4457. Proposed by Hung Nguyen Viet.

Prove that for all $-\frac{\pi}{2}<x, y<\frac{\pi}{2}, x \neq-y$, we have that

$$
\tan ^{2} x+\tan ^{2} y+\cot ^{2}(x+y) \geq 1
$$

There were 22 correct solutions; we present four variants here.
Solution 1, due, independently, to Michel Bataille, Ganbat Batmunkh, Martin Lukarevski, Marie-Nicole Gras, C.R. Pranesachar, Ioaanis Sifkas, Kevin Soto Palacios, and the Missouri State University Problem Solving Group.
Let $a=\tan x$ and $b=\tan y$. Then $\cot (x+y)=(1-a b) /(a+b)$ and

$$
\tan ^{2} x+\tan ^{2} y+\cot ^{2}(x+y)-1=a^{2}+b^{2}+\frac{(1-a b)^{2}}{(a+b)^{2}}-1
$$

Multiplying this quantity by $(a+b)^{2}$ yields

$$
\begin{aligned}
\left(a^{4}+b^{4}+2 a^{3} b+2 a b^{3}+3 a^{2} b^{2}+1\right) & -\left(a^{2}+b^{2}+4 a b\right) \\
& =\left(a^{2}+a b+b^{2}\right)^{2}+1-\left(a^{2}+b^{2}+4 a b\right) \\
& =\left(a^{2}+a b+b^{2}-1\right)^{2}+(a-b)^{2}
\end{aligned}
$$

Since this quantity is nonnegative, the result follows.
Equality occurs if and only if $a=b$ and $a^{2}+a b+b^{2}=1$, if and only if $x=y= \pm \pi / 6$.
Comment from the editor. For the difference between the two sides, Devis Alvarado and Walther Janous obtained a fraction with the numerator
$\left[\left(a+b-\frac{2}{\sqrt{3}}\right)^{2}+\left(a-\frac{1}{\sqrt{3}}\right)^{2}+\left(b-\frac{1}{\sqrt{3}}\right)^{2}\right]\left[\left(a+b+\frac{2}{\sqrt{3}}\right)^{2}+\left(a+\frac{1}{\sqrt{3}}\right)^{2}+\left(b+\frac{1}{\sqrt{3}}\right)^{2}\right]$.

Solution 2, by Digby Smith.

If $|x|+|y|>\pi / 2$, then at least one of $|x|$ and $|y|$ exceeds $\pi / 4$ and the left side exceeds 1. Since $0 \leq|x+y| \leq|x|+|y|$, then

$$
\cot ^{2}(x+y)=\cot ^{2}(|x+y|) \geq \cot ^{2}(|x|+|y|)
$$

Thus, we may suppose that x and y are both nonnegative. If $x+y=\pi / 2$, then the left side exceeds 2 . Suppose $x+y \neq \pi / 2$. Then, using the arithmetic-geometric means inequality, we have that

$$
\begin{aligned}
& \tan ^{2} x+\tan ^{2} y+\frac{1}{\tan ^{2}(x+y)} \\
& =\frac{1}{2}\left[\left(\tan ^{2} x+\tan ^{2} y\right)+\left(\tan ^{2} x+\frac{1}{\tan ^{2}(x+y)}\right)+\left(\tan ^{2} y+\frac{1}{\tan ^{2}(x+y)}\right)\right] \\
& \geq \tan x \tan y+\frac{\tan x}{\tan (x+y)}+\frac{\tan y}{\tan (x+y)}=\tan x \tan y+\frac{\tan x+\tan y}{\tan (x+y)} \\
& =\tan x \tan y+1-\tan x \tan y=1
\end{aligned}
$$

