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Abstract 

If we know the function that is limit of some shape, then by the help of a definite integral we can calculate 

the volume of that shape. Students learn the procedure about the definite integral calculating, but they 

never understand what exactly they calculate.  

For visually presenting the shape of which we calculate the volume and explaining the procedure about 

getting the shapes, we will use the free software GeoGebra. This way the students can calculate the 

volume of the shapes and at the same time, they can present the shape visually and see what they 

calculate.  

That way we will have students who know how to apply their knowledge in mathematics about solving 

practical problems.  
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1. INTRODUCTION 

Technology has become more important at schools everyday due to the computers, the mobile devices 

and the software that is available everywhere. Students can use the advantages of alternative way of 

studying with the integration of technology at schools and in studying. Especially in teaching 

mathematics, use of technology can contribute in solving mathematics problems and skills development 

for creative thinking, which will contribute to increase the mathematics thinking of students. In addition, 

different types of software for teaching mathematics are created, which it is much easier to perform 

mathematical calculations, to represent graphs, to design dynamic geometric problems, etc., which 

provides an easy access to multiple representations of mathematical content, which improves student 

achievement (Ahmet Emin Tatar, Dilek Düs, 2020). 

GeoGebra is a free software for mathematics, which encourages multiple presentations and research 

learning, which has an easy – to – use interface. What makes GeoGebra software practical and important 

to the curriculum is its superior ability to think geometry to algebra in mathematics education (Markus 

Hohenwarter, 2010). For these reasons, GeoGebra was used in this study. 

 

2. GROUPS IN THIS RESEARCH 

At the University "Mother Teresa" – Skopje, at the Faculty of Technical Sciences, one of the topics 

covered in Mathematics 2 is the application of a definite integral. In the academic year 2018/2019 the 

teaching material was presented in a classic way (Anton Davis, 2012), and in the academic year 

2019/2020 online teaching was realized by using online platforms and free software Geogebra was used 

to visualize the problems in overcoming them, which was available for use by the students themselves. 

Two groups of students were involved in this research. In the first group there were students who 

attended to Mathematics 2 in the academic year 2018/2019, and in the second group there were students 

who attended to Mathematics 2 in the academic year 2019/2020.  

The purpose of this study was to determine the effect of using GeoGebra software on students' 

achievement on the topic Application of a certain integral and to obtain an opinion about the use of 

computers and GeoGebra in mastering not only this topic, but also other Mathematics content. 
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In addition, for the assigning tasks to be solved by the students, the study also covered the following 

issues: 

 What is the impact of using GeoGebra on students’ achievement on the topic Application of a 

definite integral? 

 What are the students' views about the use of GeoGebra for a conceptual understanding of 

mathematical concepts? 

 

3. MATERIALS 

3.1. Material prepared for classic processing of teaching contents 

A rotating body is obtained by rotating a plane face around a line. The line is called the axis of rotation. 

Some of the figures obtained by rotation are: 

 

  
 

 

  

Fig. 1. Some Familiar Solids of Revolution 

  

A solid of revolution is also obtained by rotating a curvilinear trapezoid about an axis. Suppose that the 

function y = f (x) is continuous and non-negative on the interval [a, b] and let there be a solid obtained 

by rotating a curvilinear trapezoid, bounded by the graph of the function y = f (x), the x-axis and make 

x = a, x = b about the x - axis. 

To determine the volume of the resulting solid of revolution, first we divide the interval [a, b] as follows: 

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛−1 < 𝑥𝑛 = 𝑏. Then we choose numbers 𝑧1, 𝑧2, … , 𝑧𝑛 such as 𝑧𝑖𝜖[𝑥𝑖−1, 𝑥𝑖], 
for each 𝑖 = 1,2, … , 𝑛. Rotating the rectangle about the x-axis gives the following cylinder: 

 

 

 

 

 

Fig. 2. Rotate a rectangle about the x-axis 
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The volume of the solid of revolution obtained is approximately equal to the sum of the volumes of the 

cylinders with radius 𝑓(𝑧𝑖) and height ∆𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖−1, for each 𝑖 = 1,2, … , 𝑛. 

The volume of one single cylinder is equal to 

𝑉𝑖 = 𝜋 ∙ 𝑓2(𝑧𝑖) ∙ (𝑥𝑖 − 𝑥𝑖−1) = 𝜋 ∙ 𝑓2(𝑧𝑖) ∙ ∆𝑥𝑖  for 𝑧𝑖𝜖[𝑥𝑖−1, 𝑥𝑖], for each 𝑖 = 1,2, … , 𝑛. 

By summing the volumes Vi of the cylinders for each  𝑖 = 1,2, … , 𝑛 the volume of the solid of revolution 

is estimated approximately, 

∑ 𝜋 ∙ 𝑓2(𝑧𝑖) ∙ ∆𝑥𝑖
𝑛
𝑖=1 . 

This is the Riemann sum for the function 𝜋 ∙ 𝑓2(𝑥) of the segment [a,b]. If we allow the norm of division 

to weigh to 0, we get that the volume of the solid of revolution is: 

𝑉 =  lim
𝑛→∞
∆𝑥→0

∑ 𝜋 ∙ 𝑓2(𝑧𝑖) ∙ ∆𝑥𝑖
𝑛
𝑖=1 . 

The last sum is the integral sum for the function 𝜋 ∙ 𝑓2(𝑥), from which we obtain a formula for 

calculating the volume of a solid of  revolution obtained by rotating a curvilinear trapezoid bounded by 

the graph of the function y=f(x), x - axis and lines x=a, x=b around x - axis.  

Theorem: If f (x) is a non-negative continuous function of the segment [a, b], then the volume of the 

solid of  revolution obtained by rotating about the x-axis of the curvilinear trapezoid enclosed by the x-

axis and the graph of the function f (x) of the segment [a, b] is 

𝑉 = 𝜋 ∙ ∫ 𝑓2(𝑥)𝑑𝑥

𝑏

𝑎

 

If the solid of revolution is obtained by rotating about y - axis of the curvilinear trapezoid, bounded by 

the curve x = g (y), y - axis and makes y = c, y = d, where g (y) is a continuous and non-negative function 

of segment [c, d], then the volume of the resulting rotating body is calculated by the formula: 

𝑉 = 𝜋 ∙ ∫ 𝑔2(𝑦)𝑑𝑦

𝑑

𝑐

 

 

3.2. Material prepared with GeoGebra 

For visual representation of the rotating figures for which volume is determined and conceptual 

understanding of the term it will be used an applet in Geogerba. 

The procedure for making the GeoGebra applet will be described. The link where the applet is available 

is https://www.geogebra.org/m/avk7k3ed  
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Fig. 3. GeoGebra applet for representing a rotating body 

 

In the beginning, it will be opened GeoGebra with Graphics and 3D graphic display (3D Graphics).  

Initial values for the borders are applied: a=1, b=2, c=1, d=2. 

In the input field a function is typed f(x) = x2/2 (arbitrary value for the function) 

In the drawing pad (Graphics) sliders are applied (Slider) for the angles  and  from 0о to 360о. 

 

Fig. 4. Slider application window 

 

Then input fields are entered (Input Box). 

Then in the input field (Caption)  “function f(x) =” is written and from the drop-down menu (Linked 

Object) the function f(x) is chosen. 

 

Fig. 5. Input fields 
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The same procedure is repeated for the interval limit values. 

Input Box – with a title “from a =” and from the drop-down menu choose а, 

Input Box – with a title “to b =” and from the drop-down menu choose b, 

Input Box – with a title “from c =” and from the drop-down menu choose c, 

Input Box – with a title “to d =” and from the drop-down menu choose d. 

Construct segments that define the borders of a curvilinear trapezoid. 

In the input field the following point commands are entered individually: 

A=(a,0,0); B=(b,0,0); C=(0,c,0); D=(0,d,0); E=(a,f(a),0); F=(b,f(b),0). 

Then in the input window commands for segments are entered and constructed: 

Segment(A,E) and Segment(B,F), which are the borders of the plain area, are constructed with dashed 

lines. 

The curve can now be constructed by rotating and draws the solid of revolution. 

In the input window a parametric curve is entered:  

Surface(u, f(u) cos(w), f(u) sin(w), u, a, b, w, 0, ).  

Moving the slider, it gives a solid of revolution. 

 

 

Fig. 6. Construct the solid of revolution by moving the slider 

 

To determine the volume of a solid of revolution when the plane figure rotates about the y-axis, we will 

first determine the inverse function of the given function f(x). 

With the command Invert (f), we get the inverse function g. 

The points G = (g (c), c, 0) and H = (g (d), d, 0) are applied. 

Then in the input window commands for sections are entered and the following is constructed: 

Segment(C,G) and Segment(D,H), which are the borders of the plain area, are constructed with dashed 

lines. 

We enter a parametric curve in the input window, but care must be taken if the inequality g (c) <g (d) is 

met. If the condition is met, the first part of the parametric curve will be applied, and if the condition is 

not met, the second part of the parametric curve will be applied. 
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If(g(c) < g(d), Surface(u_1 cos(w_1), f(u_1), u_1 sin(w_1), u_1, g(c), g(d), w_1, 0, ), Surface(u_1 

cos(w_1), f(u_1), u_1 sin(w_1), u_1, g(d), g(c), w_1, 0, )) 

Finally, just add formulas to calculate the volume with a definite integral and display fields to choose 

which of the given values should be displayed. 

In the input window enter: 

Vx = π Integral(f²(x), a, b) 

Vy = π Integral(g²(y), c, d) 

With text windows in the drawing area (Graphics) is applied  

V_x =\pi \cdot \int_{a}^{b}{ \left( f  \right)^2dx} =  Vx 

V_y =\pi \cdot \int_{c}^{d}{ \left( g  \right)^2dy} =  Vy 

Add in Check Box to Show/Hide Objects, where the title about what solid of revolution should be 

displayed is written and which objects should be displayed by checking the button, ending with the 

applet construction. 

 

4. RESULTS 

After the realization of the teaching of mathematics in the both two school years, a final exam was 

realized.  

One type of the task, which was included in the final exam in Mathematics 2 in both academic years, 

was determining the volume of a rotating body. 

Exercise: So as to determine the volume of the solid of revolution, it is obtained: 

а) with rotation about x - axis of the plane character enclosed by the graph of 𝑓(𝑥) =  √8𝑥 and by the 

lines x = 1 and x = 3. 

b) with rotation about y - axis of the plane character enclosed by the graph of 𝑓(𝑥) =  √8𝑥  and by the 

lines y= 0.5 and y = 4. 

After the exams, a table with the obtained results was made, but for this research the result was taken 

only from this type of task.  

The number of students who solved the solid of revolution volume task is presented in the tables. 

 

 Number of students 

Exercise is solved 8 

Exercise is not solved 18 

Summary 26 
 

 

Table 1. Number of students in the academic year 2018/2019 

 

31%

69%

2018/2019

Exercise is solved Exercise is not solved
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 Number of students 

Exercise is solved 12 

Exercise is not solved 11 

Summary  23 

 

 

Table 2. Number of students in the academic year 2019/2020 

 

During the realization of the exam, the students in the academic year 2018/2019 solved the task on a 

piece of paper, 31% of them had calculated the volume accurately, but only a small percentage could 

imagine the figure about which they calculated the volume. The check whether they knew what the 

figure looked like, was realized by asking a question during the consultation and offering 5 pictures 

from which they had to choose and explain which of the pictures showed the solid of revolution. 

In the academic year 2019/2020, the exam was realized online. While solving the exam tasks, the 

students solved the tasks on sheets but they were allowed to use the GeoGebra applets available on the 

following link https://www.geogebra.org/m/avk7k3ed. 

Students visually presented the figure about which they calculated volume and 52% of them had 

calculated the value of the task accurately. All students who calculated the volume of the figure had an 

idea of what kind of figure they performed volume calculation, i.e. at the consultations held after the 

exam all students, who solved the task from the offered 5 pictures, determined and explained correctly 

on which picture is represented the solid of revolution. 

 

5. CONCLUSIONS 

Using the advanced technology, various mathematical software can be introduced as learning 

environments. In this study, the free software GeoGebra was used to study the topic Application of a 

certain integral and the volume calculation of a solid of revolution.  

It has been found that the use of GeoGebra in the study of a certain integral has a positive effect on the 

students’ success. Dynamic software also keeps mathematics away from abstraction and helps to 

visualize a solid of revolution, which has contributed positively to students' understanding of the concept 

of a definite integral and volume of a solid of revolution. Dynamic software also allows you to learn 

math by doing exercises. With GeoGebra you can visualize and specify math concepts and construct 

lessons with the proper visual environment.  

The students who were involved in the research had positive attitudes about the use of GeoGebra in 

teaching mathematics. With the applets help created in GeoGebra, the new concepts in mathematics can 

be understood and the teaching material can be mastered. The students said the software improves 

visualization and helps them notice the relationship among the mathematical concepts of the content 

they study. The findings of this research are the same as the findings in the papers of (Tatar, E. 2013); 

and (Zengin,Tatar, 2015). 

 

52%48%

2019/2020

Exercise is solved Exercise is not solved
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