$$
\begin{gathered}
\left|A^{\prime \prime} E^{\prime \prime}\right|=\left|E^{\prime \prime} I^{\prime \prime}\right|=\left|I^{\prime \prime} C^{\prime \prime}\right|=\left|C^{\prime \prime} G^{\prime \prime}\right|=\left|G^{\prime \prime} A^{\prime \prime}\right|=s_{5} . \\
\angle A O C^{\prime \prime}=\angle A O C^{\prime}+\angle C^{\prime} O C^{\prime \prime}=72^{\circ}+18^{\circ}=90^{\circ}, \\
\left|A C^{\prime \prime}\right|^{2}=|O A|^{2}+\left|O C^{\prime \prime}\right|^{2}=r^{2}+s_{10}^{2}=s_{5}^{2}, \\
\left|A C^{\prime \prime}\right|=\left|C E^{\prime \prime}\right|=\left|E G^{\prime \prime}\right|=\left|G I^{\prime \prime}\right|=\left|I A^{\prime \prime}\right|=s_{5} .
\end{gathered}
$$

Grey points and grey edges: Petersen graph as unit-distance graph if $s_{5}=1$.

On Note 104.09: Martin Lukarevski writes: In this Note we gave the inequality for the sum of the altitudes

$$
4 R+10 r \leqslant A I_{A}+B I_{B}+C I_{C} \leqslant 8 R+2 r
$$

and ended the Note with the conjecture: 'the lower bound $4 R+10 r$ for $A I_{A}+B I_{B}+C I_{C}$ is sharp and cannot be strengthened by $5 R+8 r \prime$. This is indeed true and for an example we look at very obtuse triangles which have very large circumradius. We take the triangle with sides $B C=3$, $C A=A B=1.51$. Then $R=6.5711, r=0.086458$ and we compute the altitudes of the excentral triangle $A I_{A}=26.19752, B I_{B}=C I_{C}=3.01499$. We have

$$
A I_{A}+B I_{B}+C I_{C}=32.2275<33.5471=5 R+8 r
$$

showing that the lower bound $4 R+10 r$ is optimal.
10.1017/mag. 2020.69
© The Mathematical Association 2020

