover based on the continuous acquisition of Earth observation data provided by the Copernicus
Sentinel missions and particularly by the Sentinel-1 and Sentinel-2 satellites. With orbits repeating
every six days for the former and five days for the latter, large swath, and rich spectral and spatial
resolution, these two sensors enable the utilization of satellite image time-series which constitute
necessary component for land cover change detection and land-use monitoring.
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Appendix A

The list of Sentinel-2 products used as input imagery to the computational models:

Level-1C, sensing time: early winter
S2B_MSIL1C_20181010T104019_N0206_R008_T32ULC_20181010T161145.SAFE
S2B_MSIL1C_20181010T104019_N0206_R008_T31UGU_20181010T161145.SAFE
S2A_MSIL1C_20181117T105321_N0207_R051_T31UET_20181117T112412.SAFE
S2A_MSIL1C_20181117T105321_N0207_R051_T31UFU_20181117T112412.SAFE
S2A_MSIL1C_20181117T105321_N0207_R051_T31UFS_20181117T112412.SAFE
S2A_MSIL1C_20181117T105321_N0207_R051_T31UFT_20181117T112412.SAFE
S2A_MSIL1C_20181117T105321_N0207_R051_T31UGS_20181117T112412.SAFE
S2A_MSIL1C_20181117T105321_N0207_R051_T31UFV_20181117T112412.SAFE
S2B_MSIL1C_20181212T105439_N0207_R051_T31UES_20181212T112608.SAFE
S2A_MSIL1C_20181117T105321_N0207_R051_T31UGV_20181117T112412.SAFE
S2A_MSIL1C_20181117T105321_N0207_R051_T31UGT_20181117T112412.SAFE

Level-2A, sensing time: early winter
S2B_MSIL2A_20181010T104019_N0209_R008_T32ULC_20181010T171128.SAFE
S2B_MSIL2A_20181010T104019_N0209_R008_T31UGU_20181010T171128.SAFE
S2A_MSIL2A_20181117T105321_N0210_R051_T31UET_20181117T121932.SAFE
S2A_MSIL2A_20181117T105321_N0210_R051_T31UFU_20181117T121932.SAFE
S2A_MSIL2A_20181117T105321_N0210_R051_T31UFS_20181117T121932.SAFE
S2A_MSIL2A_20181117T105321_N0210_R051_T31UFT_20181117T121932.SAFE
S2A_MSIL2A_20181117T105321_N0210_R051_T31UGS_20181117T121932.SAFE
S2A_MSIL2A_20181117T105321_N0210_R051_T31UFV_20181117T121932.SAFE
S2B_MSIL2A_20181212T105439_N0211_R051_T31UES_20181218T134549.SAFE
S2A_MSIL2A_20181117T105321_N0210_R051_T31UGV_20181117T121932.SAFE
S2A_MSIL2A_20181117T105321_N0210_R051_T31UGT_20181117T121932.SAFE
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Level-1C, sensing time: late spring
S2A_MSIL1C_20180508T104031_N0206_R008_T32ULD_20180508T175127.SAFE
S2A_MSIL1C_20180508T104031_N0206_R008_T31UGS_20180508T175127.SAFE
S2A_MSIL1C_20180508T104031_N0206_R008_T32ULC_20180508T175127.SAFE
S2A_MSIL1C_20180508T104031_N0206_R008_T32ULE_20180508T175127.SAFE
S2A_MSIL1C_20180508T104031_N0206_R008_T31UFS_20180508T175127.SAFE
S2B_MSIL1C_20180506T105029_N0206_R051_T31UET_20180509T155709.SAFE
S2B_MSIL1C_20180506T105029_N0206_R051_T31UFT_20180509T155709.SAFE
S2B_MSIL1C_20180506T105029_N0206_R051_T31UFU_20180509T155709.SAFE
S2B_MSIL1C_20180506T105029_N0206_R051_T31UES_20180509T155709.SAFE
S2B_MSIL1C_20180506T105029_N0206_R051_T31UFV_20180509T155709.SAFE
S2B_MSIL1C_20180506T105029_N0206_R051_T31UGT_20180509T155709.SAFE

Level-2A, sensing time: late spring
S2A_MSIL2A_20180508T104031_N0207_R008_T32ULD_20180508T175127.SAFE
S2A_MSIL2A_20180508T104031_N0207_R008_T31UGS_20180508T175127.SAFE
S2A_MSIL2A_20180508T104031_N0207_R008_T32ULC_20180508T175127.SAFE
S2A_MSIL2A_20180508T104031_N0207_R008_T32ULE_20180508T175127.SAFE
S2A_MSIL2A_20180508T104031_N0207_R008_T31UFS_20180508T175127.SAFE
S2B_MSIL2A_20180506T105029_N0207_R051_T31UET_20180509T155709.SAFE
S2B_MSIL2A_20180506T105029_N0207_R051_T31UFT_20180509T155709.SAFE
S2B_MSIL2A_20180506T105029_N0207_R051_T31UFU_20180509T155709.SAFE
S2B_MSIL2A_20180506T105029_N0207_R051_T31UES_20180509T155709.SAFE
S2B_MSIL2A_20180506T105029_N0207_R051_T31UFV_20180509T155709.SAFE
S2B_MSIL2A_20180506T105029_N0207_R051_T31UGT_20180509T155709.SAFE

The L1C Sentinel-2 product used to test the robustness of the computational models (in
combination with the CORINE Land Cover 2018):
S2A_MSIL1C_20181113T093231_N0207_R136_T34TDL_20181113T100054.SAFE
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