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Abstract

Microbial communities carry out the majority of the biochemical activity on the planet, and they play integral roles in
processes including metabolism and immune homeostasis in the human microbiome. Shotgun sequencing of such
communities’ metagenomes provides information complementary to organismal abundances from taxonomic markers, but
the resulting data typically comprise short reads from hundreds of different organisms and are at best challenging to
assemble comparably to single-organism genomes. Here, we describe an alternative approach to infer the functional and
metabolic potential of a microbial community metagenome. We determined the gene families and pathways present or
absent within a community, as well as their relative abundances, directly from short sequence reads. We validated this
methodology using a collection of synthetic metagenomes, recovering the presence and abundance both of large
pathways and of small functional modules with high accuracy. We subsequently applied this method, HUMAnN, to the
microbial communities of 649 metagenomes drawn from seven primary body sites on 102 individuals as part of the Human
Microbiome Project (HMP). This provided a means to compare functional diversity and organismal ecology in the human
microbiome, and we determined a core of 24 ubiquitously present modules. Core pathways were often implemented by
different enzyme families within different body sites, and 168 functional modules and 196 metabolic pathways varied in
metagenomic abundance specifically to one or more niches within the microbiome. These included glycosaminoglycan
degradation in the gut, as well as phosphate and amino acid transport linked to host phenotype (vaginal pH) in the
posterior fornix. An implementation of our methodology is available at http://huttenhower.sph.harvard.edu/humann. This
provides a means to accurately and efficiently characterize microbial metabolic pathways and functional modules directly
from high-throughput sequencing reads, enabling the determination of community roles in the HMP cohort and in future
metagenomic studies.
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Introduction

Human-associated microbial communities interact directly with
their hosts by means of metabolic products and immune
modulation, and environmental communities are further respon-
sible for a wide range of biochemical activities [1]. Metagenomic
sequencing provides a culture-independent means of studying
these diverse microbiota within different ecological niches,
including sites in the human body that differ strikingly in microbial
composition and subsequent impacts on health [2,3,4]. The gut
microbiota in particular have been shown to play an important

role in host metabolism [5,6] and immune response [4], and
mechanisms of commensal microbial contribution to disease have
been established e.g. in the vaginal [7] and skin [8] communities as
well. These studies have demonstrated the importance of assaying
microbial pathways, metabolism, and individual gene products by
means of metagenomic sequencing to determine their roles in
community-wide interactions and phenotypes. A functional
interpretation of metagenomic sequences is thus key to connecting
the metabolic and functional potential of a microbial community
with its organismal population structure and with its influence on
the surrounding environment or human host.
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The functions of human-associated microbes are of particular
interest, and the Human Microbiome Project (HMP [9]) has thus
performed a comprehensive study of microbial communities from
many different body sites in a reference population of disease-free
adult subjects. The study’s metagenomic data comprise over
3.5 Tbp of shotgun DNA sequences drawn from seven body
habitats (including oral, gut, urogenital, nasal, and skin) from over
100 individuals. Using these data, we sought to address questions
pertaining specifically to microbiome function: what metabolic
and broader biomolecular functions are present within the human
microbiome, how do they provide specialization within the
microbial niches of distinct body sites, and how do they vary
across the human host population? To address these in a high-
throughput manner, we have developed a scalable methodology to
reconstruct the functional potential of microbial communities from
metagenomic sequences, the HMP Unified Metabolic Analysis
Network (HUMAnN). To avoid the need for assembly of
metagenomic reads, HUMAnN (Figure 1) allows direct profiling
of the metabolic potential of microbial communities as represented
by orthologous gene family and pathway abundances. The
computational methodology incorporates a series of gene- and
pathway-level quantification, noise reduction, and smoothing steps
in order A) to identify which pathways are present or absent within
a metagenomically sequenced community and B) to determine
their relative abundances. HUMAnN’s predictive accuracy was
validated quantitatively using data from four synthetic communi-
ties, and it was subsequently used to characterize metabolic
function throughout the human microbiome.
Most analytical methods for microbial community assays focus on

organismal membership and population structure, i.e. ‘‘who’s
there’’ in a community [5,10]. However, functional characterization
of community metagenomes is additionally necessary to determine
what metabolism and other biological activity may be occurring
[11,12]. This presents a distinct set of challenges, since inter-
dependent organisms within a community may share many

functional components in addition to playing individually special-
ized roles. Current metagenomic approaches for characterizing
microbial community function include IMG/M [13], MG-RAST
[14], and the recently expanded MEGAN tool [15]. Each of these
relies on a ‘‘best-BLAST-hit’’ approach, in which individual short
reads from a sequenced community (or open reading frames from
assembled DNA) are searched against a characterized reference
database using translated BLAST. This approach has been used to
show the importance of specific community metabolic processes in a
range of environmental ecologies, including ocean water and the
human gut [16]. Gianoulis et al [17] in particular found that in a
collection of 37 ocean communities, metabolic differences correlat-
ed specifically with environmental features such as temperature,
depth, and salinity. In a particularly large dataset of 124 gut
metagenomes, the MetaHIT consortium [11] qualitatively identi-
fied metabolic pathways using genes predicted from assembled
sequences, which were subsequently suggested to be associated with
host phenotypes including obesity [12]. Several additional studies
have shown the importance of testing for pathways differentially
abundant among communities of interest, e.g. among ocean
environments [18] or within the infant gut [19,20]. However,
although each of these results demonstrates the importance of
community metabolism and function, no one method has yet been
quantitatively evaluated as a means of reconstructing microbial
pathway abundances from metagenomic data.
In order to determine the distribution of microbial function

within the human microbiome, we thus first validated HUMAnN’s
ability to quantify metabolic pathway abundances in four synthetic
metagenomes containing up to 100 organisms. These were
recovered with correlations over 0.9, consistently outperforming
best-BLAST-hit approaches. We proceeded to scale our analysis to
perform metabolic reconstruction on 649 human microbiome
samples drawn from the buccal mucosa, supragingival plaque, and
tongue dorsum (oral sites), anterior nares (nasal), retroauricular
crease (skin), and stool (gut) communities from 102 individuals. We
identified 196 metabolic pathways and 168 small modules that were
differentially abundant among body sites, and we highlight here
associations with environmental pH and enrichment for glycosami-
noglycan degradation as examples from the vaginal and gut
communities, respectively. Metabolic module abundances were
substantially more variable among body sites and among individuals
than was module coverage, indicating a connection between
selective pressures in each microbial niche and the pathways
carried by members of the community. Finally, as HUMAnN
simultaneously reconstructs large pathways, specific metabolic
modules, and individual enzymatic gene families, we discuss an
example of glutamate metabolism in the gut community as it
interacts with specific carbohydrate active enzymes (CAZys [21]).
An implementation of HUMAnN is publicly available at http://
huttenhower.sph.harvard.edu/humann, and the methodology can
be equivalently applied to metatranscriptomic or metaproteomic
data using any gene or pathway catalog of interest for future studies.

Methods

Here, we describe the methodology employed in this study in
two parts: first, the computational pipeline for metagenomic
metabolic reconstruction implemented in HUMAnN, and second
its application to the 741 microbial community samples of the
Human Microbiome Project. HUMAnN inputs metagenomic
DNA sequences and infers community-wide gene and pathway
abundances through a process of seven steps (Figure 1):

1. Short reads are sequenced from a community sample, quality
and length filtered, and screened for residual host (human)

Author Summary

The human body is inhabited by trillions of bacteria and
other microbes, which have recently been studied in many
different habitats (including gut, mouth, skin, and urogen-
ital) by the Human Microbiome Project (HMP). These
microbial communities were assayed using high-through-
put DNA sequencing, but it can be challenging to
determine their biological functions based solely on the
resulting short sequences. To reconstruct the metabolic
activities of such communities, we have developed
HUMAnN, a method to accurately infer community
function directly from short DNA reads. The method’s
accuracy was validated using a collection of synthetic
microbial communities. Applying HUMAnN to data from
the HMP, we showed that, unlike individual microbial
species, many metabolic processes were present among all
body habitats. However, the frequencies of these process-
es varied dramatically, and some were highly enriched
within individual habitats to provide niche specialization
(e.g. in the gut, which is abundant in food matter but low
in oxygen). Other community functions were linked
specifically to properties of the human host, such as
biochemical processes only present in vaginal habitats
with particularly high or low pH. Studying additional
environmental or disease-associated communities using
HUMAnN will further improve our understanding of how
the microbial organisms in a community are linked to the
biological processes they carry out.

Metabolic Reconstruction for Metagenomic Data
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DNA. This process is carried out by the user externally to
HUMAnN.

2. Reads are searched against a characterized protein sequence
database. HUMAnN can operate using results from several
standard or accelerated translated BLAST implementations and
from different orthologous protein family catalogs; for the HMP
we employed MBLASTX and the KEGGOrthology (see below).

3. For each metagenomic sample, HUMAnN recovers the
abundances of individual orthologous gene families by
counting its reads’ BLAST hits in a weighted manner,
normalized by each gene family’s average sequence length.

4. Genes are assigned to pathways using MinPath [22], a
maximum parsimony approach to explaining observed genes
with available pathways.

5. Pathways unlikely to be present based on the BLAST hits’
approximate organismal profiles are removed in a taxonomic
limitation step, which also allows normalization for genes’
average copy number.

6. A biological smoothing or gap filling step is performed,
preventing small numbers of apparently absent genes in an
otherwise abundant pathway from diminishing its presence due
to noise.

7. Finally, HUMAnN assigns each pathway a coverage (pres-
ence/absence) score in each sample based on the detection of
all of its constituent genes, as well as an abundance score
indicating its relative abundance in the sample’s metagenome.

HUMAnN has additionally adapted ecological diversity metrics
in order to provide functional diversity and richness profiles for
each sample, and we validated its gene- and pathway-level
accuracy using four synthetic communities of varying complexity.
To assess microbial community function and metabolism in the

human microbiome, we applied this process to the metagenomic
data generated by the HMP [9], comprising .3.5 Tbp of
microbial DNA from 7 body sites spanning 102 individuals
(Table 1). We identified modules over- or under-represented in
individual body sites using the LEfSe [23] biomarker detection

Figure 1. Overview of the HUMAnN method for metabolic and functional reconstruction from metagenomic data. The HMP Unified
Metabolic Analysis Network (HUMAnN) software recovers the presence, absence, and abundance of microbial gene families and pathways from
metagenomic data. Cleaned short DNA reads are aligned to the KEGG Orthology [26] (or any other characterized sequence database) using
accelerated translated BLAST. Gene family abundances are calculated as weighted sums of the alignments from each read, normalized by gene
length and alignment quality. Pathway reconstruction is performed using a maximum parsimony approach followed by taxonomic limitation (to
remove false positive pathway identifications) and gap filling (to account for rare genes in abundant pathways). The resulting output is a set of
matrices of pathway coverages (presence/absence) and abundances, as analyzed here for the seven primary body sites of the Human Microbiome
Project.
doi:10.1371/journal.pcbi.1002358.g001

Metabolic Reconstruction for Metagenomic Data
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system, as well as associating the resulting gene and module
abundances with subject clinical metadata and with external data
including CAZy [21] abundances using standard nonparametric
Spearman correlation.

Metagenomic short read preprocessing
The filtering criteria applied to HMP short reads are

representative of HUMAnN’s sequence preprocessing require-
ments. As fully described elsewhere by the HMP [24], 100 bp
paired-end Illumina shotgun metagenomic reads were screened for
duplicate reads and for residual human sequences. BWA [25]
trimming was then applied at q = 2, followed by low-complexity
filtering, and sequences resulting in less than 60 remaining valid
bases were discarded. In practice, any steps removing non-
microbial DNA and low-quality reads should be sufficient for
HUMAnN, as retained uncharacterizable reads will be removed
during the subsequent BLAST search.

Translated BLAST against characterized protein
sequences
Sequences passing preprocessing criteria are then searched

against a characterized protein sequence database. For the HMP,
we employed MBLASTX (MulticoreWare, St. Louis, MO), an
accelerated translated BLAST implementation, with default
parameters against a functional sequence database including the
KEGG Orthology v54 [26]. All 741 HMP samples were searched
in less than 13,000 CPU-hours (with 32 GB memory required on
average), resulting in an average of 36% of reads mapped to at
least one orthologous family, and up to the 20 most significant hits
at E,1 were retained and used for further processing. The
HUMAnN software additionally includes support for NCBI
BLASTX, USEARCH [27], and MAPX (Real Time Genomics,
San Francisco, CA) and has been tested with other sequence
databases including MetaCyc [28] and CAZy [21].

Orthologous gene family abundances
HUMAnN next summarizes these BLAST results as the

number of reads that matched each protein family, weighted by
the quality of the matches. We used KEGG Orthology gene
families (KOs) as defined by KEGG [26], a catalog of organism-
independent identifiers corresponding to groups of gene sequences
carrying out comparable biochemical functions. For our analysis,
each KO i consists of a set of one or more specific gene sequences
Gi={gi,1, gi,2, …} from individual organisms annotated in KEGG
v54. Orthologous family abundances wi were calculated indepen-
dently within each metagenome for KO i and read j as:

wi~DGi D
X

g[Gi

1

DgD

X

j

1{pg,jP

g0
1{pg0 ,j

where |g| is the nucleotide length of gene sequence g in KO i, |Gi|
is the number of such sequences, and pi,j is the p-value of the
MBLASTX hit of read j to sequence g (or 1 if no such hit
occurred), calculated from the E-value as p=1-e2E. That is, the
relative abundance of KO i in a metagenome is the number of
reads j that map to a gene sequence in the family, weighted by the
inverse p-value of each mapping and normalized by the average
length of all gene sequences in the orthologous family. Compar-
isons among alternative weighting schemes (bit score, inverse E-
value, and sigmoid-transformed E-value) suggested that the
specific method by which multiple BLAST hits were combined
had little effect on outcome (Supplemental Figure S3). Although it
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was surprisingly unnecessary to normalize by average gene family
length in order to recover accurate pathway abundances
(Supplemental Figure S1), this step was critical in inferring
accurate gene family abundances (Supplemental Figures S3–4).

Assigning gene families to pathways and modules
For each sample, the process above assigns each KO family a

relative abundance; KOs are then consolidated into one or more
pathways (or modules) using MinPath [22]. MinPath defines each
pathway as an unstructured gene set and selects the fewest
pathways that can explain the genes observed within each
community. More specifically, HUMAnN associates each KO
family i with a vector of relative abundances w= [wi1, wi2, …] in
each metagenome. For the HMP, KOs were then assigned to zero
or more pathways and modules (both as defined in KEGG) using
MinPath v1.2 [22]. KOs assigned to two or more pathways/
modules are effectively duplicated and their abundance included
in each; this results in two independent vectors of abundance
tuples of the form (KO, pathway ID) and (KO, module ID) for
each metagenome. More formally, each sample is at this stage
represented as a vector wp= [wj1,p1, wi1,p2, wi2,p1, wi2,p2, …], where
wi,p=wj for all pathways p, and an analogous wm for modules.
For evaluation purposes, best-BLAST-hit pathway and module

assignments in Supplemental Figures S1–3 were performed using
only best BLAST hits, without weighting by quality of hit,
normalization by gene sequence length, maximum parsimony
assignments by MinPath, or the additional HUMAnN steps
described below. Each best-BLAST-hit was counted once and
duplicated, as for HUMAnN, into all pathways or modules within
which the targeted gene occurred. For additional evaluations with
best-BLAST-hit in combination with other HUMAnN processing
steps, see Supplemental Figure S4.

Filtering pathways by taxonomic limitation with copy
number normalization
We found an additional module/pathway filter step to be useful

in removing false positive pathways selected by MinPath.
Specifically, by retaining a very approximate organismal abun-
dance profile of gene families hit during the initial BLAST process,
HUMAnN is able to remove pathways in gross disagreement with
observed taxa in an unsupervised manner. This is performed
leniently in order to be minimally disruptive in e.g. microbial
communities rich in uncharacterized organisms, and often results
in depletion of false positive metazoan pathways. Specifically,
taxonomic limitation is performed by removing only (KO, ID)
tuples for which the same KO was assigned to multiple pathways
or modules. For each sample, approximate abundances for each
organism o in KEGG were calculated as a sum over all weighted,
normalized BLAST hits to sequences from that organism:

wo~DGoD
X

g[Go

1

DgD

X

j

1{pg,jP

g0
1{pg0 ,j

Each pathway/module was then assigned an approximate
expected relative abundance by summing wo values over all
organisms’ genomes in which it was annotated. Finally, any (KO,
ID) pair with two or more IDs and corresponding to a pathway/
module with observed relative abundance below the average
expected abundance for that ID was removed. That is, for do,p=1
if pathway p was annotated to organism o in KEGG and 0
otherwise, a pathway’s expected abundance was:

ep~
X

o

Lo,pwo

and all wi,p1 such that wi,p2.wi,p1.0 and wi,p1v!eep were set to zero.
Median and inter-quartile range cutoffs were also evaluated for
this limitation process and the settings described here were
retained due to optimal performance on synthetic data (see below
and Supplemental Figure S1).
When performing this step, HUMAnN can additionally use the

data on approximate taxonomic composition to divide each gene’s
abundance by its expected copy number in the detected
organisms, providing a degree of additional normalization (as
gene family copy number should not influence the abundance of
pathways in which they’re carried). This contrast is reflected in
Supplemental Figure S1 as ‘‘Tax’’ and ‘‘TaxC,’’ respectively. As
shown by our evaluation, the taxonomic limitation process both
with and without copy number normalization substantially
reduced false positive pathway detections caused by gene families
that participate in multiple processes.

Smoothing pathways by gap filling
Taxonomic limitation was used by HUMAnN to reduce false

positive pathways, and we found a small degree of replacement or
‘‘gap filling’’ of certain missing genes to likewise reduce false
negatives. A small number of low abundance genes within
otherwise abundant pathways often occurred due to noise or poor
BLAST hits. Biological gap filling was added to increase the
effective contribution of unobserved members of otherwise
abundant pathways, although this had a minimal impact on
overall performance in most communities. Within each retained
pathway/module ID, KOs with relative abundance 1.5 inter-
quartile ranges below the pathway median were boosted to an
effective abundance equal to median for purposes of subsequent
calculations. That is, for all pathways p such that there existed
some wi,p.0, let ~wwi,p be the lower inner fence of wi,p over all iMp,
and each wi,p for iMp was set to max(wi,p, ~wwi,p). Add-one and
Witten-Bell smoothing [29] were also evaluated as alternative
methods for gap filling independent of prior biological knowledge;
add-one replaces missing genes in abundant pathways with a
constant value, and Witten-Bell replaces missing genes sample-
wide with a small probability mass estimated from abundant
genes. However, neither was retained due to a lack of improve-
ment on synthetic data (Supplemental Figure S1).

Pathway/module coverage and abundance
The final outputs for each sample were thus coverage

(presence/absence) and abundance values for KEGG modules
and pathways. These two types of entities are quantified somewhat
differently by HUMAnN, but with equivalent semantics. Pathways
are defined as unordered sets of orthologous gene families;
modules are defined by KEGG as combinations of required,
optional, or complementary genes in notation resembling
conjunctive normal form. In both cases, coverage is calculated
to indicate the likelihood that all genes needed to operate the
pathway or module are present; abundance is calculated as the
average copy number of the pathway or module’s operational
subset. The definition of ‘‘operation’’ changes since pathways, as
unordered sets, are assumed to include redundant genes (which
are not explicitly indicated), whereas alternative means of
accomplishing a specific metabolic module can be explicitly taken
into account.
Thus each pathway’s coverage and abundance were calculated

fairly simply. Given the vector wp, coverage for each pathway p in

Metabolic Reconstruction for Metagenomic Data
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a sample was calculated as the fraction of KOs in the pathway that
were confidently present, specifically with abundance greater than
the overall sample median. That is:

covp~
1

DpD

X

i[p
L(wi,pw~wwi,p)

Pathway abundance was calculated as the average of the upper
half of its individual gene abundances, in order to be robust to low-
abundance alternative enzymes; that is:

abdp~
2

DpD

X

i[½p=2"
wi,p

for [p/2] the most abundant half of wi,p.
Modules were determined to be covered only if each gene in at

least one path satisfying the module was confidently present.
Specifically, given the vector wm, coverage for each module m in a
sample was calculated as the harmonic mean of the X2 CDF with
~wwi,m degrees of freedom evaluated at wi,m for each required iMm,
maximizing over optional genes i and alternative submodules.
That is, the probability of each gene family i being present in
pathway p by chance was assigned based on the sample-wide
median abundance ~wwi,m (thus adjusting for sequencing depth).
This has the effect of strongly penalizing low-abundance genes, i.e.
a module could not be present without all its constituent required
gene abundances being confidently nonzero. Module abundances
were calculated more simply as the harmonic mean of the sample
gene family abundances wi, m, replacing pathways’ arithmetic
means since alternative enzymes are explicitly known and taken
into account. These choices of parameterization both for pathways
and for modules were again validated using multiple synthetic
communities (Supplemental Figure S1).

Tests for significant associations with subject phenotype
and sample metadata
Three classes of statistical tests were used to assess metabolic

variability across the human microbiome. First, pathways and
modules differentially abundant in at least one of the seven
analyzed body sites were determined by the LEfSe system for
metagenomic biomarker discovery [23]. These differences were
summarized into overall patterns of variation using principal
component analysis on a matrix of average module abundances
per body site, Winsorized at 20% (a robust arithmetic mean [30]),
filtered at a minimum of 0.01% in at least one site, and normalized
to z-scores. Since LEfSe is not appropriate for HUMAnN’s binary
pathway coverage scores, we determined site-enriched or under-
enriched pathways and modules as follows: a module was in
aggregate present at a site if it occurred with coverage $0.9 in
$90% of the site’s samples; absent if it occurred with coverage
#0.1 in $90% of samples; and differential if it was present in at
least one site and absent in at least one other. Pathways were
analyzed identically using a$0.5 coverage criterion, since no large
pathways consistently had coverage $0.9.
The third test described here associated pathway and module

abundance not with human microbiome body sites, but with one
or more of the subject clinical metadata variables described by the
HMP [9]. These included continuous descriptors of each sample
(e.g. subject age, body mass index, vaginal introitus and posterior
fornix pH for women, etc.) as well as categorical variables (e.g.
gender or location, see Supplemental Table S1). Pathway and
module abundances were associated with these metadata first by

stratifying by body site. Within each body site, each pathway/
metadata pair present above 0.01% in at least 10% of samples was
independently tested using Spearman’s r for continuous metadata
and the Kruskal-Wallis nonparametric ANOVA for categorical,
after removing any outliers outside of the upper or lower inner
fences. The resulting p-values were corrected using the Benjamini-
Hochberg method within each body site and thresholded at a
minimum FDR q,0.1.

Synthetic mock communities for validation
Four in silico synthetic communities were constructed to validate

parameter choices and to determine HUMAnN’s predictive
accuracy. Inspired by Mavromatis et al [31], we generated four
communities, two of low complexity (LC, 20 organisms) and two of
high (HC, 100 organisms). One HC and one LC had even
distributions with all organisms at equal abundance, and the
remaining two had log-normally distributed random abundances
(see Supplemental Table S2). Organisms for the LC communities
were manually selected from KEGG v54 curated reference
genomes associated with the human microbiome, and HC
communities were randomly generated from all manually curated
bacterial genomes. A MAQ [6] error model was constructed using
one lane of Illumina reads and quality scores; 106 synthetic reads
were generated from this error model per organism. These were
randomly mixed in proportion to organismal abundances to a total
of 106 100 bp reads per community. These synthetic reads were
BLASTed as above, with any hits at .90% identity discarded so
as to prevent overestimates of accuracy based solely on well-
characterized genomes.
Finally, gold standards of pathway/module coverage and

abundance were constructed for each community by listing A)
the pathways/modules annotated to at least one organism in the
community and B) multiplying these by the organisms’ abun-
dances, respectively. Inferred pathway and module coverages and
abundances were also calculated by applying HUMAnN to these
synthetic reads as described above for the HMP samples. All
software implementing these processes and the specific error
model, synthetic communities, and data used for HUMAnN in the
HMP are available at http://huttenhower.sph.harvard.edu/
humann.

Data and availability
All metabolic reconstructions generated by this study are

publicly available at http://hmpdacc.org/HMMRC. Taxonomic
abundances derived from shotgun data are provided at http://
hmpdacc.org/HMSCP, and input Illumina reads at http://
hmpdacc.org/HMIWGS. The open source HUMAnN software
can be obtained at http://huttenhower.sph.harvard.edu/humann.

Results

We first validated HUMAnN’s ability to accurately quantify
microbial community function using a collection of four synthetic
metagenomes. We proceeded to reconstruct metabolic pathways
and modules for 741 human microbiome samples comprising a
total of 3.5 Tbp of sequence from 18 body habitats from 102
subjects assayed metagenomically by the HMP. 686 of these
samples passed quality control (see [9]), and after grouping
bilateral habitats (left and right retroauricular creases), seven
habitats included at least 25 samples: buccal mucosa, supragingival
plaque, and tongue dorsum in the oropharynx; anterior nares and
retroauricular crease representing airways and skin; stool samples
representing the gut; and the vaginal posterior fornix. These
habitats together comprised the 649 total microbial community
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samples analyzed here (Table 1). In the following sections, we
report on their metabolic reconstructions using modules and
pathways, discuss instances of inter- and intra-habitat functional
variation, and present examples relating community function to
microbial abundances and to host phenotype.

Accurate pathway coverage and abundance
reconstructions from short DNA reads assessed in
synthetic communities
To assess the accuracy of HUMAnN’s metabolic reconstruc-

tions, we constructed four synthetic metagenomic datasets with
known functional profiles. Patterned on the study of Mavromatis
et al [31], these included two low-complexity communities with 20
organisms each and two high-complexity with 100 organisms
each. The former were manually chosen from representatives of
the human microbiota, and the latter were randomly selected from
KEGG high-quality bacterial genomes (see Methods, Supplemen-
tal Tables S2–3). Likewise, two of the communities contained
organisms with equally distributed abundances, and two possessed
lognormally distributed abundances to mimic physiological
communities. A gold standard of functional modules and pathways
as defined by KEGG [26] was assembled, comprising 13,980 gene
families, 370 total small metabolic modules, and 309 large
pathways. 251 and 303 of the latter, respectively, included at
least four genes and were used here. Their presence in these
communities was determined from KEGG genome annotations
for the chosen organisms; these were used to evaluate a naive best-
BLAST-hit metabolic reconstruction as compared with HU-
MAnN’s inferences. In all cases, BLAST hits with .90% identity
were discarded, preventing overconfident evaluations due to the
gold standard’s use of only well-characterized genomes and forcing
a conservative estimate of HUMAnN’s expected performance.
In all four communities, HUMAnN recovered metabolic

module abundances with a correlation above 0.88 and a partial
AUC at 10% false positives (pAUC10) above 0.73 (Figure 2,
Supplemental Figure S2). Performance was generally comparable
for large pathways (ave. r=0.90 sd. 0.02, pAUC10=0.85 sd.
0.05), and in all cases HUMAnN outperformed reconstructions

based on the best BLAST hit alone (Supplemental Figures S1–2).
Although HUMAnN was not optimized to recover individual gene
family abundances, it performed comparably to best-BLAST-hit at
a correlation of 0.93 sd. 0.01 among the four communities. These
synthetic communities were further used to refine the inclusion of
computational steps within the HUMAnN pipeline and to assess
the robustness of their parameter settings. For example, smoothing
of low-abundance gene family frequency estimates proved to have
surprisingly little overall impact, whereas MinPath was particularly
critical for accurate pathway coverage determination (Supplemen-
tal Figure S1).
Within these four synthetic communities, only a few classes of

gene families, modules, and pathways were recovered incomplete-
ly by HUMAnN. In the most complex staggered community,
erroneous gene family calls included just 29 proteins missed as
false negatives (of 5,640 total, 1.3% at abundance .1024),
typically short proteins ,150AAs such as K13771 (the Rrf2 family
transcriptional repressor) or K10533 (limonene-1,2-epoxide hy-
drolase). Likewise only 7 false positive proteins were detected
based on closely related orthologs or strongly conserved domains
(0.027% at .1024), including K08721/OprJ (confused with
K07796/cusC, blastp e= 3?10282) and K11187/peroxiredoxin 5
(confused with peroxiredoxin 2, blastp e = 2?10219). False positive
modules (8, 3.3% at a 1024 cutoff) were near-uniformly small gene
sets overlapping with modules truly present (e.g. the urea cycle
M00029, with five total genes and four present in the community).
Conversely, false negatives (9, 3.7%) were most often small
pathways present only in very low-abundance organisms, e.g.
bicarbonate transport (M00321, four genes present at 0.022%
relative abundance) or mannopine transport (M00301, four genes
at 0.0014%). We specifically tuned HUMAnN to prefer false
negatives to false positives based on these communities (see
Supplemental Figure S2), and Figure 2 demonstrates the minimal
impact of this choice even at low recall in the most complex
community.
Fortunately, 89% of high-complexity (staggered) and 93% of

low-complexity (even) modules were correctly called present or
absent, and their inferred abundances were consistently well-

Figure 2. Accuracy of inferred module abundances and coverages using four synthetic metagenomes. An evaluation of HUMAnN’s
performance on a high-complexity mock community with a randomized log-normal distribution of 100 organisms as compared to an approach using
the single best BLAST hit for each gene family and direct assignment to metabolic modules. Both A) correlation of inferred abundances (arcsine
square root transformed for variance stabilization) and B) partial AUC at 0.1 false positive rate are high, outperforming single best BLAST hit functional
reconstruction of microbial communities.
doi:10.1371/journal.pcbi.1002358.g002
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correlated with the gold standard (Figure 2). These unsurprisingly
included large, well-conserved pathways such as the ribosome
(M00178) and polymerase (M00183), but also a variety of smaller
specialized modules such as sugar transport (M00207, four genes,
present in staggered/high-complexity at 0.25% and detected at
0.28%) and biotin biosynthesis (M00123, four genes, present at
1.7% and detected at 1.7%). Almost all large pathways were
quantified with high accuracy, again due to their larger
metagenomic footprint and detectability; examples included the
TCA cycle (ko00020, 53 genes, present at 1.1% and detected at
1.2%) and base excision repair (ko00240, 152 genes, present at
1.1% and detected at 1.1%). In contrast, false positive rates for the
best-BLAST-hit approach exceeded 23% of modules in the low-
complexity community. Overall, as summarized in Figure 2 and in
Supplemental Figures S1–3, this evaluation on synthetic meta-
genomes established that HUMAnN can accurately reconstruct
community metabolic pathways and modules directly from short
reads.

Module-centric metabolic reconstruction of the human
microbiome
We employed this optimized system to study microbial

metabolism at seven body sites spanning the human microbiomes
of 102 subjects. HUMAnN was applied to these data as described
above, yielding the relative abundances and coverages both of
functional modules and of full pathways, as well as the abundances
of individual orthologous gene families. We first focused on
analysis of small metabolic modules (ave. 11.2 sd. 9.2 genes), and
232 such modules were detected in at least one of the 649 samples;
larger, more broadly defined pathways were also reconstructed
from the HMP data and are described below. Both modules and
pathways were reconstructed by HUMAnN as coverages (pres-
ence/absence calls on a zero-to-one scale) and as relative
abundances for each sample (Supplemental Tables S4–5). The
resulting metabolic reconstructions were complementary to the
organismal compositions of the communities (see [24]) and
provided a link between microbial environment and metagenomi-
cally prevalent pathways and metabolic potential.
In these data, we observed a core of 16 metabolic modules

present at .90% coverage in .90% of samples (Supplemental
Table S6), in contrast to essentially no specific microbes found to
be core in this population [1]. However, in agreement with a gene
family core from the gut microbiomes of an independent cohort
[11], these modules comprise the functionality essential for
microbial life: transcription (M00183, M00049-52), translation
(M00178, M00360), transport (M00207, M00222, M00239),
central carbon metabolism (M00001-2, M00006), and energy
production (M00120, M00125, M00157, M00164). By relaxing
the coverage threshold to 30% (expected to introduce few, if any,
false positives; see 4.4), only 8 additional modules were included,
demonstrating robustness to this threshold. Two of these extended
the categories listed above; the remainder comprised sn-Glycerol
3-phosphate transport (M00198, a membrane lipid precursor
[32]), the mannose and trehalose phosphotransferase systems
(M00270 and M00276), spermidine/putrescine transport
(M00299), early terpenoid biosynthesis (M00364), and threonine
biosynthesis (M00018), the only amino acid module to meet this
prevalence threshold. It should be noted that these 24 core
modules are not the most abundant; for example, sn-Glycerol 3-
phosphate transport reaches only a mean relative abundance of
0.001 sd. 0.002 across all samples, compared with the ribosome
(M00178) at 0.03 sd. 0.008. Nor were they evenly abundant
among habitats, as examples including phosphate and sugar
transport (M00197 and M00222) are highly enriched in the

posterior fornix as discussed below. The organisms performing the
more specialized processes in this list also vary among habitats.
Spermidine and putrescine are metabolized by the abundant
Streptococcus spp. in the oral community, for example, processes that
can play a role in halitosis [33]. However, this metabolic module is
not present in reference genomes for the skin community’s
abundant Corynebacterium and Propionibacterium spp. [8,26], and its
abundance is instead correlated with that of the Staphylococcus
reference genomes [24] (Spearman r= 0.87, n= 26, p = 1.8?1026).
Although this stringent core is itself moderately small, most other
modules were consistently present or absent across body sites, with
only 24 showing strongly differential coverage among habitats
(Figure 3).
To investigate microbial functions over- or under-enriched

within specific niches of the human microbiome, we determined
modules differentially abundant in at least one body site using the
LEfSe biomarker discovery suite [23] (Figure 3). Over two thirds
(168, 67%) of detected metabolic modules varied significantly in
abundance in at least one habitat, demonstrating the uniqueness of
each body habitat’s microbial environment (Supplemental Table
S7). In addition to the detailed examples below, these included
such diverse processes as arginine transport (M00229) and
methionine biosynthesis (M00017) enriched in all three oral
habitats, an enrichment for fungal transcription (M00181) and
translation (M00177) in the skin and airways, and a strong
depletion of pyruvate (M00307) and second carbon oxidation
(M00011) in the anaerobic gut and vaginal sites. Several overall
patterns of co-variation are shown in Figure 4, where the first
principal component captured primarily eukaryotic modules found
only on the skin and often nares (including, intriguingly, vitamin D
biosynthesis, M00102). Interestingly, it also included metabolism
abundant throughout the digestive tract (i.e. oropharynx and gut),
such as putrescine (M00300) and sulfate transport (M00185) [23].
The second principal component described functionality depleted
in the low-complexity vaginal habitat, and the third comprised
processes enriched in the gut, both discussed below. The three oral
habitats are often functionally similar (apparent in components 1–
3), and the fourth emphasized modules unique to the tooth
surface, the only microbially colonized hard surface assayed here,
in contrast to the mucosal and tongue soft tissues [23]. While the
skin and nares were likewise often similar, the final principal
component shown in Figure 4 differentiates the two. These
summaries show that while a wide range of microbial metabolism
is present throughout the human microbiome, specific subsets of
this functionality are selected for by the unique combinations of
nutrients, immune pressures, and environmental exposures present
at each body site.
Ecological and phylometagenomic studies of organismal abun-

dance often employ summary statistics including species richness,
evenness, or diversity to characterize and compare communities
[34]. These quantify how many distinct types of organisms occupy
a community, the uniformity of their relative abundances, or both,
respectively. These measures were historically adopted from
macroecology into microbial ecology, and while the former has
included assessments of functional diversity [35,36], it has been
proposed for microbial communities [37,38] but not yet widely
adopted in metagenomic studies. Functional diversity measures
are thus calculated by HUMAnN as a novel means of profiling
microbial community structure, with some differences from their
applications in macroecology as described in the Discussion. A
simple measure of richness is calculated by summing module
coverage scores within each sample [34], and Pielou’s evenness
[39] and the Shannon and inverse Simpson [34] diversity
measures are calculated from module abundances. As observed

Metabolic Reconstruction for Metagenomic Data

PLoS Computational Biology | www.ploscompbiol.org 8 June 2012 | Volume 8 | Issue 6 | e1002358



qualitatively by Turnbaugh et al [5] and analyzed quantitatively
by the HMP [1], microbial metabolic function differs significantly
less among subjects than does organismal diversity within each
habitat. Ecological summary statistics of community function may
thus represent a unique descriptor of metagenomic data comple-
mentary to standard organismal diversity measures.

Association of community function with microbial
environment and host phenotype: glycosaminoglycan
degradation is uniquely abundant in the gut, and
multiple pathways correlate strongly with vaginal pH
Modules performing glycosaminoglycan (GAG) degradation in

the gut were among those most differentially abundant among
habitats. These included chondroitin sulfate degradation, derma-
tan sulfate degradation, and keratan sulfate degradation, as well as
the related uronic acid metabolism. All four of these modules are
involved in animal proteoglycan degradation for microbial
carbohydrate utilization [40], and they were present in high
abundance in the gut (coverage .0.9 in 136 stool samples, 100%)
and rare or completely absent in other body sites (coverage ,0.1
in 131 samples, 26%; abundance ,0.001 in 512 samples, 99%).
This degree of specificity was unusual in the HMP dataset - as
mentioned above, relatively few modules were present or absent in

only one such body site. However, it provides a readily identifiable
example of community metabolism associated with a specific
clade, as glycosaminoglycan degradation is known to be enriched
among the Bacteroides species [5,41]. The model B. thetaiotaomicron
alone, for example, carries nearly 90 different polysaccharide
utilization loci, many targeting dietary starches, but at least 16
specific to host mucin O-glycan degradation [42]. As the Bacteroides
are one of the predominant genera in the gut microbiome [43], are
largely characteristic of only that body site, and are abundant in
the HMP gut samples [1], they are highly likely to be responsible
for this niche-specific metabolism.
HUMAnN’s reconstruction further allowed examination of the

individual orthologous gene families participating in these
interrelated pathways. Chondroitin and dermatan sulfate degra-
dation share the greatest overlap with 3 KO families, including
beta-glucuronidase (K01195). Beta-glucuronidase is prevalent in
the gut, averaging 0.03% sd. 0.01% in our data, in contrast to all
other nonzero KOs (ave. 0.007% sd. 0.03%). It is one of the
primary enzymes involved in metabolism both of food matter and
of pharmaceuticals [44], as well as mediating effects ranging from
dietary cancer risk [45] to antibiotic activity [46]. This enzyme
also links uronic acid metabolism with the rest of pentose and
glucuronate processing, the former being the most abundant
module of these gut-specific examples. Uronic acid, like the GAG

Figure 3. Metabolic modules differentially present or abundant in at least one body habitat of the human microbiome. Metabolic
modules and pathways from the KEGG BRITE hierarchy [26] found to be differentially abundant (inner cladogram) or differentially covered (outer ring,
presence/absence) in the human microbiome. The former were determined using LEfSe [23] and the latter by presence in at least 90% of samples
with $0.9 coverage or absence in at least 90% with #0.1 coverage. Differentially abundant modules are colored by their most abundant body
habitat. 168 significantly enriched module abundances were detected, in contrast to only 24 differentially covered.
doi:10.1371/journal.pcbi.1002358.g003
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Figure 4. Patterns of abundance of functional modules in 649 metagenomic samples covering seven body habitats. A heatmap of the
first five principal components (.95% variance) of module abundances averaged and normalized over each of the seven body sites. Cell color
indicates positive (yellow) or negative (blue) variation, with the adjacent Scree plot showing the total variance in each component. The three most
positively and negatively covarying modules contributing to each component are shown. Briefly, the first principal component differentiates the skin
and gastrointestinal tract, the second differentiates the vaginal habitat, the third the gut, the fourth the supragingival plaque versus other oral sites,
and the fifth the nares versus skin.
doi:10.1371/journal.pcbi.1002358.g004

Figure 5. Gene- and module-specific reconstruction of glycosaminoglycan degradation specific to the gut microbiota. A) Individual
gene family abundances for four gut-specific high abundance modules: chondroitin, dermatan, and keratan sulfate degradation (glycosaminoglycan
degradation, also including heparan sulfate), and uronic acid metabolism (occurring directly downstream in the pentose and glucuronate
interconversion pathway). Relative abundance is shown from dark (high) to light (low) green, averaged over 136 stool microbiomes, with enzymes
not present in the KEGG Orthology in gray. Heparan degradation is absent specifically due to the lack of heparanase (K07964-5), but no one gene
family is otherwise responsible for the high abundances of the remaining four modules in the gut, despite several shared enzymes (e.g. beta-
glucuronidase, K01195). B) Relative abundances of all five modules in all body habitats and samples, demonstrating gut-specific prevalence. Despite
the close connections among these pathways, they show distinct patterns of relative abundance specific to the gut and covary at very low
abundance in the oropharynx.
doi:10.1371/journal.pcbi.1002358.g005
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sulfates, is a component of dietary fiber and glycoproteins
degraded by intestinal bacteria [42]. In contrast, heparan sulfate
degradation, an additional module included in glycoprotein
degradation as defined by KEGG, is present at only low
abundance among all body sites, in spite of sharing nearly half
of its enzymes with the other three modules (ave. 7?1024% sd.
0.003% in the gut, ,1025% elsewhere). This is due exclusively to
the absence of the module’s input enzyme, heparanase (K07964-
5), a typically eukaryotic gene family implicated in tumor
metastasis [47]; the healthy commensal microbiota may thus lack
this activity in order to avoid undesirable inflammatory and
immune response in the gut [48]. Conversely, the abundances of
the four gut-specific GAG degration modules were not driven by
one specific gene family (Figure 5), ranging from the most
abundant beta-hexosaminidase (K12373, ave. 0.3% sd. 0.1%) to
the low-abundance outlier L-iduronidase (K01217, ave. 2?1025%
sd. 3?1027%). Given this ubiquity, it should be noted that GAGs
possess wide-ranging activities including anti-cancer [49] and
antimicrobial [50] properties; the abundance of degrading
enzymes in the gut of any particular individual thus has the
potential to affect the efficacy of GAG drugs [41,51]. The
specificity and prevalence of these four modules in the gut
microbiota provides one example of HUMAnN’s ability to identify
community metabolism across hundreds of samples and link it to
individual microbial gene families.
We next examined modules differentially abundant in the 53

HMP vaginal posterior fornix samples (Supplemental Table S7).
Enriched functions included phosphate, glutamate/aspartate, and
phosphotransferase transport systems (M00222, M00230,
M00276, M00277, M00287); other functions such as arginine
and amino acid transport (M00229, M00237) were significantly
depleted. The posterior fornix community’s metabolic pattern was
perhaps the most distinct of the habitats examined here, in
agreement with the high degree of biochemical specialization (and
thus intercellular transport) observed in the low-diversity vaginal
community [7]. Perhaps most interestingly, the misleadingly
labeled ‘‘nitrogen fixation’’ module (M00175) was overabundant
in the posterior fornix, as well as in buccal mucosa and stool. This
module can be driven by any one of four gene families: K00531,
K02588, K00536, or the complex K02586+K02591. The low
number of genes involved would render its detection prone to
noise; however, as described below, this module is detected very
consistently only in women with vaginal pH$4.0, and then only
due to either K00536 (Enzyme Class EC 1.19.6.1, nitrogenase -
flavodoxin) or, in a minority of cases, K02588 (EC 1.18.6.1,
nitrogenase). These two gene families were mutually exclusive
when detected, and the most common family K00536 is only
included in the current reference genomes for Bacillus cereus, B.
thuringiensis, and the archaeon Archaeoglobus fulgidus, none of which
were detected in any vaginal samples [9]. While it seems unlikely
that these enzymes are contributing to canonical nitrogen fixation
per se, flavodoxin has been observed to be involved in the catalysis
of nitric oxide production in the gut microbiota [52,53], and
disrupted amine production in conjunction with elevated vaginal
pH is a standard symptom of bacterial vaginosis [7]. In
combination with the vaginal pH-associated modules below, this
provides one example of microbial functionality linked to host
phenotype that could not be recovered based on reference
genomes, community structure, or phylometagenomic assays
alone.
Given their lower diversity, the functional profiles of these

vaginal microbiomes proved to be particularly informative when
associated with host phenotype and microbial membership.
Taxonomic profiles detailing the abundances of microorganisms

in these communities were available from the HMP’s 16S rRNA
gene surveys [9], from mapping of metagenomic sequences to
reference genomes [24], and from previous studies of the vaginal
flora [7]. Specifically, Ravel et al [7] showed the presence of five
microbiome types among the vaginal communities of reproductive
age women, with four clusters dominated by different Lactobacillus
species and one with low levels of all lactobacilli. Communities
dominated by L. crispatus corresponded to lower pH (,4), which
was also the case in the HMP posterior fornix data [1]. We
observed a very tight co-clustering of the metabolic repertoires of
these communities with the abundances of these five groups’
characteristic species (Supplemental Figure S5), suggesting that in
this specialized microbial niche, there is a particularly close
association of community structure and function. To expand on
this, we performed a comprehensive test of all 232 modules against
the HMP’s clinical metadata (phs000228.v3.p1 [54]) to uncover
associations between microbial metabolic profiles and host
phenotype. Available metadata included gender, age, BMI,
geographical location, and others, as well as the pH of the
posterior fornix and vaginal introitus in women. The latter were
again strongly linked not only to community structure, but also
with the abundances of several metabolic modules. Specifically,
pH correlated with the abundances of N-acetylgalactosamine II
phosphotransferase (M00277), proline biosynthesis (M00015), and
again ‘‘nitrogen fixation’’ (M00175), while phosphate transport
(M00222), peptide/nickel transport (M00239), and lysine biosyn-
thesis (M00016) were associated with lower pH. Species within the
Lactobacilli are known to specialize in exactly these areas of nutrient
uptake and carbohydrate metabolism [55,56], and many of these
differences can be observed directly within finished genomes (e.g.
lysine biosynthesis is present in L. crispatus and lacking in L. gasseri
[26]). It is currently near-impossible to obtain complete genomes
for all organisms in complex communities, however, again
emphasizing the utility of metagenomic functional reconstruction
for direct association of community function with habitat and host
phenotype.
A surprising feature of these data, however, was the observation

of few other robust correlations between microbial metabolic
abundances and host phenotype outside of the vaginal community,
in contrast to recent studies of the gut microbiota [12]
(Supplemental Table S1). Of all phenotypic associations with
metabolic modules tested in the HMP stool microbiomes, only two
reached significance (Spearman FDR q,0.1), links between
diastolic blood pressure and nickel transport (M00246) and
between pulse rate and methionine degradation (M00035).
Although these are within the range of false positives expected at
this level of stringency, recent observations of the gut microbiota in
atherosclerosis [57] have also detected borderline significant shifts
in organismal composition. Among other body sites, the only
additional associations were correlations with BMI among the skin
community: lysine biosynthesis (M00016) and sulfate transport
(M00185). Although the retroauricular crease represents our
smallest sample size (n = 26), these were significantly stronger
(p,1024) than any metabolic association with BMI in the stool
community (n = 126, lowest p,1023), with the metagenomic
abundance of lysine biosynthesis consistently increasing and that of
sulfate transport decreasing at greater BMI. Additional associa-
tions beyond this false discovery rate are included in Supplemental
Table S1 and include several modules detected only at higher read
counts, emphasizing the need for sufficient sequencing coverage
when rare metabolic functions (as opposed to abundant taxa) are
of interest. As has been shown for genotype [58] and gene
expression [59] data, phenotype can be difficult to reproducibly
associate with high-dimensional genomic or metagenomic fea-
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tures, particularly in large cohorts with complex population
structure or when using multivariate models [60]. It is also critical
to note that the HMP population was strictly screened for disease-
free individuals [9], increasing phenotypic homogeneity and
precluding the detection of microbial function perturbed in
dysbioses. Further studies targeted to specific phenotypes and
microbial communities of interest will be necessary to better
understand the relationship between human microbiome mem-
bership, metabolism, and host phenotype.

Relating larger metabolic pathways to functional
modules and gene families: implementation of metabolic
processes varies by niche
The analyses described up to this point, and the primary outputs

of HUMAnN for metagenomic samples, focus on the coverages
and abundances of small functional modules and individual gene
families. Such modules are typically defined to carry out a specific
metabolic step, such as production of a single amino acid from its
immediate precursor. They contain an average of only ,10 genes
and are structured to include both ‘‘and’’ relationships (multiple
gene products that must function together in a complex or
sequential pathway) and ‘‘or’’ relationships (alternative enzymes
that can catalyze the same reaction). However, KEGG and other
functional catalogs also define large pathways with up to several
hundred genes that lack the complex combinations of relationships
used to define small modules. HUMAnN can additionally recover
coverages and abundances for any such pathways represented by
unstructured sets of gene family identifiers. To this end, we
analyzed 297 KEGG pathways present in the seven HMP body
sites, containing 52 sd. 48 genes on average. While HUMAnN
successfully recovered coverage and abundance information for
these larger pathways in the HMP data (Supplemental Tables S8–
9), we often found them to be too broadly defined for adequate
analysis of mixed microbial communities, arguing for a focus on
smaller functional modules, biosynthetic clusters [61], and
orthologous gene families.
Demonstrating these larger pathways’ lack of specificity, 190

(64%) were at most 50% covered among all 649 samples; that is,
although portions of the pathways were detected, at least half of
the associated gene families were missing in every assayed
microbial community. Of the remaining 107 pathways, 96 (90%)
had a coefficient of variation below one, indicating variation in
coverage lower than their mean across all samples. In other words,
only small portions of most KEGG pathways are present in the
human microbiome. Those pathways that were consistently
present tended to be so broadly defined (e.g. ko02060, phospho-
transferases, or ko00030, the entirety of pentose phosphate) that
they provided too coarse a view with which to observe metabolic
variation and niche specialization among body sites. Nevertheless,
applying the same significance criteria as described above, 196
pathways (66%) were differentially abundant in at least one body
site using LEfSe. These are detailed in Supplemental Table S7 and
are for the most part analogous to the more specific small modules
described above.
In contrast to this variation, however, we were again able to

recover a subset of ‘‘core’’ pathways with moderate coverage and
low variability across all sites of the human microbiome. The
pathways with the lowest coefficient of variation across all samples
in our data represented surprisingly diverse biochemistry, includ-
ing terpenoid biosynthesis (ko00900), RNA degradation (ko03018),
pyruvate metabolism (ko00620), and one-carbon metabolism
(ko00670). These pathways were all present at an average of at
least 0.5% relative abundance over all samples, with average
coverages from 41% (of 75 genes in ko03018) to 77% (of 73 genes

in ko00620). Each of these pathways followed a very characteristic
pattern: their overall pathway abundance remained near-constant
across body site niches, while the modules implementing each
pathway varied significantly. Terpenoid biosynthesis, for example,
can be performed either by the mevalonate (module M00095) or
by the non-mevalonate (M00096) module; both were present in
the oropharynx and skin, only the former was present in the
posterior fornix, and only the latter in the gut (Supplemental Table
S5). Likewise, pyruvate metabolism includes portions of the citric
acid cycle (M00173), absent from the posterior fornix and rare in
the gut and skin; pyruvate oxidation (M00307), absent from the
posterior fornix and rare in the gut; and pyruvate ferredoxin
oxidoreductase (M00310), present only in the nares and gut. This
trend complements the relationship between organismal and
functional diversity described above and by the HMP overall [1],
in which the communities at each body site of the human
microbiome vary extensively, but the pathways needed for
microbial life within these niches remain relatively stable.
However, this result shows that the specific metabolic modules
implementing stable, broad pathways tend to be specialized within
each body site’s microbial environment.
This pattern extended to individual gene families as well; while

the pathways above demonstrated low variability across all body
sites, other pathways were enriched at specific sites but possessed
low inter-subject variability in the HMP population (Supplemen-
tal Table S9). These include, for example, glutamate metabolism
in the gut (ko00250), which has been previously observed to be
enriched in the stool microbiota [62]. Here, it showed low inter-
individual variability in the gut, although as above, its product
glutamate serves as input for several modules that were
themselves highly variable among subjects. Among others, these
included proline biosynthesis (M00015); glutathione biosynthesis
(M00118); glutathione transport (M00348); and portions of the
TCA cycle (M00009–M00011 and M00311). We determined
individual carbohydrate active enzyme (CAZy) gene families
correlated with these modules by comparing them with CAZy
abundances derived independently from the HMP metagenomic
data [21]. Intriguingly, each of these modules in the gut
correlated significantly (Spearman FDR q,0.05) with multiple
CAZy families, almost none of which included enzymes within
the modules themselves (Supplemental Table S10). In particular,
six CAZy-module pairs had significant positive or negative
correlations in all seven body sites: proline biosynthesis with GH5
(cellulase) and GH18 (chitinase); 2-oxoglutarate ferredoxin
oxidoreductase with GH28 (galacturonases) and GH97 (a-
glucosidase and a-galactosidase); and glutathione transport with
GH3 (b-glucosidase) and GH18.
Summarizing these three results, glutamate metabolism falls

within a class of 57 pathways present in multiple niches within the

human microbiomes sampled here but enriched in specific

environments (e.g. the gut). 101 total large pathways varied little

in site-specific abundance among individuals, but smaller modules

within them (such as proline biosynthesis) showed greater inter-

subject variability. Finally, these module-specific changes in

abundance almost always (99% of all modules) correlated with

one or more individual CAZy gene families detected within the

same metagenome independently of the pathway’s constituent

genes. Together, these data suggest that while the basics of

microbial metabolism remain stable among human microbiome

body sites and individuals, the modules and enzymes operating as

specific metabolic producers and consumers within pathways vary
among environments and subjects to adapt to changing nutrient
and metabolite availabilities [10].
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Discussion

Culture-independent metagenomic sequencing of microbial
communities provides a wealth of data regarding their potential
biological functions, particularly as studied for the human body by
the Human Microbiome Project. Here, we have described the
development of the HUMAnN methodology for high-throughput
metagenomic functional reconstruction and its application to 649
communities from 7 body habitats sequenced as part of the HMP.
Validation of HUMAnN’s accuracy using four additional synthetic
communities of increasing complexity demonstrated its ability to
quantify both pathway presence and relative abundance, with
correlations to true abundances .0.9. When analyzing the human
microbiome, relatively few modules were specifically present or
absent in any one body habitat, but over two thirds varied in
abundance by habitat and 24 were core to all hosts and habitats.
Less variation was evident among hosts, although we demonstrat-
ed one example in which nutrient transport and mechanisms of
central carbon metabolism were strongly associated with vaginal
pH. HUMAnN’s functional reconstructions include the abun-
dances of large, general pathways, smaller and more specific
metabolic modules, and individual orthologous gene families; each
data type proved to show distinct patterns of variation among
body sites and to provide a different perspective on underlying
microbial community function.
Characterization of microbial communities by large-scale

shotgun metagenomic sequencing is a relatively recent advance,
and computational methods for assessing these data in terms of
biological function are under active development. Several previous
studies have analyzed individual reads or assembled contigs using
direct annotation by BLAST to orthologous gene families [5,11] or
to proxy genes [63]. Other computational pipelines such as MG-
RAST [14] and MEGAN [15] do include full pathway recon-
struction, generally using approaches that rely on the single best
BLAST hit for each metagenomic read. Here, HUMAnN scaled
easily to provide module and pathway reconstructions for
.3.5 Tbp of HMP metagenomic data by avoiding metagenomic
assembly and employing an accelerated translated BLAST
implementation, requiring a total of approximately 13,000 CPU-
hours for sequence search and 175 for metabolic reconstruction
(750 and 55K sequences/second, respectively). HUMAnN is not
dependent on any particular BLAST implementation, however,
and provides default support for NCBI BLAST, MBLASTX as
employed here, MAPX (Real Time Genomics, San Francisco,
CA), and USEARCH [27]. In each case, the approximations used
to accelerate search against a functionally characterized ortholo-
gous sequence database are mitigated by considering all read-to-
sequence hits in a weighted manner. This leaves overall gene
family abundance recovery essentially unchanged while improving
full module/pathway recovery, as ambiguous BLAST hits can be
resolved later in the reconstruction process when more informa-
tion is available (Supplemental Figure S2). Further, each of
HUMAnN’s processing modules incorporates one or more types of
additional knowledge, e.g. pathway parsimony by means of
MinPath [22] and subsequent automatic taxonomic limitation
based on BLAST organismal abundance profiles. These steps are
not guaranteed to be optimal in all situations - taxonomic
limitation, for example, might degrade performance in environ-
ments rich in novel or rapidly evolving organisms - but they are
heuristics designed to improve reconstruction in most cases. They
thus generally take advantage of the compositional information
that can be leveraged when combining multiple gene family
sequences into a single module or pathway, decreasing the noise
potentially arising from examining single best BLAST hits.

It should be noted that when analyzing metagenomic data as
described here, HUMAnN reconstructs a profile of a microbial
community’s metabolic potential, not its metabolic activity per se.
The abundances of gene families and pathways inferred by the
system describe only the enzymes encoded by one or more
microbial genomes, and their relationship to realized transcrip-
tional or protein activity may not be straightforward in the absence
of additional metatranscriptomic, metaproteomic, or metameta-
bolomic data [64]. However, these metagenomic gene family and
module abundances are appropriate as inputs into more sophis-
ticated metabolic network and systems biology models, which have
recently begun to incorporate features such as predicted compart-
mentalization, small molecule transport, and multi-organism
interactions in microbial communities [65,66]. HUMAnN as
described here was designed to infer a permissive superset of
community function that does not yet include realized transcrip-
tional activity or organismal compartmentalization, and we hope
to incorporate these features during future work. It should be
emphasized that HUMAnN as currently implemented is appro-
priate for analysis of metatranscriptomic data from short sequence
reads as well, from which it will reconstruct the abundance of
actively transcribed gene families or pathways within a micro-
biome.
The results produced by HUMAnN and analyzed above for the

human microbiome include the application of several community
diversity measures to microbial function. Such measures are
typically applied instead to organismal abundances, where a-
diversity summarizes complexity and types of different organisms
within a community and b-diversity the similarities (or differences)
between multiple communities’ structures [34]. Such organismal
diversity measures have been very successful in describing
properties of the human microbiome in large populations, such
as the greater similarity of children’s and parents’ microbiomes [5]
or reduced microbial diversity in conditions such as Crohn’s
disease [67]. Conversely, ecological functional diversity has been
developed primarily in macroecology, specifically as applied to
phenotypic traits [35,68]. To our knowledge, however, this
represents the first application of a-diversity measures to molecular
function within microbial communities and specifically to the
human microbiome. The HMP consortium has contrasted the
functional diversities reported above with comparable organismal
diversity measures at the genus, species, and strain levels
throughout the human microbiome [1]. Their results suggest that
functional diversity is lower than phylogenetic diversity both
within and between communities throughout the human micro-
biome; that is, the microbes within this human population vary
more than do the biological processes carried by their metagen-
omes. It must be noted that this conclusion speaks so far only to
the disease-free HMP population, however, and only to the subset
of characterized orthologous gene families currently analyzable by
HUMAnN. Further variability in the functional potential of the
microbiota may certainly remain to be found in its substantial
carriage of uncharacterized gene families (estimated as high as
80% [11]) and during disruptions of host health.
A key consideration during our development of the HUMAnN

pipeline was versatility; the software implementation can easily be
extended to assess any functional catalog, characterized sequences,
or metagenomic sequences (e.g. 454 reads). In other analyses by
the HMP, additional protein databases including MetaCyc [28],
CAZy [21], virulence related proteins [69], and antibiotic
resistance genes [70] were all processed using HUMAnN.
MetaCyc, for example, includes both characterized sequences
and metabolic modules, for which HUMAnN reconstructed
coverages and abundances; other databases included no explicit
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pathway groupings, and gene families were used directly to
examine differential abundance. While these smaller databases are
less appropriate for quantitative evaluations or broad metabolic
reconstruction, they can be used with HUMAnN to provide
focused coverage of specific biological areas. As detailed above, in
addition to its primary abundance and coverage outputs,
HUMAnN by default calculates a number of basic ecological
summary statistics as applied to community functional profiles; it
also produces detailed gene-level outputs for each community that
can be directly imported into the JCVI Metagenomics Reports
(METAREP) [71] software. All components in the pipeline,
including taxonomic limitation, are entirely data-driven; the
methodology can therefore be used for functional reconstruction
on any genomic data from microbial or eukaryotic organisms,
although in a single-organism setting, there are not clear benefits
over standard genome annotation pipelines. However, individual
modules (such as gap filling or the inclusion of multiple BLAST
hits) can be manually activated or deactivated by the user for
particular datasets. Importantly for microbial communities,
HUMAnN can also be used on other data types, including
metaproteomic or metatranscriptomic sequences; we anticipate
HUMAnN being useful in the reconstruction of pathway activities
in transcriptomic sequences from different environmental com-
munities, for example.
In closing, we would like to emphasize that HUMAnN’s current

approach to microbial community functional reconstruction is
explicitly independent of the organismal membership of these
communities. It was designed to complement taxonomic classifi-
cations of community structure, and integration of community
function with membership is an area of further ongoing work [15].
Particularly in the human microbiome, full genome sequences are
available for many reference strains isolated from multiple body
sites, which has already allowed community membership to be
analyzed simultaneously in metagenomic and 16S taxonomic
marker sequences [1,24]. By combining membership with
functional reconstruction, specialized processes in specific habitats
or hosts, for example, can be correlated with the organisms
providing or dependent on these aspects of community function.
While the general applicability of Beijerinck’s 1913 hypothesis [72]
that, ‘‘Everything is everywhere, and the environment selects,’’ is
still unclear, we speculate that it may prove to be more broadly
accurate for microbial function than for microbial organisms. That
is, there may be a moderately stable pool of core microbial
pathways, present in all communities but implemented by different
organisms and gene families, with relative abundance (and activity)
determined by the local selective pressures of each microbial
habitat. This appears to be at least somewhat the case in the
human microbiome, and further investigation will determine
whether this pattern holds for the functional profiles of broader
classes of microbial communities.

Supporting Information

Figure S1 Evaluation of parameter settings and pro-
cessing modules in the HUMAnN pipeline. Four synthetic
metagenomes (high and low complexity, equally and lognormally
distributed organismal abundances) were used as a gold standard
to evaluate variants of the HUMAnN pipeline for both metabolic
modules (Mod.) and full KEGG pathways (Path). The accuracies
of relative abundance estimates (left) were evaluated using Pearson
correlation with the gold standards (Supplemental Table S3),
whereas the coverage (right) was evaluated using partial AUC at
10% false positives in order to specifically prevent erroneously
high-confidence false positives. The choices evaluated here include

whether to assign genes to modules/pathways using MinPath (MP)
or naively, inclusion of taxonomic limitation (Tax) without or with
gene copy number correction (TaxC), add-one (Sm) or Witten-Bell
(SmWB) abundance smoothing, and biological gap filling using
pathway medians (GF) or averages (GFAve). The final HUMAnN
pipeline that achieved the best overall performance is highlighted
in bold and consists in the sequential execution of MinPath,
taxonomic limitation with copy number correction, and median-
based gap filling.
(PDF)

Figure S2 Performance of HUMAnN abundance and
coverage inference as compared to a best-BLAST-hit
(BBH) approach. The HUMAnN pipeline for KEGG meta-
bolic modules and pathways was compared to a best-BLAST-hit
approach to module reconstruction. Evaluations of abundance (left
columns, by Pearson correlation) and coverage (right columns, by
partial AUC at 10% false positives) are summarized in the first
row. Subsequent rows show full scatterplots with regressions (left,
abundances) and ROC curves (right, coverages) for each
individual method over the entire gold synthetic community gold
standards. These include A) high-complexity (100 organisms)
staggered abundances B) low-complexity (20 organisms) staggered,
C) high-complexity even abundances, and D) low-complexity
even.
(PNG)

Figure S3 Accuracy of HUMAnN relative abundance
predictions for individual KOs. Predicted versus actual
abundances sunflower plotted for each of the 13,980 KEGG
Orthology gene families (KOs) evaluating four E-value weighting
schemes (HUMAnN’s default p-value, inverse E-value, bitscore,
and sigmoid E-value) and best-BLAST-hit alone in the A) the
staggered high-complexity synthetic community, B) the staggered
low-complexity, C) even high-complexity, and D) even low-
complexity. Pearson correlation coefficients and regressions of
arcsine square root transformed values are also reported. The
performance of HUMAnN on the overall population of individual
genes did not differ significantly from that of a best-BLAST-hit
approach, although the preservation of additional information
from multiple hits for later use (using any weighting scheme) does
improve module and pathway abundance recovery (Supplemental
Figure S2).
(PNG)

Figure S4 Evaluation of individual HUMAnN processing
modules on 10 synthetic metagenomes. An additional 10
synthetic metagenomes were generated with high-complexity (100
organisms) and random lognormally distributed abundances.
These were searched against KEGG protein sequences using
USEARCH, allowing multiple hits with maximum e-value 1. All
combinations of select HUMAnN modules were then assessed,
including best-BLAST-hit versus multiple hits weighted by p-value
and the presence or absence of taxonomic limitation with or
without copy number normalization. HUMAnN default settings
are highlighted in gray. Processing steps recapitulated their
behavior as observed in Supplemental Figure S1.
(PDF)

Figure S5 Co-clustering of metabolic pathways and
microbes from community-specific genera in the vaginal
microbiome. Hierarchical clustering (average linkage using
uncentered Pearson correlation) was applied jointly to the eight
signature organisms from the five lineages known to characterize
different microbiome types [7] and to the 62 metabolic modules
correlated with these taxa in the posterior fornix microbiome. All
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relative abundances are row z-score normalized for visualization.
Differentially abundant metabolism varies directly in proportion to
these signature taxa, which themselves group the 52 samples into
five distinct microbiome types. These are in turn correlated with
the host vaginal pH phenotype, suggesting the specialization of
these organisms with respect to metabolic function in the
maintenance of community structure and environmental pH.
(PNG)

Table S1 Significant associations between microbial
function and host phenotype in seven habitats of the
human microbiome. Each row reports a significant body-site-
specific association between microbial functional module abun-
dance and host metadata, including biometrics (gender, BMI, etc.)
as well as sample processing (e.g. sequence depth). P-values were
calculated using Spearman’s r for continuous metadata and the
Kruskal-Wallis nonparametric ANOVA for categorical features as
reported in the Methods, with Q-values representing a Benjamini-
Hochberg false discovery rate correction for multiple hypothesis
tests.
(XLSX)

Table S2 Community composition of four synthetic
metagenomes used to evaluate performance of meta-
bolic reconstruction. Microbes for the low-complexity (20
organism) community weree hand-chosen from clades represen-
tative of the human microbiome. Their relative abundances in the
staggered community were likewise chosen to be roughly
representative of physiological occurrence rates. Organisms in
the high-complexity (100 organism) synthetic community were
randomly selected from KEGG high-quality manually curated
finished genomes. Their abundances in the staggered community
were randomly generated from a lognormal distribution. These
synthetic community designs for computational performance
evaluation were inspired by those of [31] as adapted to the
complexity and phylogeny of the human microbiome.
(XLSX)

Table S3 Gold standard abundances of KEGG gene
families, pathways, and modules for four synthetic
metagenomes. A ground truth of genes, small functional
modules, and large pathways in each of four synthetic metagen-
omes was calculated from the organismal compositions in
Supplemental Table S2 as follows. The abundances of gene
families were computed by multiplying the frequency of each
KEGG Orthology gene family in organisms’ reference genomes by
the organism’s relative abundance (even or staggered) in each
community. Module presence/absence and abundance was
determined based on conjunctive normal form satisfaction of
constituent gene presence/absence and relative copy number,
respectively. Pathway presence/absence was used as defined by
KEGG, with abundance as multiplied by each organism’s relative
abundance within the communities.
(XLSX)

Table S4 HUMAnN coverage estimates for functional
modules in the human microbiome. Inferred module
presence/absence confidence values for each of 227 KEGG
modules in 649 samples spanning seven body sites across the
human microbiome.
(XLSX)

Table S5 HUMAnN relative abundance estimates for
functional modules in the human microbiome. Inferred
module abundance values for each of 250 KEGG modules in 649
samples spanning seven body sites across the human microbiome.
(XLSX)

Table S6 Core and differentially covered modules in the
human microbiome.Metabolic modules determined to be core
and variable across body sites based on coverage estimates from
the HUMAnN pipeline. Core modules were defined with coverage
$0.9 (or at a lower stringency $0.3 threshold) in $90% of the
samples from each body site. Variable modules were defined to be
present (as above) in at least one body site and absent (#0.1 in
$90% of samples) in at least one body site. 24 samples. Using
these definitions, 16 modules were core across all body sites at
coverage 0.9 and 24 at 0.3, and 24 modules were variably covered
among body sites.
(XLSX)

Table S7 Modules and pathways differentially abun-
dant in at least one body site as determined by LEfSe.
We applied the LEfSe [23] biomarker discovery tool separately to
functional module and pathway abundances from HUMAnN to
determine those over- or under-enriched in at least one body site.
Default statistical parameters of a=0.05 and LDA score 2.0 were
used. This table reports features found to be differential in at least
one body site and the site at which they were most abundant.
(XLSX)

Table S8 HUMAnN coverage estimates for metabolic
pathways in the human microbiome. Inferred pathway
presence/absence confidence values for each of 281 KEGG
pathways in 649 samples spanning seven body sites across the
human microbiome.
(XLSX)

Table S9 HUMAnN relative abundance estimates for
metabolic pathways in the human microbiome. Inferred
pathway abundance values for each of 297 KEGG pathways in
649 samples spanning seven body sites across the human
microbiome.
(XLSX)

Table S10 Significant associations between KEGG mod-
ules and individual carbohydrate active enzyme (CAZy)
gene families. Statistically significant Spearman correlations
between module abundances (from HUMAnN) and CAZy
abundances (independently generated from the same metage-
nomic data by [21]) were identified across all body sites (FDR
q,0.05). Note that many metabolic functions within every body
site correlate strongly with CAZy abundances, even for the many
pathways that do not themselves include the correlated CAZys.
(XLSX)
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