
International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

129

An Implementation of a Generic Scheme of an

Artificial Neural Network and the

Backpropagation algorithm in C++

D. Stojanov*, J. V. Buralieva* and A. Velinov*

*Faculty of computer science, University „Goce Delčev“–Štip, Republic of North Macedonia

done.stojanov@ugd.edu.mk, jasmina.buralieva@ugd.edu.mk, aleksandar.velinov@ugd.edu.mk

Abstract – Due to the learning capabilities of artificial

neural networks (ANNs), they are commonly used for

solving complex problems, such as: prediction, optimization,

approximation and recognition. To be able to solve such

complex problems, an artificial neural network (ANN) has

to be trained. The commonly used algorithm for that

purpose is the backpropagation algorithm, which is a

supervised learning approach. Therefore in this paper we

present a generic scheme of one-layer artificial neural

network and we apply the backpropagation algorithm. To

carry out an analysis, we coded the structure of the artificial

neural network and the backpropagation algorithm in C++.

I. INTRODUCTION

Artificial neural networks (ANNs) are
biologically inspired computing models,
approximating the way brain functions. Structurally
an artificial neural network consists of a set of
connected artificial nodes called neurons.
Throughout connections, usually regarded as
synaptic edges, an artificial neuron takes the inputs
and computes the output as a non-linear function of
the sum inputs. Note that edges simulate real life
synapses, passing electrical signals from one cell to
another. Usually there are several layers of neurons
built into one neural network. Each layer is a vector
of neurons computing the output that is taken as an
input to the next layer. A weight that is a real number
is assigned to each synaptic edge. Weights are
dynamically updated (increased or decreased)
throughout training and learning in order to be able
to reach the output for a specific input.

The very early beginnings of this topic can be
traced back to 1943 when McCulloch and Pitts [1]
designed the first model of an artificial neuron. Few
years later, in 1949, Donald Hebb published his
work known as "The Organization of Behavior" [2]
which introduced the law for neuron learning, based
on straight-forward synaptic propagation. Later this
law became known as Hebbian Learning. Two years
later Marvin Minsky created the first ANN. John von
Neumann’s book “The Computer and the Brain” [3]
published in 1958 had big impact on the topic and

radically changed the whole approach. Frank
Rosenblatt [4] created the Perceptron in 1958.
However, the Perceptron works only fine for linearly
separable input data sets and this constrain was first
reported by Marvin Minsky and Seymore Papert [5]
in 1969. Minsky and Papert reported that the
Perceptron in not able to classify non-linearly
separable input data sets. However, the technology
of Perceptron was not a fail but rather a case of an
upgrade for more advance application. A three layers
architecture that can be applied for non-linearly
separable data was presented in 1992 by Hecht-
Nielsen [6].

There are several types of artificial neural
networks that can be applied to specific problems.
Feed forward neural networks are commonly used in
computer vision and speech recognition, because
they can easily cope with noisy data. There is no
backpropagation and the neuron fires an output if the
activation passes certain threshold. Radial basis
function neural networks distinguish other neural
networks due to their fast learning speed. These
neural networks consist of three layers. The first
layer corresponds to the input, the second layer
consists of units with non-linear radial basis
activation function and the third layer corresponds to
the output. This type of neural network is commonly
used for classification, system control and function
approximation. Self-organizing neural networks [7],
[8] are best for pattern classification. Input patterns
are compared to known patterns and they are
associated to the best match. Once the best match
has been found, cluster’s weights needs to be
updated. Metrics is based on the square of minimum
Euclidean distance. Recurrent neural networks
utilize the fact that neurons are able to memorize
some of the information that had in the previous
step. Feeding back the output to the input, these
neural networks are commonly used for text into
speech conversion. Most of nowadays computer
vision technologies explore convolutional neural
networks due to their high accuracy in image and

mailto:done.stojanov@ugd.edu.mk
mailto:jasmina.buralieva@ugd.edu.mk

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

130

signal processing. Neurons of this type of networks
have learnable weights and biases. However,
sometimes we have to combine different types of
neural networks that will work independently
towards the output and here comes the concept of
modular neural networks. The main advantage of
this type of neural network is the ability to
decompose large computational process into smaller
tasks, making them suitable for implementation into
multi-module decision systems.

The backpropagation algorithm is a well-known
and popular algorithm for training artificial neural
networks. This algorithm was invented in the early
60’s and it was implemented to run on computers in
70’s. Even thought Werbos [9] in 1974 was the first
that showed that this algorithm can be applied to
neural networks, it took few decades until this
algorithm was popularized again in a paper called
“Learning representations by back-propagating
errors” written by Rumelhart, Hinton and Williams
[10]. The backpropagation algorithm is a supervised
learning technique which is based on Widrow-Hoff
learning rule. The core of this algorithm is that it
starts with random weights assigned to the synaptic
edges and the goal is to adjust them until the
artificial neural network learns from training data.
Note that this is done in thousands and sometimes
millions of iterations of error updates.

In this paper we introduce a generic scheme of an
artificial neural network and the application of the
backpropagation algorithm. To be able to simulate
the execution of this algorithm, we programmed it in
C++.

II. MATERIALS AND METHODS

The general architecture of a neural network is
shown on Figure 1. It consists of three layers: an
input layer, hidden layer and output layer. To
understand how neural networks work, we have to
consider the artificial neuron, Figure 2. The neuron

takes inputs throughout synaptic

edges weighted from to plus threshold –

Figure 2. The output of the neuron equals the

activation function of the sum of products such

as , Figure 2. The activation

function makes the decision if a given input signal is
considered relevant or not and thus firing
(activating) the neuron or not.

Figure 1. General architecture of an artificial neural

network

Figure 2. Computational model of an artificial neuron

Even though there are different types of

activation functions, some of them, such as: the
binary step, linear, sigmoid and tangent hyperbolic
activation functions are commonly used. The
simplest of all activation functions is the binary step
activation function. This function serves as a
threshold classifier. The neuron is activated (

if that the sum of products is greater than certain

threshold, otherwise not (, Figure 3.

Figure 3. Binary step activation function

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

131

The equation of the linear activation function is

 or the sum of products is multiplied by a

constant , Figure 4. This activation function is used

in the output layers.

Figure 4. Linear activation function

Sigmoid activation function is a non-linear
function. The equation of this function is

 and it can be plotted as ‘S’ shaped

graph, Figure 5. The output of the neuron ranges

between 0 and 1 and small changes of around 0

will result in major change of . This activation

function is also used in the output layers.

Figure 5. Sigmoid activation function

Tangent hyperbolic activation function (tanh) is
basically shifted sigmoid faction, Figure 6. The
output of a neuron using this type of activation
ranges between -1 and 1 and it is usually used in the
hidden layers of neural networks.

Figure 6. Tanh activation function

Figure 7 shows the structure of the neural

network on which we applied the backpropagation

algorithm. It takes inputs and consists of

 neurons that generate also

outputs . All neurons use sigmoid

activation function, thus calculating the output

as such as the sum of products

 . Note that the notation

denotes the weight of the synaptic edge connecting

the input to the neuron, Figure 7. Our goal

is to obtain a vector of desired outputs
 for an input vector

applying the backpropagation algorithm that does so
in a process of iterative update of the weights of
synaptic edges . The way the backpropagation

algorithm does this is after computing the output of
the neuron an error is computed such as

 and this is done for all

neurons in the architecture. Once the error for the

 neuron was computed, the weight of synaptic

edge must be updated to providing

that the output in the following iteration will

come closer to the desired output than it was in

the previous iteration. This mechanism allows
network convergence and the whole process is
known as network training or learning.

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

132

Figure 7. Structure of the test network

III. RESULTS

We used object-oriented programming in C++ to
implement the network and the training algorithm.
The structure of the neural network that is shown on
Figure 7 was abstracted by a class NeuralNetwork
with inputs, outputs and desired outputs being
implemented as float arrays and a set of initial
synaptic weights being implemented in form of

matrix. The initial set up of the synaptic weights is
done by a constructor, while the backpropagation
algorithm is implemented as a special function
within the class based on the explanation in the
previous section. The main program accepts input
and desired output vectors Figure 8 and performs
training calls upon the network, having previously
set up the initial weights of the synaptic edges,
Figure 9. In order to understand what happens
throughout the learning process, we printed the
results on the screen.

Figure 8. Setting the input and desired output vector

Figure 9. Setting the initial weights of synaptic edges

Our neural network was tested for input

vector and desired output vector Figure 8,

i.e. we wanted to train the network to work as an
inverter of the input. Therefore we analyzed what
happened throughout the training process in: 100,
500, 1000, 5000 and 10000 iterations, Table 1. At
the end of each epoch we calculated the absolute
error between the current outputs of the neurons and
the goal values. To improve the uniformity of the
process, all of the synaptic edges were initially

set up to .

For this scenario, from the obtained results we
can see that most of the convergence of the neural
network to the goal happens in the first 100 and 500
iterations, Table 1 and Figure 10. The absolute error
between the current output and the desired output
continues to decrease having increased the number
of training iterations (1000, 5000 and 10000) but the
rate of this change is not as sharp and significant as
it was throughout the first couple of training
iterations. As results clearly show, after 10000
iterations the absolute error between the output and
the goal is about 0,005 or we can consider that our
neural network was almost trained to function as a
digital inverter, Table 1, Figure 10 and Figure 11.

TABLE I. Outputs of the neurons for different number of training

iterations

Number of
iterations

Neuron Output of
neuron

Desired
Output

Abs. error

100

n1 0,0565899 0 0,0565899

n2 0,946133 1 0,053867

n3 0,0565899 0 0,0565899

n4 0,946133 1 0,053867

500

n1 0,0235008 0 0,0235008

n2 0,976719 1 0,023281

n3 0,0235008 0 0,0235008

n4 0,976719 1 0,023281

International Conference on Information Technology and Development of Education – ITRO 2020

October, 2020. Zrenjanin, Republic of Serbia

133

1000

n1 0,0163614 0 0,0163614

n2 0,983715 1 0,016285

n3 0,0163614 0 0,0163614

n4 0,983715 1 0,016285

5000

n1 0,00717572 0 0,00717572

n2 0,992831 1 0,007169

n3 0,00717572 0 0,00717572

n4 0,992831 1 0,007169

10000

n1 0,00505166 0 0,00505166

n2 0,994951 1 0,005049

n3 0,00505166 0 0,00505166

n4 0,994951 1 0,005049

Figure 10. Convergence of the neural network

throughout the training process

Figure 11. Output of the network after 10000 training

iterations

IV. CONCLUSION

In this paper we analyzed the structure and the
training of an artificial neural network. This cutting-
edge technology emulates the way our brains work
and recognize everyday’s patterns upon ours
experience. Neural networks map this concept in the
domain of the artificial intelligence to construct
machines that can actually act intelligently in
unpredicted conditions. However, in order to
achieve that, the structure needs to be trained and
here comes the main challenge, i.e. more training is
performed the more accurate the recognition is. In
this paper we used the backpropagation algorithm
and we showed that in the case of uniform initial
weights setup, the network learns most of the things
in the first couple of training iterations.

REFERENCES

[1] McCulloch, S. Warren, and W. Pitts. "A logical calculus of the ideas
immanent in nervous activity," The bulletin of mathematical
biophysics, vol.5.4, pp. 115-133, 1943.

[2] H.D. Olding. The organization of behavior: A neuropsychological
theory. Psychology Press, 2005.

[3] J.V. NEUMANN. "The Computer and the Brain–The Silliman
lectures," 1958.

[4] F. Rosenblatt. "The perceptron: a probabilistic model for
information storage and organization in the brain," Psychological
review, vol.65.6, pp. 386-408, 1958.

[5] M. Minsky, and P.A. Seymour. Perceptrons: An introduction to
computational geometry. MIT press, 2017.

[6] R. Hecht-Nielsen. "Theory of the backpropagation neural
network," in Neural networks for perception, Academic Press,
1992, pp.65-93.

 [7] T. Kohonen . Self-organizing and associative memory, 3rd ed.,
Berlin:Springer-Verlag, 1989.

[8] T. Kohonen. "A self-learning musical grammar, or 'Associative
memory of the second kind'," in International Joint Conference On
Neural Networks. 1989, Chap. 1: pp. 1 – 5.

[9] P. Werbos. "Beyond regression:" new tools for prediction and
analysis in the behavioral sciences," Ph.D. dissertation, Harvard
University, 1974.

[10] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. "Learning
representations by back-propagating errors," Nature, vol.323.6088,
pp. 533-536, 1986.

