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a b s t r a c t 

Message Queuing Telemetry Transport (MQTT) is a publish-subscribe protocol which is cur- 

rently popular in Internet of Things (IoT) applications. Recently its 5.0 version has been in- 

troduced and ensuring that it is capable of providing services in a secure manner is of great 

importance. It must be noted that holistic security analysis should also evaluate protocol’s 

susceptibility to network covert channels. That is why in this paper we present a system- 

atic overview of potential data hiding techniques that can be applied to MQTT 5.0. We are 

especially focusing on network covert channels that, in order to exchange secrets, exploit 

characteristic features of this MQTT version. Finally, we develop proof-of-concept imple- 

mentations of the chosen data hiding techniques and conduct their performance evaluation 

in order to assess their feasibility in practical setups. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Network covert channels (CCs) are a subdiscipline of the in-
formation hiding research area which focus on investigat-
ing techniques capable to provide hidden data transfers over
communication networks and their countermeasures. Many
CCs have been studied for communication protocols within
past three decades ( Mazurczyk et al., 2016; Mileva and Pana-
jotov, 2014; Zander et al., 2007 ) and it must be emphasized
that such techniques are increasingly used for nefarious pur-
poses by cyber criminals and malware developers ( Cabaj et al.,
∗ Corresponding author. 
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2018 ). Note that from the security point of view the identifi-
cation of new data hiding methods as well as showing how
they can be detected/eliminated should be treated the same
way as disclosing and patching a previously unknown vul-
nerability in software or hardware systems. Therefore, in the
literature several existing and modern protocols have been
subjected to network covert channels susceptibility analysis,
e.g., Fraczek et al. (2012) ; Mazurczyk and Szczypiorski (2008) ;
Velinov et al. (2019) . 

Message Queuing Telemetry Transport (MQTT) is a
lightweight, client-server message transport protocol which
is especially suitable for the machine-to-machine (M2M)/IoT
connectivity. It is suitable for resource-constrained devices,
n access article under the CC BY-NC-ND license 
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or low-bandwidth and high-latency environments, enterprise 
ackends to mobile communications, and push communi- 
ations. Additionally, it provides reliable communication 

ver unreliable networks. It is binary protocol with minimal 
verhead. 

Moreover, MQTT relies on a publish/subscribe communi- 
ation model. Basically, in such a setup two types of clients 
xist. The publishers are clients that generate messages, while 
ubscribers are their recipients. Note that these two types of 
lients never communicate directly with each other. In order 
o exchange information, they utilize a central point that plays 
he role of a server and is called a broker . Its responsibility is 
o receive the messages sent by the publishers and to forward 

hem to the subscribers. 
MQTT was originally invented in 1999, for oil pipeline mon- 

toring through the desert, and sending data via satellite links.
rom this time it has been heavily used in various appli- 
ations, e.g., in Facebook Messenger, Amazon IoT (a part of 
he Amazon Web Services), OpenStack, Microsoft Azure IoT 

ub, many home automation solutions (e.g., Home Assistant,
ajorDoMo, Mycontroller), just to mention a few. From the 

tandard development perspective, the MQTT version 3.1.1 
 Banks and Gupta, 2015b ) became an OASIS standard in 2014 
nd ISO/IEC standard 20922:2016 in 2016. Then, in March 2019,
he newest MQTT version, i.e., 5.0, was released and it became 
n OASIS standard, too ( Banks et al., 2019b ). Note that in prin-
iple v3.1.1 and v5.0 are not compatible with each other as the 
ewer version has a slightly different format of messages and 

icher functionality when compared to v3.1.1. On the other 
and, some vendors like HiveMQ provide a compatibility layer 

n order to ensure both versions can co-exist.1 

Currently, the wide deployment of MQTT protocol has be- 
ome another security problem. The Shadowserver Founda- 
ion, as part of the EU CEF (Connecting Europe Facility) funded 

roject VARIoT (Vulnerability and Attack Repository for IoT),
s performing IPv4 scanning on a daily basis for publicly ac- 
essible MQTT broker services enabled on port 1883/TCP. They 
eported that on 12th March 2020, out of 71,508 IP addresses 
hat replied to the sent probes 41,558 broker instances allowed 

or anonymous access ( Report, 2020 ). Moreover, another re- 
earch performed by Avast in 2018 ( Hron, 2018 ) showed how 

uch unprotected MQTT servers can be used for tracking their 
wners in real time, for reading all the published messages, or 
ublishing fabricated messages in some MQTT broker’s top- 

cs. This proves that an outsider with an Internet access is 
ble, for example, to obtain various sensitive information thus 
busing privacy of the home residents or to seize control over 
omebody’s smart home and all connected devices there. Even 

ore, one can use these unprotected MQTT servers to enable 
overt communications for malicious purposes, e.g., to orga- 
ize Command & Control (C&C) channels helping infected de- 
ices to communicate with an attacker ( Velinov et al., 2019 ).
dditionally, Mao et al. (2020) demonstrated that most of the 
nown IoT cloud platforms that support and use MQTT have 
ecurity problems, especially in the scenario of device shar- 
ng (e.g., smart locks shared among users, like hotel dwellers,
irbnb apartment renters, home visitors, etc.) and revocation,
1 https://www.hivemq.com/hivemq- 4- whats- new/ 

l
c
m

here, for example, a malicious ex-user can retain full control 
f the device on which his access privilege has expired. 

As currently, MQTT v5.0 protocol is foreseen to take over 
he market soon, thus it is important now to conduct its sus- 
eptibility to network covert channels in order to have time 
o find and develop proper countermeasures. Note that in our 
revious work ( Velinov et al., 2019 ) we have performed such
nalysis for MQTT v.3.1.1, however, as already mentioned due 
o different format of messages and additional functionality,
e believe that similar investigation need to be performed 

lso for v5.0. 
That is why in this paper we investigate the susceptibility 

f the latest MQTT version to the previously known and novel 
etwork covert channels. From this perspective, we make the 

ollowing key contributions: 

• We propose 18 direct (i.e., where clandestine communica- 
tion parties must be active at the same time) and five in- 
direct (i.e., where the covert sender and the covert receiver 
communicate indirectly through an innocent third party) 
covert channels for MQTT v5.0. 

• We found an indirect covert channel that represents a new 

hiding (timing) pattern. 
• We provide proof-of-concept implementations for two in- 

direct covert channels and included their experimental 
evaluation using three covert channel metrics: bandwidth,
undetectability, and robustness. 

The rest of the paper is structured as follows. Section 2 de- 
cribes the related work in the area of network covert chan- 
els in IoT scenarios. Next, in Section 3 , MQTT fundamentals 
re provided, including the format of control packets and new 

eatures present in v5.0. Section 4 is devoted to the new hiding 
attern as well as the new direct and indirect covert channels 
nd their properties, preceded with the view of the used sys- 
em models and relations to the existing v3.1.1 covert chan- 
els. In Section 5 an experimental evaluation of two chosen 

ndirect CCs is presented, as a proof of their feasibility and 

ffectiveness. At the end, Section 6 concludes our work and 

resents potential future directions. 

. Related work 

he problem of covert channels in IoT as a security and pri- 
acy threat has been recently recognized and it is starting to 
aise attention in the security community ( Caviglione et al.,
018; Sikder et al., 2018; Wendzel et al., 2017 ). Despite this 
act, such type of research is still not significantly explored.
n the reminder of this section, we review the most relevant 
orks in IoT-based information hiding. Moreover, we catego- 

ize the existing techniques according to the layer they oper- 
te in the well-known 3-layer IoT architecture ( Lin et al., 2017 )
see Fig. 1 ). To briefly recap, this architecture includes: (i) per- 
eption layer where various sensors may be used for gathering 
nformation about the surrounding environment; (ii) network 
ayer which processes and transmits sensor data and enables 
onnections to other smart things or other networking equip- 
ent; (iii) the application layer which defines numerous appli- 

https://www.hivemq.com/hivemq-4-whats-new/
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Fig. 1 – IoT 3-layer architecture ( Lin et al., 2017 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cations in which the IoT can be deployed, e.g., smart homes,
smart cities, etc. 

For the perception layer, in Ulz et al. (2019) authors intro-
duced three different sensor-based covert channels that pro-
vide a trade-off between the achievable covert channel band-
width and undetectability. They present covert channels that
require read- and write-access for sensor registers as well as
a covert channel that transfers data by just triggering sen-
sor readings so that the malicious behavior cannot be distin-
guished from typical, normal sensor usage. 

Next, in Herzberg and Kfir (2019b) Herzberg and Kfir intro-
duced a provably-covert channel for Cyber Physical Systems
which relies on a corrupted actuator that is located in one
zone and is able to send secrets to a sensor in a different zone,
breaking the isolation. The same authors extended their work
in Herzberg and Kfir (2019a) by exploring data hiding possibil-
ities for indirect covert communication between a sensor and
actuator via a benign threshold-based controller. The covert
information was encoded within the output noise of the sen-
sor in indistinguishable manner when compared to that of a
benign sensor. 

Ronen and Shamir (2016) use different brightness level in
the smart lights as a covert LIFI communication system to
exfiltrate data from a highly secure office building. Similarly,
Cronin et al. (2019) suggested three different covert exfiltration
techniques that deploy smart light bulbs, with modulation of
their luminosity (by encoding signals as visibly undetectable
brightness changes), color settings (by encoding signals as im-
perceptible color changes), and power utilization (by encoding
signals as circuit current changes). 

It is worth noting that currently published papers mostly
deploy data hiding techniques related to the popular IoT pro-
tocols, i.e., the network layer. The earliest known approach
for IoT-based covert channels was published for the Build-
ing Automation and Control Networks (BACnet) protocol in
2012 ( Wendzel, 2012 ). Moreover, several storage covert chan-
nels in the Extensible Messaging and Presence Protocol (XMPP)
( Patuck and Hernandez-Castro, 2013 ) and six storage and two
timing covert channels in the Constrained Application Pro-
tocol (CoAP) ( Mileva et al., 2018 ) were discovered. Next, in
Velinov et al. (2019) the comprehensive analysis of the MQTT
protocol has been performed from the information hiding per-
spective. In more detail, authors characterized seven direct
and six indirect covert channels applicable for MQTT-based
IoT environment, and for the selected data hiding methods
their experimental evaluation has been presented. Several
covert channels have also been suggested for the IEEE 802.15.4
standard ( Martins and Guyennet, 2010; Mehta et al., 2008; Nain
and Rajalakshmi, 2016 ), too. 

Next, in Tan et al. (2018) various kinds of covert timing
channels were analyzed to investigate their feasibility in the
IoT environments. The inspected data hiding techniques
included: packet-reordering-based, rate-switching-based,
packet-loss-based, re-transmission-based, and scheduling-
based covert timing channels. 

Moskowitz et al. (2018) proposed a method for covert com-
munication that utilizes transmission timing to obscure sym-
bols. Authors also showed that IoT side channels are suscepti-
ble to network covert channels and that it is possible to create
a data-in-motion data hiding technique without network pro-
tocol modifications. 

At the application layer, Wendzel et al. (2017) have shown
that one can hide data also outside of network protocols in
cyber-physical systems (e.g., smart buildings), by slightly mod-
ifying some of its components, like sensors, controllers, actu-
ators, etc., as well as by storing secret data in unused regis-
ters. On the other hand, in Herzberg and Kfir (2019b) Herzberg
and Kfir introduced several covert channels for Cyber Physi-
cal Systems with special focus on smart water plants. Finally,
Ying et al. (2019) introduced TACAN (Transmitter Authentica-
tion in Controller Area Network), a solution for the automotive
CPSs that apply three different covert channels for Electronic
Control Unit authentication: Inter-Arrival Time (IAT)-based,
leveraging the IATs of CAN messages, offset-based, exploiting
the clock offsets of CAN messages, and LSB-based concealing
authentication messages into the LSBs of normal CAN data. 

Taking into account above, it must be noted that the anal-
ysis of the MQTT-based information hiding susceptibility per-
formed in Velinov et al. (2019) was conducted for version 3.1.1
which is currently the most popular MQTT variant. However,
MQTT 5.0 is expected to be deployed widely in the near future.
Thus, there is a pressing need to perform analogous analysis
for the newer version of this protocol taking into account es-
pecially the characteristic novel functionalities that it intro-
duces. This is what constitutes a novel contribution of this
paper. 

3. MQTT fundamentals 

The publish-subscribe model that MQTT uses, differs from
the traditional client-sever one which is currently most pop-
ularly utilized in the Internet and where the communication
is performed directly between the endpoints. On contrary, the
publish-subscribe model separates endpoints and introduces
the central component that serves as a intermediate node
and is known as a broker . The broker is responsible for stor-
ing session data of clients with persistent sessions but also for
clients’ authentication and authorization. There are two types
of clients: publishers and subscribers . In principle, they may not
be aware of each other. Publishers send messages to the bro-
ker that forwards them to subscribers (see Fig. 2 ). Note that
the MQTT client can be any device (sensor device, smart light
switch, controllers) that is connected to the broker. 

MQTT clients always establish a connection with the bro-
ker using CONNECT message and they cannot communicate
directly with other clients. The broker responds to this request
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Fig. 2 – MQTT publish-subscribe model. 
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Fig. 3 – The format of the MQTT v5.0 control packet. 
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ith CONNACK message and the return code that informs 
hether the connection is successful or not. 

Once the connection is successfully established, clients are 
ble to send messages or subscribe to them. To send a mes- 
age, the client must specify the topic to which the message 
ill be sent. The topic is hierarchically structured string that 

he broker uses to send messages to the clients who sub- 
cribed to a given topic (subscribers). Topics may have one or 
ore topic levels that are separated by a forward slash char- 

cter. An exemplary topic with 4 levels can take a form as fol- 
ows: 

home/LivingRoom/p1/humidity 
Each topic must contain at least one character and its name 

s case-sensitive. In addition to the topic, the messages also 
ave a payload which contains the data that needs to be send.
he publisher can send data in a binary format, text data,

SON, or XML. 
Clients are subscribing to topics of interest so that they can 

eceive the messages sent on the chosen topics. To subscribe 
o a given topic, user sends a SUBSCRIBE message to the bro- 
er. Each SUBSCRIBE message contains two attributes: packet 

dentifier and list of subscriptions. The UNSUBSCRIBE mes- 
age is used to remove an existing subscription on the broker.
QTT clients use the DISCONNECT message to terminate the 

onnection with the broker. 

.1. MQTT v5.0 message format 

QTT v5.0 uses 15 control packets, one more (i.e., AUTH con- 
rol packet) than in MQTT v3.1.1, numbered from 1 to 15. Every 
ontrol packet consists of a fixed header and an optional vari- 
ble header and/or payload, with total packet size between 2B 

e.g., PINGREQ packet) and 256MB. 
Variable header has volatile structure in different control 

ackets, which can be comprised from 2B Packet Identifier or 
ther fields, single 1B Reason Code, and Properties part that 
onsists of the mandatory Property Length and an optional 
et of Properties ( Fig. 3 ). If the set of Properties is empty for
he packets that need to have this part, the Property Length 

ust be set to zero. Additionally, Will Properties field in the 
ayload of CONNECT control packet can have a set of Prop- 
rties and SUBACK/UNSUBACK packets can contain a list of 
eason Codes in the payload. 

One of the most important differences in the format of con- 
rol packets between the two versions of the MQTT protocol 
s that 13 control packets in v5.0 (without PINGREQ and PIN- 
RESP) contain a Properties part in the Variable header. Seven 

f them even contain a Reason Code part that was not present 
n the v3.1.1. 

.2. New features in MQTT v5.0 

s already mentioned, although MQTT v5.0 inherited a lot 
rom its predecessor, i.e., v3.1.1 both versions are, in princi- 
le, not compatible. This is caused by the different structure 
f messages as well as additional features that have been in- 
roduced in the new version. 

The following features are new in the MQTT v5.0: 

• Improved session management – with the optional session 

and message expiry intervals. In v5.0, persistent sessions 
can expire (in a vendor and broker independent way) and 

their state can be removed from the server side. The Clean 
Session flag in the CONNECT control packet is replaced by a 
Clean Start one which indicates that a new session is clear 
or persistent, and 32-bit Session Expiry interval which ex- 
presses how long (in seconds) to store the persistent ses- 
sion after a client disconnects itself. The message expiry 
interval is applied to online and queued (PUBLISH) mes- 
sages. This means that an offline client with persistent ses- 
sion may not receive all of the messages when it recon- 
nects, due to some of them expiring. Additionally, a server 
can also send DISCONNECT packets, redirect the client to 
another broker, or assign a client ID. 

• Improved error reporting – with the optional Reason Code and 

Reason String on all ACKs. One benefit of such improvement 
is that DISCONNECT messages allow clients to determine 
why they were disconnected from the broker. 

• New extensibility mechanisms – with a Payload Format indica- 
tor for the binary or UTF-8 encoded payload, an optional 
MIME-style Content Type for the payload and with an un- 
limited number of user properties, usually defined by the 
client applications. User properties allow to add data (up to 
250 MB) in the header of control packets, and this data can 

be used to build custom protocols over MQTT. 
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• Shared subscriptions – clients can share the same subscrip-
tion on the broker and the broker will deliver each mes-
sage only to one chosen (per message) subscriber per group
identifier (known also as client load balancing). In this way,
the broker can distribute the message streams to multiple
subscribers, which is good for upscaling and downscaling
(on the fly) of clients. 

• Client restrictions – resource-constrained clients can specify
the maximum packet size they are prepared to receive, the
maximum number of QoS (Quality of Service) 1 and QoS 2
messages that can be sent concurrently to them, and the
Will Delay in which, if the client reconnects, it must not re-
ceive the Will message. In this way, clients can control their
load and avoid overloads. 

• Server restrictions – a server can define a set of features
which it does not support. 

• Request/response mode of operation – using the Response Topic
in the PUBLISH control packet, together with a Request-
response header and a Correlation Data header. 

• Enhanced authentication – by providing a mechanism to
enable challenge-response-style authentication including
mutual authentication. This is achieved by two CONNECT
headers, namely Authentication Method and Authentication
Data and a new AUTH control packet. 

• Topic aliases – utilization of small integers instead of topic
names for reducing the size of the control packets. 

• Subscription ID – a numeric subscription identifier can be
specified in the SUBSCRIBE control packet and it can be re-
turned within each message when it is delivered from the
broker. This allows the client to determine which subscrip-
tion or subscriptions caused the message to be delivered.
Also, new subscription options are provided. 

4. MQTT v5.0 covert channels 

4.1. System model 

In this paper we use the same system model as defined in our
previous work ( Velinov et al., 2019 ), i.e., with one covert sender
(CS) and one or more covert receivers (CRs) and the same two
submodels, i.e., Direct Covert Channels (DCC), where the bro-
ker can be the CS (DCCa) or the only CR (DCCb) and Indirect
Covert Channels (ICC), where the broker is an intermediate
node in the covert communication between the CS and CRs. 

Furthermore, a second system model is used in this paper,
in which the CS influences the network traffic through client
duplication with the associated reconnection. To extract the
secret message, the CRs passively analyze the network traffic
and interpret it. 

4.2. Relation to the existing MQTT v3.1.1 covert channels 

Before presenting novel covert channels in MQTT 5.0, it must
be noted that all direct and indirect covert channels found for
the MQTT version 3.1.1 in our previous paper ( Velinov et al.,
2019 ) can be used for the new version as well. The summary
of the applicability of these covert channels to MQTT 5.0 is
presented in Table 1 . Note, however, that in order to function
properly in the new MQTT version, CCs require slight modifi-
cations in the following cases: 

• 16-bit Client Identifier field (DCC.2) – additionally, in v5.0 the
server can set Assigned Client Identifier property in the CON-
NACK packet, so this CC can be considered as DCCa or
DCCb for MQTT 5.0. 

• 16-bit Keep Alive field (DCC.4) – additionally, in v5.0 the server
can set the Server Keep Alive field in the CONNACK packet,
so this CC now belongs to both DCCa and DCCb types. 

• CC with persistent sessions (ICC.3) – setting the Clean Start to
1 and Session Expiry Interval to 0 in the CONNECT control
packet is equivalent in MQTT v3.1.1 of setting the Clean
Session to 1 (CS creates a non-persistent session with the
server). Modifying Clean Start to 0 and Session Expiry Inter-
val to 0xFFFFFFFF is equivalent in MQTT v3.1.1 to setting
Clean Session to 0 (CS creates a persistent session with the
server). Another difference is when the server sends CON-
NACK packet to the CR, it must also set 0x00 (Success) Rea-
son Code. 

4.3. Hiding patterns 

Hiding patterns are abstract descriptions of a covert chan-
nel’s core concept. They were originally introduced in
Wendzel et al. (2015) and were later extended by Mazurczyk
et al. (2018, 2016) ; Velinov et al. (2019) . Using such patterns,
existing and new covert channel techniques can be catego-
rized into one of the known hiding patterns. An overview of
the latest state of hiding patterns is freely available under
https://ih-patterns.blogspot.com/ . 

Hiding patterns are essentially split into two categories:
timing patterns modulate different timing attributes of network
traffic to signal hidden information while storage patterns mod-
ulate the transferred content of network traffic. Hiding pat-
terns are described in a unique format (simplified PLML, see
Wendzel et al., 2015 ) and form a taxonomy. 

4.3.1. Timing patterns 
While some timing patterns are protocol-agnostic (i.e., the
content of transferred data is not relevant), others are
protocol-aware, i.e., they require the understanding or func-
tioning of transferred data. For instance, when inter-packet
gaps between network packets are modulated (pattern PT1
Inter-packet Times ), it does not matter which type of network
protocol is transferred or what the semantics of the traffic
are. However, if hidden data is signaled by retransmitting se-
lected frames (pattern PT12 Retransmission ), then the structure
of these frames and, e.g., a sequence number or identifier field
must be evaluated to determine which packet was retransmit-
ted. 

4.3.2. Storage patterns 
Store patterns, on the other hand, either modify payload at-
tributes or they modify non-payload attributes, such as pro-
tocol headers or padding fields. Hiding patterns that modify
non-payload either alter the structure of transferred packets
(e.g., by modulating the size of packets – pattern PS1 Size Mod-
ulation ) or they preserve the structure of transmitted packets

https://ih-patterns.blogspot.com/
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Table 1 – Summary of applicability of existing MQTT v3.1.1 covert channels in MQTT v5.0. 

CC System 

sub - model 
Description MQTT v5.0 Comment 

DCC.1 all Direct or indirect CC by using 
PUBLISH: Application Message 

Yes As it is suggested 

DCC.2 DCCb Direct CC by using CONNECT: 
Client Identifier 

Yes Additionally, in v5.0 the server can 
set Assigned Client Identifier 
property in the CONNACK packet, 
so this CC now belongs to both 
DCCa and DCCb types 

DCC.3 DCCb Direct CC by using CONNECT: User 
Name and/or CONNECT: Password 

Yes As it is suggested 

DCC.4 DCCb Direct CC by using CONNECT: Keep 
Alive 

Yes Additionally, in v5.0 the server can 
set the Server Keep Alive field in the 
CONNACK packet, so this CC now 

belongs to both DCCa and DCCb 
types 

DCC.5 DCCa, DCCb Direct CC by using Packet Identifier 
in 11 Control Packets 

Yes As it is suggested 

DCC.6 DCCa, DCCb Direct CC by using PUBLISH: Topic 
Name 

Yes As it is suggested 

DCC.7 DCCb Direct CC by using SUBSCRIBE: 
Topic Filters or UNSUBSCRIBE: 
Topic Filters 

Yes As it is suggested 

ICC.1 ICC Indirect CC using PUBLISH: Topic 
Name and SUBSCRIBE: Topic 
Filters 

Yes As it is suggested 

ICC.2 ICC Indirect CC using topic ordering 
and updates presence/absence 

Yes As it is suggested 

ICC.3 ICC Indirect CC using persistent 
sessions 

Yes Setting Clean Start to 1 and Session 
Expiry Interval to 0 in the CONNECT 
control packet is equivalent in 
MQTT v3.1.1 to setting the Clean 
Session to 1 (CS creates a 
non-persistent session with the 
server). Setting Clean Start to 0 and 
Session Expiry Interval to 
0xFFFFFFFF is equivalent in MQTT 
v3.1.1 to modifying Clean Session to 
0 (CS creates a persistent session 
with the server). Another 
difference is when the server 
sends CONNACK packet to the CR, 
it must also set a 0x00 (Success) 
Reason Code. 

ICC.4 ICC Indirect CC using 
presence/absence of the Retained 
message 

Yes As it is suggested 

ICC.5 ICC Indirect CC using topic ordering 
and presence/absence of the 
Retained messages 

Yes As it is suggested 

ICC.6 ICC Indirect CC using information 
specific to the broker 

Yes As it is suggested 
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e.g., by replacing some random value with an encrypted se- 
ret value – pattern PS10 Random Value ). Regarding the stor- 
ge patterns that modify payload , only those methods are in- 
luded in the taxonomy that do not directly manipulate pay- 
oad media content such as digital images or e-mail content 
such methods would be part of digital media steganography 

nstead of network steganography. Instead, there are two cate- 
ories of payload-modifying hiding patterns: user-data aware 
nd user-data agnostic patterns. User-data aware patterns re- 
uire the understanding of transferred data (e.g., by compress- 
ng VoIP data with another codec than originally foreseen to 
reate space for hidden data in a packet – pattern PS30 Mod- 
fy Redundancy ). User-data agnostic patterns ignore the meaning 
f transferred content, e.g., by increasing the size of payload 

pattern PS20 – Payload Field Size Modulation ) or by overwriting 
riginal content (pattern PS21 – User-data Corruption ). 
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Fig. 4 – MQTT CC with the shared subscription. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3. Methodology 
In the remainder, we roughly follow the unified description
method ( Wendzel et al., 2016 ) for characterizing new covert
channels on the basis of hiding patterns. The unified descrip-
tion method fosters a scientifically comparable representation
of new hiding techniques and eases replication studies. More-
over, we describe a new pattern that we introduce for one of
the indirect covert channels that we discovered in MQTT. 

4.4. New direct covert channels in MQTT v5.0 

4.4.1. CCs with encoding secret data in fields 
MQTT v5.0 offers many new fields in the variable header or
in the payload that can be utilized for direct CCs creation. We
can divide these fields into two groups, according to the posi-
tion of the field (in the variable header or in the payload). The
first group comprises fields that can be found in the variable
header of the control packets, denoted here as D1: 

1. 32-bit Message Expiry Interval in the variable header of a
PUBLISH packet or in the Will Properties field in the payload
of a CONNECT packet. The value of this property is modi-
fied when a broker publishes a message and it contains the
time that message has been waiting in the broker. 

2. Response Topic, Correlation Data and Content Type in the
variable header of a PUBLISH packet (each up to 65,535
bytes) or in the Will Properties field in the payload of a CON-
NECT packet. 

3. 28-bit Subscription Identifier in the PUBLISH and SUB-
SCRIBE packets with the value from 1 till 268,435,455. 

4. 16-bit Topic Alias in the PUBLISH packet. 
5. 32-bit Session Expiry Interval in the CONNECT, CONNACK

and DISCONNECT packets. 
6. 16-bit Receive Maximum and Topic Alias Maximum in the

CONNECT and CONNACK packets. 
7. 32-bit Maximum Packet Size in the CONNECT and CON-

NACK packets. 
8. 16-bit Server Keep Alive in the CONNACK packet. 
9. Assigned Client Identifier in the CONNACK packet (up to

65,535 bytes). 
0. Authentication Data in the CONNECT, CONNACK and

AUTH packets (up to 65,535 bytes). 
1. Response information in the CONNACK packet (up to

65,535 bytes). 
2. User Property in 13 control packets (each pair of values up

to 2 · 65,535 bytes). Only PINGREQ and PINGRESP control
packets cannot contain User Property field. 

Note that the D1 channels denoted as (2) and (12) can also
be used as indirect covert channels. 

The second group is comprised of the fields that can be
found in the payload of control packets, denoted here as D2. It
consists of the following fields: 

1. Response Topic, Correlation Data and Content Type in
the Will Properties field within the payload of a CONNECT
packet (each up to 65,535 bytes). 

2. 32-bit Will Delay Interval in the Will Properties field within
the payload of a CONNECT packet. 
Prerequisites: The only prerequisite is a client capable of
exchanging messages with the broker. 

Secret bits embedding and extraction: Secret bits can be
directly embedded into the fields given above. 

Information hiding pattern: Covert channels from the
group D1 belong to the PS10. Random value pattern, while those
from group D2 belong to the PS31. User-data value modulation &
reserved/unused one. 

4.4.2. CC with shared subscription 

Shared subscriptions can be used in two different ways for
creating covert channels with two collaborating subscribers
or with only one subscriber. The binary unidirectional direct
covert channel (D3a) between a broker (as a CS) and two col-
laborating subscribers (as CRs) can be realized in the following
way. 

Prerequisites Initially, two collaborating subscribers, CR1
and CR2, must have agreed upon some identifier of the shared
subscription, with the specified ShareName and Topic Filter.
For example, $share/group1/topic1 . After that, they need to sub-
scribe to this shared subscription. 

Secret bits embedding and extraction If the broker as a CS
wants to transmit secret bit ‘1’, it sends the next message pub-
lished in the topics specified by the Topic Filter to the CR1, and
if it wants to transmit secret bit ‘0’, it sends the message to the
CR2 ( Fig. 4 ). Because two subscribers collaborate, they always
know which bit is sent. 
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Fig. 5 – MQTT CC with topic alias. 
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This channel is a form of a distributed covert channel with 

ultiple possible receivers (at least CR1 and CR2), i.e., it per- 
orms a host-based scattering ( Mazurczyk et al., 2018 ). 

Information hiding pattern PS31 (User-data Value Modula- 
ion), realized using a host-based scattering. 

In the second version, the binary unidirectional direct 
overt channel (D3b) between a broker (as a CS) and one sub- 
criber (as CR) can be realized in the following way. 

Prerequisites In the beginning, after communication parties 
greed upon the ShareName and Topic Filter of the shared 

ubscription, the client CR must subscribe to that shared sub- 
cription with two different Client Identifiers, CID1 and CID2. 

Secret bits embedding and extraction If the broker as a CS 
ants to transmit secret bit ‘1’, it sends the next message pub- 

ished in the topics specified by the Topic Filter to the CID1,
nd if it wants to transmit secret bit ‘0’, it sends the message 
o the CID2. The CR is aware of the identifiers and bits that 
hey denote thus it is able to extract secret data. 

Information hiding pattern PS31 (User-data Value Modula- 
ion). 

.4.3. CC with topic alias 
 covert channel based on topic aliases can be created. 

Prerequisites For this binary direct covert channel (D4) be- 
ween a publisher (as a CS) and a broker (as a CR) or between 

 broker (as a CS) and one or more subscribers (as CRs), first 
he CS needs to send a PUBLISH packet with a non-zero length 

opic Name and a Topic Alias, by which the receiver will set 
he specified Topic Alias mapping to that Topic Name ( Fig. 5 ,
tep 1). 

Secret bits embedding and extraction If the CS wants to trans- 
it secret bit ‘1’, it publishes the message by using Topic Alias 

nd a zero length Topic Name for identifying the topic ( Fig. 5 ,
tep 2), and if it wants to send secret bit ‘0’, it publishes the 
essage by using Topic Name for identifying the topic ( Fig. 5 ,

tep 3). 
Information hiding pattern The covert channel described 

bove represents the PS11. Value modulation pattern. 
.4.4. CC with session expiry interval 
ne can create an unidirectional binary direct covert channel 

D5) between a publisher (as a CS) and a broker (as a CR) using
ession Expiry Interval in the CONNECT packet. 

Prerequisites The CS should use some small amount of time 
or the Session Expiry Interval field and then it should discon- 
ect. 

Secret bits embedding and extraction If the CS reconnects be- 
ore the expiration of the Session Expiry Interval on the bro- 
er’s side, a binary ‘1’ is sent to the broker. However, if the CS
econnects after the expiration of the Session Expiry Interval 
t denotes that the binary ‘0’ has been transmitted. Information 
iding pattern This is essentially a covert channel that requires 
he use of two different patterns. First, a “control channel”
simplified form of a covert channel internal control protocol) 
s realized by configuring both CS and broker with the Session 

xpiry Interval. This channel uses the PS31 pattern ( User-data 
alue Modulation and Reserved/Unused ) as 1 of n values for the 
ession Expiry Interval must be selected. Afterwards, pattern 

T2 ( Message Timing ) is used, since the timing of the CS recon-
ecting to the broker determines the secret value. 

.4.5. CC with the presence/absence of Reason code 
QTT v5.0 provides improved error reporting by optional use 

f Reason Code and/or Reason String in all ACKs, AUTH and 

ISCONNECT packets. The normal Reason Code for success 
s 0. The CONNACK, DISCONNECT, PUBACK, PUBREC, PUBREL,
UBCOMP, and AUTH packets have a single Reason Code as 
art of the Variable Header, while the SUBACK and UNSUB- 
CK packets contain a list of one or more Reason Codes in the
ayload. While for CONNACK the presence of 0 Reason Code 
or success is mandatory, for other control packets this is op- 
ional in the variable header. Absence of the Reason Code field 

s equivalent to Reason Code of 0. So, this duality can be used
or creation of a new unidirectional binary covert channel (D6) 
rom the broker (serving as CS) to the client (CR). 

Prerequisites The best choice is to use ACKs for the PUBLISH 

ontrol packet. This means that the client needs to use QoS 1 
r QoS 2 for publishing a given message. First, the client pub- 

ishes some arbitrary messages. 
Secret bits embedding and extraction If the broker adds a Rea- 

on Code of 0 in ACKs (PUBACK packet for QoS 1, or PUBREC
nd PUBCOMP packets for QoS 2), a binary ‘1’ is sent, while if
he Reason Code is absent from the acknowledgement, a bi- 
ary ‘0’ is transmitted. 

Information hiding pattern This covert channel represents the 
S11. Value modulation pattern. 

.5. New indirect covert channels in MQTT v5.0 

.5.1. CC with order of properties 
he bidirectional direct covert channel between a client and 

 broker, or indirect covert channel between a publisher and 

ubscribers (I1) can be created by properties ordering. For the 
irect version, any control packet that contains the set of prop- 
rties can be used, while for the indirect version, the logical 
hoice is the PUBLISH control packet. 

Prerequisites At the beginning, two collaborating parties 
ust agree upon the order of a given set of properties 
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Fig. 6 – CC with user property duplication. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(P 1 , P 2 , . . . , P p ) . For the PUBLISH packet, there are eight differ-
ent properties that can be found in the variable header, from
which six can be passed by the broker to the subscribers. More-
over, five of them are sent unaltered: Payload Format Indica-
tor, Content Type, Response Topic, Correlation Data, and User
Property, while one, i.e., Message Expiry Interval, is sent with
the modified value. Additionally, the User Property can be sent
multiple times, the only restriction is the total length of the
control packet. 

Secret bits embedding and extraction For binary channel, if the
CS wants to transmit secret bit ‘1’, it sends P 1 property before
P 2 , and for the secret bit ‘0’, it transmits P 2 property before P 1
property. In result, using such ordering, one can send p bits
per control packet. 

Information hiding pattern According to the pattern-based
classification, this covert channel is representing PS2. Sequence
Modulation pattern (if the sequence is interpreted) as well as
PS2.a Position pattern (if only the position of one element is
interpreted). 

4.5.2. CC with user property duplication 

The indirect covert channel between a publisher and sub-
scribers (I2) can be created by using (name, value) pairs mul-
tiple times with the same name in one PUBLISH packet. The
broker must send all User Properties unaltered when forward-
ing a message to the subscribers. 

Prerequisites Covert receivers need to be subscribed to the
same topic in which the covert sender will publish the mes-
sages. 

Secret bits embedding and extraction The CS encodes the se-
cret data in the following way. For transmitting a binary ‘1’,
it will use two consecutive (name, value) pairs with the same
name, and for sending binary ‘0’, it will utilize only one (name,
value) pair in the set of User Properties. This process is illus-
trated in Fig. 6 . 

Information hiding pattern This covert channel represents
PS3. Add Redundancy pattern. 

4.5.3. CC with request/response pattern 

As already mentioned, MQTT v5.0 offers an imitation of the
request-response behavior which is a basic rule for the HTTP
client-server communication. The difference is that instead of
direct client-server communication in MQTT we have an indi-
rect communication via broker, with one of the clients serving
as a server. This can be implemented in the MQTT protocol in
the following way: 
• One of the clients (C1) will have a role of the client
and will be subscribed to some response topic (e.g.,
/response/C1 ). One can configure access control lists on
the broker so that only C1 can subscribe to the given re-
sponse topic. 

• The other client (S) will have a role of the server. It could
host a database, central logging service, etc. It will sub-
scribe to some topic, e.g., /topicS . 

• C1 can send a request message to the S by publishing in
the topic /topicS and specifying its response topic in the
PUBLISH control packet. 

• S will then send a response message to C1, by publishing
in the response topic /response/C1 . Additionally, a Cor-
relation Data can be used for connecting the response with
the original request. 

This feature can be used for creating an unidirectional in-
direct binary covert channel (I3) from the C1 to S. 

Prerequisites C1 needs to subscribe to two different response
topics RT1 and RT2 , while S has to subscribe to its /topicS . 

Secret bits embedding and extraction The C1 as a CS encodes
the secret data in the following way. For sending a binary ‘1’,
it will publish in the topic /topicS with a specified response
topic RT1 , while for transmitting a binary ‘0’ it will publish in
the topic /topicS with the specified response topic RT2 . 

Information hiding pattern This covert channel represents the
PS11. Value modulation pattern. 

4.5.4. CC with different topics 
One can create an n -bit bidirectional indirect covert chan-
nel (I4) that is applicable also to the older versions of MQTT
(v3.1.1), in the following way: 

Prerequisites For sending m bits, covert communication par-
ticipants need to agree on 2 m different topics T 0 , T 1 , . . . , T 2 m −1

that will correspond to the numbers 0 , 1 , . . . , M . All covert par-
ticipants need to subscribe to all these topics. 

Secret bits embedding and extraction The CS encodes the se-
cret data in the following way. For sending the number M rep-
resented in a binary form with m bits, the CS publishes in the
topic T M 

. All CRs will obtain the message update from the topic
T M 

, so they can conclude the secret message M . 
Information hiding pattern PS31. User-data Value Modulation

and Reserved/Unused pattern (since one out of m possible val-
ues within the user-data is used to represent the hidden in-
formation). 
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Fig. 7 – ICC.I5 with artificial reconnections. 

Fig. 8 – System model for I5 with artificial reconnections. 
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.5.5. Covert channel with artificial reconnections 
nother indirect unidirectional covert channel (I5) can be cre- 
ted using the reconnection action from a client where the 
overt sender duplicates another one’s Client Identifier to 
orce a reconnection between a client and a broker in a specific 
rder (see Fig. 7 ). The covert receiver can read the message by 
avesdropping the network traffic and decode it (see Fig. 8 ). For 
his covert channel, every client i represents a hidden symbol 
 i . 

Prerequisites For the usage of this covert channel, the broker 
annot use authentication mechanism (which as mentioned 

n the Introduction is quite common right now). In case of 
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an open broker, two or more secret covert parties can con-
nect to it. Another prerequisite is that the clients of the bro-
ker need to programmatically be configured with an (async)
reconnect. For instance, Mosquitto, HiveMQ or Paho brokers
are able to handle such automatic reconnections. Originally,
they were configured to reconnect when a connection is half-
open or lost. With this configuration, the client starts to re-
connect to the broker, which returns a DISCONNECT to the
first instance of the client’s connection after opening the new
session. The DISCONNECT implies the “Session taken over”
Disconnect Reason Code 0x8E. 

CS and CR agree on an encoding in advance, where every
client i is linked to a secret symbol S i . 

Secret bits embedding and extraction If the covert sender con-
nects and disconnects with an existing Client Identifier, it
forces a reconnection of the original client. For each forced
reconnection, all characters of the Client Identifier are sent
to the broker, where the covert receiver monitors the network
traffic and can interpret the secret message consisting of char-
acters of the Client’s Identifier. However, the Client Identifier
itself does not represent the hidden message but allows to de-
termine the client that just reconnected. Given a list of dis-
connects, the hidden message is composed by concatenation
of the linked symbols in the order of their appearance (as this
is a timing channel), i.e., S 1 || S 2 || . . . || S n . 

Information hiding pattern According to the pattern-based
classification, this is a new hiding pattern that we call PT15.
Artificial Reconnections , see Section 4.6 . 

4.6. New hiding pattern PT15 

Illustration The pattern used by CC I5, i.e., PT15. Artificial Recon-
nections , employs artificial (forced) reconnections to transfer
secret messages. The covert sender influences connections of
third-party nodes in a way that their connections to either a
central element (e.g., an MQTT broker or a server) or a peer (in
a peer-to-peer network) are terminated and then established
again (i.e., a reconnect is performed). The covert receiver must
be capable of monitoring these reconnects, e.g., either by com-
promising the central/peer element or in a passive network
observer situation, like a MitM location. Encoding works by
assigning secret values to third-party, so that a reconnect of
a particular node represents the transfer of the secret symbol
assigned to that node. Another scenario for this pattern can
also be a chatroom or a gaming server with a large number of
clients that reconnect automatically after being disconnected.
The concept of this pattern is illustrated in Fig. 9 . 

Context In general, new patterns can be either derived from
existing patterns (e.g., PS20 is derived from PS1) or, if they add
entirely new ideas, they can be added to the particular position
within the taxonomy. The process for adding new patterns is
described in Wendzel et al. (2016) . In our case, the new pattern
cannot be derived from an existing pattern. 

This pattern refers to Network Covert Timing Channels and
the Protocol-aware branch because the functioning of a pro-
tocol’s reconnects have to be understood and interpreted in a
time-dependent manner. The final position of the pattern in
the pattern-based taxonomy is shown in Fig. 10 . 

Implementation The implementation of this pattern can be
performed in the following way. The covert sender is monitor-
ing all nodes in a network/distributed system. It then dupli-
cates the nodes in a chosen order to force reconnections. Al-
ternatively, other methods may lead to forced reconnections
– these can also be applied. The covert receiver monitors the
network traffic and decodes the secret message sent. 

Another approach for coding this channel would be to force
only one client to reconnect initially, pause for a certain time
interval, and then force a second reconnect. The transmitted
character is then defined by the time that passed between the
two reconnections. I.e., each time interval between two forced
reconnections would represent a secret symbol. For instance,
character ‘x’ might be encoded by reconnecting once, waiting
for n seconds, and forcing another reconnect. Please note that
this approach does not reflect the inter-packet times pattern,
however, it is similar. In contrast to the inter-packet times pat-
tern, the time between reconnects can contain multiple pack-
ets and the inter-packet gaps between these packets are not
of direct interest here. 

4.7. Bandwidth of the new covert channels 

For estimating the maximal number of secret bits that can be
transferred per second (the bandwidth) we will mainly rely on
the maximal available number of secret bits per control packet
and the number of control packets of particular type or types
(given in the definition of the covert channel) sent per second.
Summary of the results are provided in Table 2 . 

For D1.1, D1.5, D1.7,and D2.2, there is a maximum of 32 se-
cret bits per control packet, thus, if there are n control packets
of particular types per second, the resulting bandwidth will be
32 · n bps. 

D1.2 (D2.1) allows up to 3 · 65 , 535 B = 1 , 572 , 840 bits per
PUBLISH (CONNECT) control packet to be used for covert mes-
sage. Thus, if there are n PUBLISH (CONNECT) packets per sec-
ond, the resulting bandwidth will be 1 , 572 , 840 · n bps. 

The Subscription Identifier in D1.3 can have maximal value
of 268,435,455 with its 28 bits encoded as Variable Byte Inte-
ger. Thus, if there are n control packets of particular types per
second, the resulting bandwidth will be 28 · n bps. 

For D1.4 and D1.8 up to 16 secret bits per control packet are
available, so if there are n control packets of particular types
per second, the resulting bandwidth will be 16 · n bps. 

Similarly, for D1.6 up to 2 · 16 = 32 secret bits per control
packet can be utilized, i.e., if there are n control packets of par-
ticular types per second, the resulting bandwidth will be 32 · n
bps. 

Covert channels D1.9-D1.11, offer up to 65 , 535 B = 524 , 280
bits per control packet for hiding data, so if there are n con-
trol packets of particular types per second, the resulting band-
width will be 524 , 280 · n bps. 

D1.12 is a little bit different from the rest of the CCs in D1
group, because there is an unspecified number of User Prop-
erty pairs with the only limit of the maximal size of a con-
trol packet (256MB). Each User property (name, value) pair can
have a maximal size up to 2 · 65 , 535 B or 1,048,560 bits. Thus,
if there are u different User Property pairs per packet, and if
there are n control packets of particular types per second, the
resulting bandwidth will be 1 , 048 , 560 · u · n bps. 

D3, D4 and I3 covert channels transfer 1 bit per PUBLISH
control packet, so the resulting bandwidth will be n bps, if n
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Fig. 9 – Generic illustration of the pattern PT15. Artificial Reconnections . 

Fig. 10 – Extended version of the patterns taxonomy. 
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UBLISH packets are sent per second. Similarly, the resulting 
andwidth for D5 (D6) will be n bps if n CONNECT (ACKs) pack- 
ts are sent each second. 

For estimating the bandwidth of I1, we have p ordered prop- 
rties per PUBLISH control packet. Therefore, the resulting 
andwidth will be p ·n bps in one direction, if n PUBLISH pack- 
ts (in one direction) are sent each second. 
For I2, if we assume that there are dp different (name, value) 
airs in the set of PUBLISH User Properties, and if there are n
UBLISH packets (in one direction) sent per second, the esti- 
ated bandwidth will be dp · n bps per each direction. 
If they are 2 m agreed different topics for I4 and if there are 

 PUBLISH packets (in one direction) sent per second, the es- 
imated bandwidth for I4 will be m · n bps per direction. 
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Table 2 – Summary of the introduced covert channels. 

CC System 

sub - model 
Pattern Bandwidth (bps) Type MQTT v5.0 feature 

D1.1 DCCa, DCCb PS10 32 · n Unidirectional Improved session management 
D1.2 all PS10 1 , 572 , 840 · n Unidirectional Request/response mode of operation 

and new extensibility mechanisms 
D1.3 DCCa, DCCb PS10 28 · n Unidirectional Subscription ID 

D1.4 DCCa, DCCb PS10 16 · n Unidirectional Topic aliases 
D1.5 DCCa, DCCb PS10 32 · n Unidirectional Improved session management 
D1.6 DCCa, DCCb PS10 32 · n Unidirectional Client and/or server restrictions 
D1.7 DCCa, DCCb PS10 32 · n Unidirectional Client and/or server restrictions 
D1.8 DCCa PS10 16 · n Unidirectional Server restrictions 
D1.9 DCCa PS10 524 , 280 · n Unidirectional Server restrictions 
D1.10 DCCa, DCCb PS10 524 , 280 · n Unidirectional Enhanced authentication 
D1.11 DCCa PS10 524 , 280 · n Unidirectional Request/response mode of operation 
D1.12 all PS10 1 , 048 , 560 · u · n Unidirectional New extensibility mechanisms 
D2.1 DCCb PS31 1 , 572 , 840 · n Unidirectional Client restrictions 
D2.2 DCCb PS31 32 · n Unidirectional Client restrictions 
D3 DCCa PS31 n Unidirectional Shared subscription 
D4 DCCa, DCCb PS11 n Bidirectional Topic aliases 
D5 DCCb PS31 and PT2 n Unidirectional Improved session management 
D6 DCCa PS11 n Unidirectional Improved error reporting 
I1 all PS2 p · n Bidirectional New extensibility mechanisms 
I2 ICC PS3 dp · n Bidirectional New extensibility mechanisms 
I3 ICC PS11 n Unidirectional Request/response mode of operation 
I4 ICC PS31 m · n Bidirectional Protocol version independent 
I5 ICC PT15 16 · n Unidirectional Protocol version independent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Covert channel I5 transfers one character (or 16 bits, be-
cause Unicode character set is used) per automatic reconnec-
tion, by sending CONNECT control packet for existing Client
Identifier. So if there are n CONNECT control packets sent per
second, the resulting bandwidth will be 16 · n bps. 

4.8. Robustness of the new covert channels 

Robustness of the CC is the ability to protect the covert in-
formation from interferences introduced by the network, like
different network conditions (e.g., packet losses, delay) or by
third parties. For example, losses of packets carrying bits of
the covert message in any of the newly introduced CCs, will
negatively impact the secret message decoding, because some
secret bits will be missing. 

Because all newly CCs, except I5, are not timing channels,
any delay introduced by the network will not affect them, un-
til the delay is constant for all packets. But, when the delay
rapidly changes over time, this can introduce the difference
in the order of receiving the packets and the order of send-
ing the packets. This means that the secret bits will be mixed
up, and in the end, secret message would not be read by the
CR. But this also can be prevented by introducing client-based
sequential numbering of the packets carrying the secret bits.
For the I5, any kind of the network delay in reconnection can
impact negatively secret message decoding. Additionally, the
robustness of this channel can be destroyed by sending CON-
NECT control packets from an adversary with the same Client
Identifier as the CS, always before the expiration of the Session
Expiry Interval on the broker’s side. 
The robustness of the direct CCs depends from the situ-
ation if the CS and CRs are on the same or on the different
network. In the second case, an adversary can perform Man-
in-the-Middle (MitM) attack, by impersonating himself as the
broker or the client, or both, and by doing fabrication or mod-
ification of control packets. 

Indirect covert channels I1, I2 and I4 depend on the PUB-
LISH packets for sending secret messages. One way to influ-
ence their robustness is to intentionally publish messages in
the same topic(s) by any third party, because the broker does
not identify the source of the message update, when send-
ing it to the subscribers. Still, these CCs can resist to this at-
tack by introducing some kind of client-based identification of
the message source, for instance, by specific use of some User
Property or some other Property. For example, the setting of
User Property to start with some two (name, value) pairs, pre-
viously arranged by the participants in the clandestine com-
munication, can be used for identification purposes. The same
can be used for increasing undetectability by identifying the
messages with secret bits in the pool of all messages sent from
the CS. Another way is to deploy access control for a specific
topic, so only selected clients can publish in that topic. 

Because of the nature of the server’s /topicS from the I3
CC, anybody is able to publish in it. So a third party can publish
in the topic /topicS with a randomly chosen response topic
from the set of two, RT1 and RT2 , and the same Client Iden-
tifier as the CS. In result, one can insert fabricated secret bits
in I3. This is only possible, if the third party somehow learns
the arranged response topics, the server topic and the Client
Identifier of the covert sender. 
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tack. 
One simple way for any third party to attack the robust- 
ess of the I5 CC, is to send CONNECT control packets with 

andomly chosen Client Identifiers from the list of currently 
sed Client Identifiers. Even the MAC address of the CS can 

e spoofed if the CR searches for it. This will be interpreted as 
ending fabricated symbols in I5. 

.9. Undetectability and potential countermeasures 

ndetectability is a metric for inability of third parties to dis- 
inguish covert traffic from a legitimate one. Some potential 
ountermeasures can be used for detecting, limiting or pre- 
enting these new covert channels. These countermeasures 
an be applied only if the same type of channel is used more 
han once (or in more than one control packet). 

Covert channels D1.1, D1.3, D1.4, D1.5, and D1.7 can be po- 
entially detected by monitoring settings for a suspected client 
f the Message Expiry Intervals, Subscription Identifiers, Topic 
liases, Session Expiry Intervals, and Maximum Packet Sizes.
he occurrences of these settings from the same Client Iden- 

ifier or the same IP address or MAC address should be inves- 
igated. Moreover, one can monitor non-existing Subscription 

dentifiers in the PUBLISH control packets for detecting D1.3. 
Also, D1.6, D1.8 and D2.2 can be potentially detected by in- 

estigating Receive Maximum, Topic Alias Maximum, Server 
eep Alive, and Will Delay Interval values. Especially, their oc- 
urrences from the same Client Identifier, same IP or MAC ad- 
ress should be investigated. 

Response Topic and Correlation Data from D1.2 and 

esponse information from D1.11 are related to the Re- 
uest/Response mode of operation, so if somebody is using 
hem in this context, it can be a sign for potential CC utiliza- 
ion. Many different Response Topics from the same IP ad- 
ress can also be used as a potential detecting method. For 
1.2, Content Type property in the PUBLISH packet normally 

s application-specific, thus, if someone is familiar with the 
pplication context, he can easily detect manipulation of this 
roperty. The same holds for the D2.1 covert channel. 

D1.9 can be potentially detected by monitoring the as- 
igned Client Identifier in the CONNACK packet and by seek- 
ng for many different values given to the same IP address or 
o the same MAC address. 

The content of the Authentication Data field that is used in 

he covert channel D1.10 is defined by previously agreed au- 
hentication method. It can contain, for example, a context to- 
en if Kerberos (Authentication Method = ”GS2-KRB5”) is used.
hese tokens usually are randomly generated, so this channel 
an be difficult to detect in this scenario. But in other cases,
hen its content is expected to be something non-random,

ny other value will rise a suspicion. 
User Property presence is application-specific and nor- 

ally it is used to provide means of transferring application 

ayer name-value tags, thus, if someone is familiar with the 
pplication context, he can easily detect manipulation of this 
roperty and discover the presence of D1.12. 

The second version of the D3, D3b, can be easily detected 

y counting the number of different Client Identifiers from the 
ame IP or MAC addresses at the same broker, in the same 
ime. However, the first version of the D3 channel, D3a, is al- 

ost impossible to detect. This is because there is no rule how 
he broker will choose the representative for the group with 

hared subscription to whom it will send a given message. The 
nly way is to seek for collaborative communication between 

he clients of the group and to try to detect the potential CC
tilization. 

One possible countermeasure for detecting D4 CC is to 
ecord mappings between the Topic Names and a Topic 
liases in various communications in order to discover un- 
sual behavior, e.g., publishing in a given topic sometimes by 
sing its Topic Name and sometimes by using its Topic Alias. 

One way to detect the D5, is to keep a record of Session Ex-
iry Intervals in the CONNECT packet. The presence of many 
mall values of Session Expiry Intervals can be a sign of this 
overt channel as small values are required to transfer binary 
eros. 

Covert channel D6 can be possibly detected by monitoring 
he presence/ absence of the Reason Code of 0 in ACKs. If there 
s a many ACKs with presence of the Reason Code of 0, and
lso many ACK without it in some period of time, this can be
 sign of CC in use. 

I1 channel can be detected by monitoring the order of the 
roperties in the PUBLISH packets to establish significant dis- 
repancies in it. This covert channel can be prevented even 

f the broker actively influences the MQTT packets by always 
earranging present order properties in a previously specified 

anner. 
A possible countermeasure for detection of the indirect 

overt channel I2 is to count occurrences of consecutive 
name, value) pairs with the same name. It cannot be pre- 
ented, because the broker has to send all User Properties un- 
ltered and must maintain their order when forwarding the 
pplication Message. 

The channel I3 is very difficult to detect because a situa- 
ion where a client with the role of a server offers two or more
ifferent services to other clients using the Request/Response 
ode of operation is quite common. However, if there is a 

nowledge that the particular client (as a server) offers only 
ne service, observed deployment of two different Response 
opics for the same Client Identifier or the same IP or MAC 

ddress can be treated as anomaly and prove the existence of 
he covert channel. 

One possible method for detection of I4 is to measure 
he times between the consecutive publishing from the same 
lient Identifier (or the same IP or MAC addresses) to the given 

opic. Significant discrepancies when compared with the pre- 
ious legitimate recordings can be an indicator of the possible 
overt channel. 

One possible way to detect I5, is to keep a record of (Client
dentifier, MAC address) pairs and to look for at least two dif- 
erent pairs with the same Client Identifier or for many dif- 
erent pairs with the same MAC address (if the CS does not 
se MAC spoofing). A second option is to keep track of the 
mount of disconnections and reconnections with the reason 

ode 0x8E. If this number becomes large, this can be a sign of
ossible covert channel existence. In addition, too many re- 
onnections can be considered as a Denial of Service (DoS) at- 
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Fig. 11 – Experimental testbed for I4 covert channel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 This window size performed best in our experiments. 
5. Experimental evaluation 

In order to prove the effectiveness and feasibility of the pro-
posed covert channels we have implemented I4 and I5 covert
channels because their novelty and significance are higher
than in case of the other channels. Moreover, for them legit-
imate traffic recordings can be artificially created (in the ab-
sence of real datasets). In result, in this section we present ex-
perimental evaluation of I4 and I5 undetectability, bandwidth,
and robustness. 

We left out the other three indirect CCs from the evaluation
because the concept of User Properties and Request/Response
mode of operation are introduced in version 5.0, and we were
unable to find any real examples of their application, thus
we could not create traffic recordings that can correspond to
some legitimate use. Maybe in the future, when these fea-
tures will be commonly used one can try to create a proof-
of-concept implementation of these CCs. 

We also decided not to experimentally evaluate the direct
CCs as there are already a lot of examples of similar methods
available in the literature (e.g., Cabuk et al., 2004; Houmansadr
and Borisov, 2011; Liang et al., 2018; Murdoch and Lewis, 2005;
Rowland, 1997 ). 

5.1. Covert channel I4 

5.1.1. Detectability of covert channel I4 
To evaluate this CC, we used three EC2 instances of Amazon
Web Services (AWS) to conduct our experiments, see Fig. 11 .
On one of the EC2 instances we installed HiveMQ broker v4.3.1.
This version of the broker has support for MQTT 5.0. Using Java
programming language, we implemented the covert sender
(publisher) on another EC2 instance and the covert receiver
(subscriber) on the third EC2 instance. For this purpose we
used the HiveMQ Java client library v1.1.4 which also supports
MQTT 5.0. Finally, we utilized Wireshark v3.2.1 to record the
MQTT traffic. 

For our experiments, we used m = 2 and 2 2 = 4
different topics (T0, T1, T2 and T3). As already done in
Velinov et al. (2019) , we performed a so-called countermeasure
variation (see Wendzel et al., 2018 ) to investigate whether the
so-called compressibility score ( κ) could be used to detect CC I4.
To calculate κ, we recorded the first approx. 7500 MQTT pack-
ets of a connection and extracted the topics that appeared
within the connection. To achieve this, we used different win-
dow sizes , i.e., the number of topics to consider within each
flow. Next, we enumerated each flow’s topics (the first topic be-
came number 0, the second number 1, etc.) and concatenated
the enumerated numbers of the topics to a string. Finally, we
calculated the compressiblilty score κ by dividing original string
length by the compressed length of the string. As a secondary
metric, we calculated the number of topic changes between
succeeding packets within the first 1000 MQTT packets for a
flow. To compare legitimate and covert traffic, we investigate
three different scenarios for our experimental testbed: 

• Scenario 1: Only legitimate traffic is used, 
• Scenario 2: CC with secret messages in plain ASCII, 
• Scenario 3: CC with secret messages encrypted with AES

(Advanced Encryption Standard). 

For each scenario, we generated traffic samples. In the first
scenario, we obtained legitimate traffic recordings, where the
publisher sends message updates by randomly deciding every
second whether to publish or not for each of the 4 topics sep-
arately and with random time (in milliseconds) between each
publishing event. 

In the second scenario, we created an I4 covert channel,
and we sent secret messages in plain ASCII format (encoded
by the presence of particular topics). We created three variants
of this channel: at each second we published in: (i) 1 out of 4,
(ii) 2 out of 4 and (iii) 3 out of 4 topics, which corresponds to
transmitting 2, 4 or 6 bps, respectively. The choice to publish
in 2 topics out of 4 is motivated by the largest number of com-
binations for two topics (6 out of 16 possible) from which it
follows that the probability of the event to publish in 2 topics
per second is the highest, compared to other possible events.
Note, that additionally we performed the experiments with
1 and 3 topics (each with 4 possible combinations) per sec-
ond, just to observe what will happen in such case. The time
between consecutive publishing of messages was random (in
milliseconds). 

In the third scenario, we created again an I4 covert channel
where the secret messages were encrypted beforehand with
the AES. Again, we created the same three variants of this
channel, i.e., publishing in 1 out of 4, 2 out of 4 and 3 out of
4 topics per second with random time between consecutive
publishing events, which corresponds to sending 2, 4 or 6 bps,
respectively). This CC was used to show how encryption influ-
ences the undetectability compared with unencrypted traffic.

Results The obtained compressibility scores are highly sim-
ilar for both, the AES-encoded covert channel and the legiti-
mate traffic: for both channel types, the κ value was around 4.0
for a window size (i.e., the number of topics for a flow to con-
sider for compressibility purposes) of 1750,2 see Fig. 12 . This
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Fig. 12 – κ scores for I4 – AES-encoding vs. ASCII-encoding. 
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Table 3 – The number (and percentage) of flipped bits in 

transferred 80 secret bits due to network delays (in each 

2nd second). 

50 ms 100 ms 200 ms 300 ms 400 ms 500 ms 

1 0 0 0 0 0 2 
(2.5%) 

2 0 0 2 4 8 14 
(2.5%) (5%) (10%) (17.5%) 

3 2 4 4 10 22 28 
(2.5%) (5%) (5%) (12.5%) (27.5%) (35%) 

Avg. 0.67 1.33 2.00 4.67 10.00 14.67 
(0.84%) (1.66%) (2.50%) (5.84%) (12.50%) (18.34%) 
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s rooted in the fact that both channels essentially perform a 
andom selection of the topic to be sent next. Thus, the AES 
hannel cannot be detected in our experimental setup. 

However, the ASCII channel’s compressibility scores differ 
rom those of the AES-encoded covert channel’s and the legit- 
mate channel’s (see Fig. 12 for window size = 1750 ). The rea- 
on for this is that ASCII data contains less information per 
it, so it can be compressed easily, i.e., leading to higher κ val- 
es. A window size of 1250 to 2500 combined with a suitable 
hreshold resulted in a detectability of 100% when an ASCII 
hannel is required to be distinguished from an AES or le- 
itimate channel (e.g., for the window size 1750 the optimal 
hreshold is κ = 5 . 5 , while the threshold slightly increases 
ith higher window sizes).3 However, the longer the window 

izes, the fewer flows can be considered as they need to con- 
ain enough considerable packets. 

The second metric (the number of topic changes within a 
onnection for windows of 500 to 3000 packages) resulted in 

o useful distinction. The number of topic changes in our le- 
itimate traffic was strongly overlapping with the number of 
opic changes for both covert channel setups. 

.1.2. Bandwidth of covert channel I4 
e performed experiments with three different bandwidths,

, 4 and 6 bps, which corresponds to publishing in 1, 2 and 3 
opics, respectfully. We wanted to observe what happens with 

ndetectability if we choose the most possible event (publish- 
ng in 2 topics) compared to the less likely ones (publishing in 

 or 3 topics). 
The first 20 s of one of the 100 performed experiments for 

4 CC with 4 topics is presented in Fig. 13 . During these 20 s, 80
3 Short traffic flows that would only fill tiny windows < 400 
sing ASCII-encoding cannot be detected since they do not con- 
ain enough redundancy to achieve distinguishable compressibil- 
ty scores. 

s
d
c
e
n

ecret bits are transmitted from the 3.6th till the 23.6th sec- 
nd. The figure indicates the points in time when publishing 

n T0-T3 occurs. 

.1.3. Robustness of covert channel I4 
he I4 CC is not a timing channel thus in a case of any con-
tant network delay, the secret bits will be received in the cor- 
ect order, because all the covert messages will be delivered 

ith the same delay. The following Table 3 presents the num- 
ers of flipped bits at the receiver side (bit-errors) if we intro- 
uce different delays on each 2nd second. We experimented 

ith six different delays (of 50 ms, 100 ms, 200 ms, 300 ms,
00 ms, and 500 ms) and with publishing in 1, 2 and 3 top-
cs per second. Transmission errors occur because the order 
f the receiving message updates is changed in some cases.
f one message update arrives later than its consecutive mes- 
age three cases are possible. If the consecutive message up- 
ates belong to the same topic, bits are without errors. If the 
onsecutive topics are T0 and T3, all four bits will suffer from 

rrors. For any other combination of topics, only 2 bits will be 
ot successfully transmitted. 
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Fig. 13 – I4 CC with 4 topics, sending 80 secret bits in 20 s. 

Fig. 14 – κ scores for I5 (randomized data and ASCII data). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On average, the experimental results indicate that for
50 ms of introduced delay, 0.84% of all bits are received with
errors, for 100 ms it is 1.66%, for 200 ms it is 2.50%, for 300 ms
it is 5.84%, for 400 ms it is 12.50%, and finally for 500 ms 18.34%
of the bits are received with errors. So, this small experiment
proves that by increasing the delay, the level of bit errors also
increases. 

The nature of the CC I4 is such that with the loss of each
packet, 2 bits for the case with 4 topics are lost. Packet losses
are occurring only during the time when the receiver is dis-
 

connected from the broker, because in other cases, TCP pro-
vides packet re-transmissions. So, for one packet loss per 20
published message updates (5%) we will have 2 lost secret bits
per 40 transmitted secret bits (5%). 

5.2. Covert channel I5 

5.2.1. Detectability of covert channel I5 
As in the case of channel I4, we performed a countermea-
sure variation on the basis of the compressibility score to de-
tect covert channel I5. Therefore, we concatenated the enu-
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Fig. 15 – Experimental interval structure. 

Table 4 – The number (and percentage) of lost messages 
(sent in a persistent session all 10 s) in transferred 180 
characters of a secret message. 

1 s 2 s 4 s 8 s 16 s 32 s 

Pub 0/18 0/36 0/72 0/144 0/288 0/576 
Sub 6/18 7/36 9/72 8/144 10/288 13/576 

(33.33%) (19.44%) (12.5%) (5.56%) (3.47%) (2.26%) 
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erated client-ID values of connections for each particular 
ode in a row (window sizes: 100, 200 and 250 client-ID val- 
es). If the client-ID changed, we inserted an “!” between the 
ld and the new value. For instance, if the client-IDs “client 
” and “client B” would be used in the following order “client 
”, “client A”, “client B”, “client A”, “client B”, then the result- 

ng string (after enumerating the client-ID values) would be 
 = “00!1!0!1”. Thus, connections with many client-ID changes 
esult in longer strings. 

As in the case of I4, we transferred encrypted (random) as 
ell as ASCII content via the covert channel while the legiti- 
ate traffic used always the same client-ID values (since these 

alues typically do not change per node). 
Results As can be observed in Fig. 14 , the compressibility 

cores of the covert channel traffic and legitimate traffic were 
learly distinguishable for both, random (encrypted) covert 
hannel traffic and ASCII covert channel traffic. The results 
here independent of the consumed bandwidth of the covert 

hannels as the particular window sizes could be filled within 

 few seconds or even days. The window size of 250 client-ID 

alues performed best. Overall, we conclude that this covert 
hannel is easily detectable. 
.2.2. Bandwidth of covert channel I5 
o examine the bandwidth of this channel, experiments were 
erformed which relied on sending one character (16 bits) per 
orced reconnection at intervals of 1, 2, 4, 8, 16 and 32 s. Also,
or testing purposes, bits instead of characters (i.e., 1 bit per 
econnection) were sent at the same intervals. The analysis 
f I5 was performed once with QoS = 0 ( Quality of Service ; non-
ersistent session) and once with QoS = 1 (persistent session).
he publisher therefore sends a PUBLISH message every 10 s.
ig. 15 illustrates the different timing intervals including their 
orced reconnections exemplifying the first 32 s. 

.2.3. Robustness of covert channel I5 
he experiments show that with QoS = 0 messages are lost 
nce reconnections occur. In case of a forced reconnection 

ach second, only about 2/3 of published messages arrive from 

ublisher to broker, from broker to subscriber the rate of the 
riginally sent messages is then only about 1/3, where the half 
f the really transmitted messages by the publisher is arriving 
t the subscriber. If the intervals are increased, then at an in- 
erval of 32 s 98.2% (publisher to broker) and 96.8% (broker to 
ubscriber) or coupled 98.6% of all published messages arrive 
t the subscriber. With QoS = 1 and the correspondingly per- 
istent session, all messages sent by the publisher arrive at 
he broker. The messages forwarded to the subscriber are at a 
ime interval of 1 s at about 2/3, at an interval of 32 s at 97.7%.

In every case, the messages from the CS received by the CR 

re at 100%. Table 4 shows that with an increasing CS trans- 
ission time the CC can be found less effectively than if it 

auses highly frequented reconnections. The lost messages 
nd their percentages may vary, but they decrease with longer 
ntervals anyway. 
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Fig. 16 – Differing rates due to higher �t (broker to subscriber, QoS = 1, in %). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 16 illustrates different types of experiments (random
character like in Table 4 (CC with CONNECT), random binary
(CC with CONNECT) and random binary with CC connects and
subscribes) and their lost PUBLISH messages split into the first
180 secret signs (characters or bits), the secret signs over a pe-
riod of 30 min and the average of all of the recordings. 

The trend emphasizes that the higher �t the lower the lost
messages level. However, the CS also has the option of taking
over only the publisher IDs, which would reduce the rate of
lost messages to 0% at QoS = 1. 

In case of real reconnections caused by network distur-
bances of the clients, these can be easily filtered out and do not
disturb the secret message for the CR by checking the source
IP. Finally, it can also be concluded that the shorter, more var-
ied in the characters or less highly frequented a secret mes-
sage is sent, the less effectively the CC can be found. 

6. Conclusion 

In this paper, we have analyzed MQTT 5.0 regarding its ex-
ploitability from network covert channels perspective. Based
on the conducted study we were able to demonstrate that
novel covert channels exist that were not feasible for previ-
ous MQTT versions as they rely on MQTT 5.0 specific features.
Moreover, we introduced a novel timing channel hiding pat-
tern that in order to transfer secrets utilizes reconnections.
We have structured our analysis using a unified description
method and evaluated the bandwidth, robustness and unde-
tectability of selected covert channels and also discussed po-
tential countermeasures. 

As our future work, we plan to further design and evaluate
countermeasures for MQTT 5.0, especially we focus on devel-
oping an active warden capable of normalizing/limiting the
covert channels proposed in this paper. 
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