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A b s t r a c t: Procedure for determining commanded coordinates in machine space if desired coordinates are 

given is inverse calibration. A large amount of data is considered after measurement procedure and it is essential to 

locate desired point in the real space which is skewed due to measured geometric errors. The machine workspace is 

divided to cells using measurement points. It is depicted the importance of finding the proper cell in skewed 3D lat-

tice, for calibration of translational axes of ATL machine with large workspace. To calibrate 7 DOF robot manipula-

tor, this algorithm is extended. The problem of finding the proper cell in 7D skewed grid needs heavy computations 

and takes significant amount of computational time. Few ideas for avoiding these computations are described and the 

influence on the final precision of the calibration procedure is explored. 
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ПРОЦЕДУРА НА ИНВЕРЗНА КАЛИБРАЦИЈА ЗА НАМАЛУВАЊЕ НА ПРЕСМЕТКОВНИТЕ  

ОПЕРАЦИИ КАЈ РОБОТ УПРАВУВАН СО 7 СТЕПЕНИ НА СЛОБОДА 

А п с т р а к т: Процедурата за одредување координати кои можат да се контролираат во машинскиот 

простор со зададени координати се нарекува инверзна калибрација. Во текот на мерната постапка поради 

големата количина на податоци е особено важно да се одреди точната позиција на посакуваната точка во 

реалниот простор, која се изместува поради измерените геометриски грешки. Со користење на мерните точки 

машинскиот работен простор се дели на ќелии. За калибрација на транслаторните оски од ATL машина со 

голем работен простор е особено важно да се одреди соодветна ќелија во искривената 3D решетка. 

Алгоритамот е проширен за калибрација на робот со 7 степени на слобода (7 DOF) за маневар. Проблемот на 

наоѓање на соодветната ќелија во 7D искривената мрежа е комплексен и бара огромни пресметковни 

капацитети и време за нивно извршување. Во трудот се прикажани неколку начини за избегнување огромни 

пресметковни операции и објаснето е влијанието на калибрационата постапка врз крајната прецизност. 

Клучни зборови: инверзна калибрација; геометриски грешки; робот за маневар 

INTRODUCTION 

In composite industry, Automated Fiber Pla-

cement (AFP) and Automated Tape Layup (ATL) 

technologies are used for producing large parts. In-

accuracy in position or orientation of the AFP/ATL 

head, as end-effector of robotized machine, may 

cause some defects of the laminate and as well of 

the final product [1], [2]. 

To enhance accuracy of such robotized ma-

chines, comprehensive calibration procedure has 

been developed for linear axes of a 6 DOF ATL 

machine [3]. Due to the standards ISO 230-1:2012 

[4] and ISO 230-2:2014 [5], as well to the ISO 
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technical report [6], 21 volumetric errors was taken 

in account. 

Since all measurements were made on the 

machine with large workspace, large amount of 

data were obtained. Original algorithm for 3D vo-

lumetric calibration is implemented in Matlab and 

the results are verified using comparative analysis, 

comparing compensating predictions with the re-

sults of established calibration TRAC-CAL soft-

ware. The algorithm is based on mathematical mo-
del for linear approximation of the total displace-

ment error in the interior of the machine’s work-

space. That is nonparametric calibration, named 

black-box [7]. 

A comprehensive calibration algorithm has to 

cover both forward and inverse calibration. For-

ward calibration means to find actual coordinates if 

the nominal ones are given, both in machine space. 

If the desired coordinates are given and com-

manded coordinates should be found, it is the in-

verse calibration. 

The measurement points for each axis divide 

the range of that axis to intervals. Crossing them, 

entire machine’s workspace is divided to cells 

which dimension depends on the number of de-

grees of freedom (DOF) of the calibrated machine. 

In traditional approach, approximation of the total 

error is spanned over the workspace, taking into 

consideration the measured errors in the knots of 

the cells [7], [8], [9]. In our approach, we do linear 

approximation for every cell separately. Because 

of that, it is extremely important to determine the 

proper cell which contains the considered point. 

Such idea is extended for calibration ma-

chines with more than 3 DOF. Virtual model for a 

7 DOF robot manipulator is built. All kinematic 

calculations needed for calibration are done using 
screw theory [10]. Errors for all 7 axes are ran-

domly generated, ensuring they are in expected 

range and distribution, similarly as in the case with 

3 linear axes and their errors. 

DETERMINE THE PROPER CELL IN 3D CASE 

The most sensitive step in the inverse calibra-

tion procedure from aspect of computational time 

is determination of the grid proper cell for given 

desired coordinates in machine space. 

After obtaining measurement results, all mea-

surement points are stored for each axis separately. 
For 3 translational axes X, Y and Z, measurement 

was performed and the number of measurement 

points and their range are shown in Table 1. 

T a b l e  1  

Number of measurement points 

 Number of points Min (mm) Max (mm) 

X 322 940 8965 

Y 142 520 4045 

Z 50 -1200 25 

 

This way, the machine’s workspace is divided 

to 2,217,789 3D cells. Combining division point 

for each axis, nominal coordinates of the knot is 

obtained: 

 Pnom = [xi,nom, yj,nom, zk,nom]
T

. (1) 

Using the kinematic model of the machine, 

actual coordinates are calculated and stored: 

 Pact = [xi,act, yj,act, zk,act]
T

. (2) 

For storing all actual coordinates for all knots, 

large amount of memory is needed. That is im-

practical in higher dimension, so prior calculating 

and storing the actual knots is not done in the 

simulation of calibration model for 7 DOF ma-
chine. 

Also, for each cell separately, coefficients of 

the error approximation polynomials are calculated 

and stored. 

That way, forward calibration step is com-

pleted. Entire machine’s workspace has two repre-

sentations. Knots nominal coordinates determine 
the ideal workspace with ideal boxes as cells. Ac-

tual coordinates determines the real workspace, 

whose axes are skewed. 

Figure 1 shows the way axes are skewed. The 

ideal workspace and its corresponding skewed 

workspace are visualized on Figure 2. 

 

Fig. 1. The skewed coordinate axes 
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Fig. 2. The ideal and skewed grid of the worksapce 

Let 

 Qdes = [xdes, ydes, zdes]
T
 (3) 

be the 3D point represent desired coordinates in 

machine space. Clearly, those coordinates are in 

the real, skewed space. One has to determine the 

proper real cell where the point Qdes is located. 

This cell is polyhedron and is the convex hull of 

the set of 8 vertices, determined with their actual 

coordinates. 

First, bisection method is applied to find the 

default cell. That means, the nominal values are 

used as partition for each axis, but appropriate ac-

tual knots are used to check whether the point Qdes 

is inside the hull. If it does, the proper cell is found 

and it is the default one. If it doesn’t, all neighbor 

cells, maximum 26 cells are tested to find the 

proper one. 

The point on top left on Figure 3 shows the 

possibility point not to be in the default skewed 

cell. 

An original algorithm is developed and im-

plemented in Matlab, that determines whether the 

point Qdes is inside the hull or not. This algorithm 

is based on linear algebra tools and determines 

whether the given point is on the same side from 

all the planes determined by triples of polyhedron 

vertices lying on the same face. 

 

Fig. 3. Desired point outside the default cell 

Similar approach is tested using built-in Mat-

lab functions based on Delaunay triangulation and 

tsearch function. In both cases, the same result as 

proper cell is obtained, and both procedures are 

time consuming. 

After determining the proper cell, appropriate 

coefficient are loaded and inverse procedure is per-

formed to find the commanded coordinates 

 Qcom = [xcom, ycom, zcom]T. (4) 

With obtaining the commanded coordinates 

Qcom when desired ones Qdes are given, the inverse 

calibration procedure is done. 

Since determination of the proper cell spends 

most of entire computational time for the inverse 

calibration procedure, the question is how this de-

termination is crucial for the accuracy after com-

pensation and is it possible to avoid such computa-

tions. 

Analysis of the data shown on Table 2, points 

out the importance of using right coefficients in in-

verse calibration procedure, since if default cell is 

taken instead of the proper one, ignoring the possi-
bility of case shown on Figure 3, the precision after 

the calibration is much worse. 

Taking the proper cell, deviation of the end-

effector from the desired position is almost zero, 

since calculated deviations are in range close to the 

Matlab numerical accuracy. Calculated deviations 

in case of taking the default cell instead of the 

proper one are shown in the third column of the 

Table 2. One can conclude those deviations may be 

significant and finding the proper cell to use the 
proper coefficient for error approximation may be 

crucial. 
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T a b l e  2  

Proper cell vs. default cell in 3D 

Point inside 

procedure 

Number  

of callings  

Default cell 

deviation 

(mm) 

Ratio-computational  

time proper cell  

over default cell  

Point 1 5 51.9·10–6 1.98 

Point 2 19 89.2·10–6 2.74 

Point 3 3 11.4·10–6 2.47 

Point 4 4 20.4·10–6 2.11 

Point 5 16 21.6·10–6 1.96 

Point 6 4 20.7·10
–6

 1.80 

Point 7 5 11.2·10
–6

 2.18 

 

From aspect of computational time, in 3D 

case, finding the proper cell takes less than 3 times 

than the time needed for just taking the default cell. 

So, we decided always to search for the proper cell 

in the inverse calibration procedure in our calibra-

tion algorithm for 3 DOF machine. 

CALIBRATION OF 7 DOF ROBOT 

MANIPULATOR 

To test possibility of extension of this cali-

bration procedure including rotational axes, virtual 

7 DOF robotized machine is simulated. The kine-

matic chain contains 3 translational and 4 rota-

tional axes. Due to the ISO standards [4], [5], [6], 
in total 61 geometric errors must be considered. 

All of them are included in the kinematic model. 

Forward and inverse kinematics procedures are 

implemented in similar manner as in [11] and [12], 

based on screw theory. Ideal forward kinematics 

and error forward kinematics procedures are im-

plemented and the last one includes all 61 geomet-

ric errors. That makes possible to compare nominal 

and actual pose in pose space and determine the 

deviations for position, but for orientation as well. 

There are 42 position dependent geometric er-

rors, 6 errors for each axis. Therefore, measure-

ment points must be considered for all 7 axes. Tak-

ing only 20 – 50 measurement points for the rota-

tional axes, the number of combination for cal-

culation of number of knots in the workspace in 

machine coordinates is extremely enlarged. That 
makes simple extension of the calibration proce-

dure from 3 to 7 DOF impossible. It is not possible 

to calculate and to store actual machine coordi-

nates for all the knots and error approximation 

polynomial coefficients for all the cells. 

For given desired coordinates in machine 

space 

ΘΘΘΘdes = [θ1,des, θ2,des, θ3,des, θ4,des, θ5,des, θ6,des, θ7,des]
T 

  (5) 

real time calibration procedure is designed, in-

cluding determination of the default cell based on 

bisection method, calculations of actual coordi-

nates of all knots, generating error approximation 

polynomial coefficients for the default cell and al-

gorithm to determine the proper cell in skewed 7D 

space. The last one is critical, since it is time most 

consuming. The goal is to obtain the appropriate 

commanded coordinates in machine space 

Qcom = [θ1,com, θ2,com, θ3,com, θ4,com, θ5,com, θ6,com, θ7,com]T 

 
 (6) 

in real time. 

Large data set for 42 position dependent geo-

metric errors is generated randomly. These errors 
are in the similar range and distribution as the data 

obtained for calibrating 3 DOF machine. Remain-

ing 19 position independent geometric errors are 

randomly generated in the same manner. All 61 

geometric errors are included in the calibration 

procedures. 

The simulation for calibration of a 7 DOF ro-
bot manipulator is implemented in Matlab as well. 

Forward calibration procedure is performed in 

reasonable computational time. That means if the 

nominal coordinates in machine space are given, 

the actual coordinates could be calculated in real 

time. 

For inverse calibration procedure, searching 

for proper cell in a 7D skewed space is too much 

time consuming and makes idea impossible to re-

alize in real time. 

AVOIDING HEAVY COMPUTATIONS IN 7D 

A heavy computations are needed to deter-

mine whether some 7D point in inside the convex 

hull of a set of 7D points. 

Mathematical foundation of the problem is in 

combinatorial topology [13]. There are 128 verti-
ces in 7D case and the cell in ideal space is simpli-

cial complex. Its underlying space is linear polyhe-

dron in dimension 7. When actual coordinates are 

calculated, the set of 128 points are obtained, and 

one needs to find the convex hull of such set of 7D 

points. Partition of that hull to 7-simplices is need-

ed and test if the given point is inside any 7-sim-
plex. 
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The fastest way to make such partition is ex-

tension of Delaunay triangulation method [14] in 

higher dimension [15], [16]. 

Since entire procedure is implemented in 

Matlab, its built-in functions Delaunayn and tse-

archn are used. Correctness is visually verified in 

2D and 3D and few tests are performed to ensure 

the same answer is obtained with using these func-

tions and using topological test over all combina-

tions of 7-simplees. 

For most points given with desired coordi-
nates in machine space, only one call of these two 

functions is sufficient, since most of that points 

would lie in the default cell and searching for that 

cell is easy and fast, due to bisection method. But, 

even one calling of these functions is time con-

suming and makes entire calibration procedure im-

practicable for real time computing. For such 
“good” point, approximately 94% of computational 

time takes the check it is inside the default cell. 

The function Delaunayn spends approximately 6.8 

seconds and the function tsearchn spends around 3 

seconds. It is clear, that these heavy computations 

should be avoided. 

Naive idea to assume the point is “good” and 

it lies in the default cell, could lead to undesired 

deviations as 3D case showed. 

If any coordinate of desired point (5) is near 

the measurement point in some predefined toleran-

ce, there is chance desired point not to be “good” 

one. Ideally, in that case, the neighbor cells should 

be checked, but it is totally impractical, since the 
number of neighbors is large, and computational 

time for one check is large as well. But, taking the 

neighbor cells into account, without insisting to de-

termine which one is the proper, is the right idea 

for avoiding heavy computations. 

That means, for such potentially “bad” point 

with desired coordinates in machine space, to ex-

tend the neighborhood and instead of taking only 

one linear polyhedron in dimension 7 as proper 

cell, to take few of them, at most 128 = 2
7
 such 

cells. Calculating the actual coordinates and ap-
proximation coefficient for all neighbour cells is 

much cheaper than performing Delaunay 7D test. 

Taking the average of appropriate coefficients 

of all such neighbour cells, for each dimension 
separately, the new approximation polynomial is 

obtained. The inverse calibration procedure is per-

formed and the commanded coordinates are ob-

tained, without calling the heavy computation 

functions. 

One may expect to have losing of accuracy, 

so obtained commanded coordinates in machine 

space should be transformed in pose space and the 

deviations of position and orientations from the 

ideal ones should be calculated, and they should be 

compared against the appropriate deviations if the 

proper cell was taken in inverse calibration proce-

dure. 

RESULTS 

Nine 7D points were sampled, all with desired 

coordinates (5), and simulation is done for all of 

them. Three of sampled points were “good” – they 

are inside the default cell, and 6 of them were criti-
cal under the predefined tolerance, determining 

different numbers of neighbour cells that must be 

taken into account in polynomial coefficient cal-

culations. 

For the desired coordinates (5), ideal pose co-

ordinates are calculated, in pose space, calling the 

ideal forward kinematics procedure. In that proce-

dure, it is assumed ideally, no geometric errors ex-

ist. The position of the end-effector is represented 

with 3D vector Rp, whose coordinates are ex-

pressed in millimeters. The orientation is repre-

sented with 2 unit 3D vectors Ro1 and Ro2, so their 

coordinates are dimensionless numbers. 

 Poseideal = [Rp Ro1 Ro2]  (7) 

To analyze how the choice of the cell in 

skewed 7D space influences to the accuracy, 3 dif-

ferent strategies are applied: 

• Strategy 1: Looking for the proper cell, no 

matter how long it lasts. 

• Strategy 2: Taking the default cell, no matter 

whether the point is critical or not. 

• Strategy 3: Taking neighbor cells into acco-

unt if appropriate coordinate is near meas-

urement point under predefined tolerance and 

calculating the error approximation polyno-

mial coefficients as average of the appropri-

ate coefficient for all that cells. 

For every strategy applied, different comman-

ded coordinates are obtained. Calling the error 

forward kinematics procedure, for commanded co-

ordinates obtained by i-th strategy (i = 1, 2, 3), the 

real pose is calculated: 

 Posereal,i = [Sp,i So1,i So2,i]. (8) 

Accuracy estimation is made calculating the 

deviations from real pose to ideal pose. 
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Position deviation for i-th strategy (i = 1, 2, 3) 

is 3D vector with coordinates expressed in milli-

meters: 

 Deltai = Rp – Sp,i  (9) 

In the Table 3, norm of Delta deviation vector 

is given for each strategy. 

T a b l e  3  

Position deviations 

 Number  

of callings 

Delaunayn 

and tsearchn 

Position deviation (mm) 

Strategy 1  Strategy 2 Strategy 3 

Pt. 1 1 269.6·10–6 269.6·10–6 190.3·10–6 

Pt. 2 1 685.2·10–6 685.2·10–6 584.1·10–6 

Pt. 3 1 365.7·10–6 365.7·10–6 490.9·10–6 

Pt. 4 16 447.4·10–6 684.5·10–6 177.9·10–6 

Pt. 5 19 211.3·10–6 264.5·10–6 270.6·10–6 

Pt. 6 28 993.8·10–6 1108·10–6 43.2·10–6 

Pt. 7 28 557.9·10
–6 

716.2·10
–6

 708.2·10
–6

 

Pt. 8 275 556.7·10
–6

 811.6·10
–6

 339.6·10
–6

 

Pt. 9 343 203.6·10–6 242.4·10–6 44.6·10–6 

 

In the Table 4 accuracy estimation for orien-

tation of the end-effector is made taking the avera-

ge of the norms of 2 Epslion deviations: 

Epsilon1i = Ro1 – So1,i   

Epsilon2i = Ro2 – So2,i (10) 

T a b l e  4  

Orientation deviations 

 Number  

of callings 

Delaunayn  

and tsearchn 

Orientation deviation 

Strategy 1 Strategy 2 Strategy 3 

Pt. 1 1 0.35·10–6 0.35·10–6 0.82·10–6 

Pt. 2 1 0.82·10–6 0.82·10–6 0.93·10–6 

Pt. 3 1 0.55·10–6 0.55·10–6 0.79·10–6 

Pt. 4 16 0.59·10
–6

 0.72·10
–6

 0.15·10
–6

 

Pt. 5 19 0.18·10–6 0.26·10–6 0.22·10–6 

Pt. 6 28 1.25·10–6 1.32·10–6 0.05·10–6 

Pt. 7 28 0.47·10–6 0.71·10–6 0.95·10–6 

Pt. 8 275 0.88·10–6 0.51·10–6 0.42·10–6 

Pt. 9 343 0.23·10–6 0.35·10–6 0.02·10–6 

Strategy 1 is expected to be dominant in accu-

racy reaching, since heavy computations are made 

to find the proper 7D cell. In strategy 3, extension 

of the local space is made and more knots in 

skewed space are taking into account to have influ-

ence on error approximation in such point. It al-

lows avoiding the heavy computations as Delanuay 

procedure is. It was expected accuracy to be worse 

and hopefully near to the accuracy of strategy 1. 

Surprisingly, strategy 3 gives the best results for 6 

of sampled points, reaching the smallest position 

deviations and the best results for 4 of the sampled 

points, reaching the smallest orientation deviations. 

Strategy 2 has the best computational time in 

all cases, since no Delanuay procedure is taken and 

the smallest number of knots needed to be taken 

into account. In the Table 5 ratios between com-

putational times of strategy 1 and strategy 3 over 

strategy 2 are given. For “good” points, strategy 1 

spends 8.7–11.4 times more computational time 

than strategy 2. For “bad” points, this ratio is be-

tween 182.9 and 3825.0. That shows that searching 

for proper cell is practically impossible in 7D. 

Strategy 3 spends 2.3–106.2 times more com-

putational time than strategy 2 and it depends on 

the number of neighbor cells taken into account. 

Most of computational time is spend to calculate 

the actual coordinates of the knots, so it could be 

reduced using strategy for cashing the actual coor-

dinates of the knots. 

T a b l e  5  

Computational time 

 Number of 

callings 

Delaunayn 

and tsearchn 

Ratio-computational time Number of 

neighbor 

cells taken in 

Strategy 3 

Strategy 1  

over  

Strategy 2 

Strategy 3  

over  

Strategy 2 

Pt. 1 1 11.4 2.3 2 

Pt. 2 1 11.4 5.3 4 

Pt. 3 1 8.7 13.7 16 

Pt. 4 16 182.9 24.7 32 

Pt. 5 19 196.9 7.2 8 

Pt. 6 28 352.1 113.0 128 

Pt. 7 28 411.2 27.5 32 

Pt. 8 275 3317.6 51.0 64 

Pt. 9 343 3825.0 106.2 128 
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CONCLUSION 

The comprehensive calibration procedure for 

3 DOF robotized machine is implemented and its 

results are verified. To extend this concept to cali-

bration model for 7 DOF robotized machine, the 
most computational time consuming step is identi-

fied and ideas for avoiding it in 3D are explored, 

from aspect of level of losing the needed accuracy. 

Calibration procedure is extended for 7 DOF 

machine and all functions are created, including 

the new kinematic model. All 61 geometric errors 

are taken into account. Simulation is done and 9 

sample points are tested. 

Finding the proper cell in skewed 7D space is 

extremely time consuming and should be avoided. 

For given 7D point with desired coordinates in ma-

chine space and predefined tolerance, default cell 

is found using bisection method and all neighbor 

cells are determined if the point is critical (strategy 

3). 

This way, for critical points, wider local space 

is used to calculate error approximation polynomi-

al coefficients. That lead to better approximation of 

such coefficients and results with smaller position 

and orientation deviations even in comparison with 

the deviations obtained in strategy 1, where always 

proper cell is found and only the knots of that cell 

influence on the interior point error estimation. 

This strategy allows avoiding the heavy com-

putations to find the proper cell, without significant 

lose in accuracy, if any. 

Its computational time is predictable and in 

worst case is 128 times computational time of stra-

tegy 2. It could be additionally reduced if actual 

coordinates of the knots are cashed, which makes 

this strategy conducive for real time implementta-

tion of calibration procedure for a 7 DOF robot 

manipulator. 
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