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Abstract 

The investor cannot associate a single number or payoff with investment in any asset because there is the 

existence of risk. The payoff should be described by a set of outcomes and each of their associated probability of 

occurence, which is called frequency function or return distribution. There is the examination of the two most 

frequently employed attributes of such a distribution: the expected return and the standard deviation. Because 

investors don't hold single assets, there is a concern with how one can compute the expected return and risk of a 

portfolio of assets given the attributes of the individual assets. One important aspect of this analysis is that the risk 

on a portfolio is more complex than a simple average of the risk on individual assets. So, this paper is showing how 

the risk of the portfolio of assets can be very different from the risk of the individual assets comprising the portfolio. 
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Introduction 

The nature of the opportunity set under risk is the basis of the paper. This paper is concerned with the 

expected return and risk of a portfolio of assets which can be computed given the attributes of the individual assets. 

The risk on a portfolio depends on whether the returns of individual assets tend to move together or weather some 

assets give good returns and other give bad returns. . It is more important to consider the combination of assets 

rather than just the assets themselves. Also, the distribution of outcomes on combination of assets can be different 

than the distributions on the individual assets. When two assets have their good and poor returns at opposite times, 

an investor can always find some combination of these assets that yields the same return under all market conditions. 

 

Characteristics of a portfolio 

The return on a portfolio of assets is weighted average of the return on the individual assets. The weight 

(applied to each return) is the fraction of the portfolio invested in that asset. If RPj is the jth return on the portfolio 

and Xi is the fraction of the investor’s funds invested in the ith asset, and N is the number of assets, then  

  

(1) 

The expected return is also a weighted average of the expected returns on the individual assets. Taking the 

expected value of the expression just given for the return on a portfolio yields 
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The expected value of the sum of various returns is the sum of the expected values. So, 
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Finally, the expected value of a constant times a return is a constant times the expected return, or 
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This is general formula. To illustrate its use, we can consider the investment in assets 2 and 3 in Table 1. 

Assume that an investor has $1 to invest. If he select asset 2 and the market is good, he will have at the end of the 

period $1.16, if the market performance is average he will have $1.10, and if it is poor $1.04. But, if the investor 

invests $0.6 in asset 2 and $0.4 in asset 3, if the condition of the market is good, the investor will have $0.696 at the 

end of the period from asset 2 and $0.404 from asset 3, or $1.10.  If the market conditions are average, he will 

receive $1.10. If the market conditions are poor, the investor will receive again $1.10.  So, no matter what occurred, 

the investor would receive $1.10 on an investment of $1.00. This is a return of 0.10/1.00 = 10%. 

 

Table 1 Returns on Various Investments
 

Market  

Condition 

          Return 

 

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5         

Good  

  
15 16 1 16 16 

Average 9 10 10 10 10 

Poor 3 4 19 4 4 

Mean return 9 10 10 10 10 

Variance 24 24 54 24 24 

Standard deviation  4.9  4.9  7.35  4.90  4.9 

 

If $0.60 is invetsted in asset 2 and $0.40 in asset 4, the fraction invested in asset 4 is 0.40/1.00. Furthermore, 

the expected return on asset 2 and asset 4 is 10%. Applying the formula for expected return on a portfolio yields. 
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The second characteristic is the variance. The variance on a portfolio is a little more difficult to determine 

than the expected return. In the case of  two – asset example the variance of a portfolio P, designated by 
2

P , is 

simply the expected value of the squared deviations of the return on the portfolio from the mean return on the 



portfolio, or  22
pPP RRE  .Substituting in this expression the formulas for return on the portfolio and mean 

return yields in the two – security case 
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where iR stands for the expected value of security i with respect to all possible outcomes. Because 
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Appling this to the previous expression derive that 
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Applying the two rules that the expected value of the sum of a series of returns is equal to the sum of the 

expected value of each return, and that expected value of a constant times a return is equal to the constant times the 

expected return, we have  
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   2211 RRRRE jj   is the covariance and will be designated as 12 . Substituting the symbol 12  
for 

   2211 RRRRE jj   yields 
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Here covariance is the expected value of the product of two deviations: the deviations of the returns on 

security 1 from its mean  11 RR j   and the deviations of security 2 from its mean  22 RR j  . In this sense it is very 

much like the variance. However, it is the product of two different deviations. As such it can be positive or negative. 

It will be large when the good outcomes for each stock occur together and when the bad outcomes for each stock 

occur together. In this case, for good outcomes the covariance will be the product of two large positive numbers, 

which is positive. When the bad outcomes occur, the covariance will be the product of two large negative numbers, 

which is positive. This will result in a large value for the covariance and a large variance for the portfolio. In 

contrast, if good outcomes for one asset are associated with bad outcomes of the other, the covariance is negative. It 

is negative because a plus deviation for one asset is associated with a minus deviation for the second and the product 

of a plus and a minus is negative.  

The covariance is a measure of how returns on assets move together. Insofar as they have positive and 

negative deviations at similar times, the covariance is a large positive number. If they have the positive and negative 

deviations at dissimilar times, then the covariance is negative. If the positive and negative deviations are unrelated, it 

tends to be zero.  

Dividing the covariance between two assets by the product of the standard deviation of each asset produces 

a variable with the same properties as the covariance but with a range of –1 to +1, which is the correlation 

coefficient. Letting ik stand for the correlation between securities i and k the correlation coefficient is defined as 
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Dividing by the product of the standard deviations does not change the properties of the covariance. It 

simply scales it to have values between -1 to +1. Let apply these formulas. 

Table 2 Calculating Covariance 

Condition 

of Market 

Deviations 

Security 1 

Deviations 

Security 2 

Products of 

Deviations  

Deviations 

Security 1 

Deviations 

Security 3 

Products of 

Deviations  

Good (15 - 9) (16 - 10) 36 (15 - 9) (1 - 10) -54 

Average (9 - 9) (10 - 10) 0 (9 - 9) (10 - 10) 0 

Poor (3 - 9) (4 - 10) 36 (3 - 9) (19 - 10) -54 

      72     -108 

 

Table 2 shows the intermediate calculations necessary to determine the covariance between securities 1 and 

2 and securities 1 and 3. The sum of the deviations between securities 1 and 2 is 72. Therefore, the covariance is 

72/3 = 24 and the correlation coefficient is 2424/24 . For assets 1 and 3 the sum of the deviations is -108. The 

covariance is -108/3 = -36 and the correlation coefficient is 5424/36 . Similar calculations can be made for 

all other pairs of assets, and the results are contained in Table 3. 

 

Table 3 Covariance and Correlation Coefficients (in Brackets) Between Assets  

  1 2 3 4 5 

1  
24 -36 0 24 

 
( + 1)  ( - 1) 0 ( + 1) 

2   
-36 0 24 

  
( - 1) 0 ( + 1) 

3    
0 -36 

   
0 ( - 1 ) 

4     
0 

    
0 

5           

 

We examined the results obtained by an investor with $1.00 to spend who put $0.60 in asset 2 and $0.40 in 

asset 3. Applying the expression for variance of the portfolio we have 
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The correlation coefficient between securities 2 and 3 is -1. This meant that good and bad returns of assets 2 

and 3 tended to occur at opposite times. When this situation occurs, a portfolio can always be constructed with zero 

risk.  

Without the formula, we calculated the variance directly. There are nine possible returns when we combined 

assets 2 and 4. They are $1.16, $1.13, $1.13, $1.10, $1.10, $1.10, $1.07, $1.07and $1.04. Since start of the 

investment is $1.00, the returns are easy to determine. The return is 16%, 13%, 13%, 10%, 10%,10%, 7%, 7%, and 

4%. By examination it is easy to see that the mean return is 10%. The deviations are 6, 3, 3, 0, 0, 0, -3, -3, -6. The 

squared deviations are 36, 9, 9, 0, 0, 0, 9, 9, 36, and the average squared deviation or variance is 108/9 = 12.  



The formula for variance of a portfolio can be generalized to more than two assets. We first started with a 

three- asset case. Substituting the expression for return on a portfolio and expected return of a portfolio in the 

general formula for variance yields 
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Rearranging,  
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Squaring the right- hand side yields 
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Applying the properties of expected return yields 
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Utilizing 2

i for variance of asset i and 
ij for the covariance between assets i  and j , we got 
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This formula can be extended to any number of assets. Examining the expression for the variance of a 

portfolio of three assets should indicate how. The variance of each asset is multiplied by the square of the proportion 

invested in it. Thus, the first part of the expression for the variance of a portfolio is the sum of the variances on the 

individual assets times the square of the proportion invested in each, or 
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Conclusion 

The risk of the portfolio of assets can be very different from the risk of the individual assets comprising the 

portfolio. The covariance and correlation coefficient analysis for different securities show us that when good and bad 

returns of two assets tended to occur at opposite times, a portfolio can always be constructed with zero risk. Also, we 

derive this formula that can be extended for any number of assets. Also, this paper analyze and describe with 

examples the formula for the return on a portfolio of assets as weighted average of the return on the individual 

assets. 
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