4484. Proposed by Leonard Giugiuc and Michael Rozenberg.

Let $a, b, c \in[0,2]$ such that $a+b+c=3$. Prove that

$$
4(a b+b c+a c) \leq 12-((a-b)(b-c)(c-a))^{2}
$$

and find when the equality holds.
4485. Proposed by Jonathan Parker and Eugen J. Ionascu.

For every square matrix with real entries $A=\left[a_{i, j}\right]_{i=1 \ldots n, j=1,2 \ldots n}$, we define the value

$$
G M(A)=\max _{\pi \in S_{n}}\left\{\min \left\{a_{1 \pi(1)}, a_{2 \pi(2)}, \ldots, a_{n \pi(n)}\right\}\right\}
$$

where S_{n} is the set of all permutations of the set $[n]:=\{1,2,3, \ldots, n\}$.
Given the 6×6 matrix

$$
A:=\left[\begin{array}{cccccc}
20 & 9 & 7 & 26 & 27 & 13 \\
19 & 18 & 17 & 6 & 12 & 25 \\
22 & 24 & 21 & 11 & 20 & 11 \\
20 & 8 & 9 & 23 & 5 & 14 \\
22 & 17 & 4 & 10 & 36 & 33 \\
21 & 16 & 23 & 35 & 15 & 34
\end{array}\right]
$$

find the value $G M(A)$.
4486. Proposed by Marian Cucoaneş and Marius Drăgan.

Let $a, b>0, c>1$ such that $a^{2} \geq b^{2} c$. Compute

$$
\lim _{n \rightarrow \infty}(a-b \sqrt{c})(a-b \sqrt[3]{c}) \cdots(a-b \sqrt[n]{c}) .
$$

4487. Proposed by Martin Lukarevski.

Let a, b, c be the sides of a triangle $A B C, m_{a}, m_{b}, m_{c}$ the corresponding medians and R, r its circumradius and inradius respectively. Prove that

$$
\frac{a^{2}}{m_{b}^{2}+m_{c}^{2}}+\frac{b^{2}}{m_{c}^{2}+m_{a}^{2}}+\frac{c^{2}}{m_{a}^{2}+m_{b}^{2}} \geq \frac{4 r}{R} .
$$

4488. Proposed by George Apostolopoulos.

Let $A B C$ be an acute-angled triangle. Prove that

$$
\sqrt{\cot A}+\sqrt{\cot B}+\sqrt{\cot C} \leq \sqrt{\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}} .
$$

