

BALKAN SOCIETY FOR MICROBIOLOGY

10th BALKAN CONGRESS OF MICROBIOLOGY

MICROBIOLOGIA BALKANICA'2017

Sofia, Bulgaria November 16th – 18th, 2017

10th Balkan Congress of Microbiology

Microbiologia Balkanica '2017 Sofia

Park Hotel Moskva November 16th – 18th, 2017

ABSTRACTS

Content

Topic	Abbreviation	Page
HUMAN MICROBIOME	HM	4
MEDICAL MICROBIOLOGY	MM	15
NOSOCOMIAL INFECTIONS	Nos	90
NEW ANTIMICROBIAL AGENTS	AntM	122
ANTIBIOTIC RESISTANCE	AntRes	168
VIRAL PATHOGENS	V	229
INFECTIOUS IMMUNOLOGY AND BRM	II II	270
ZOONOSES	Zoo	281
VETERINARY MICROBIOLOGY	VM	291
FOOD MICROBIOLOGY AND FOOD SAFETY	FM	298
PANEL: MICROBIOLOGY OF ANIMAL	Panel	319
PRODUCTS AND CONSUMER HEALTH		
MICROBIAL BIOTECHNOLOGIES	MB	324
EXTREMOPHILIC MICROORGANISMS	ExM	343
PROBIOTICS & PREBIOTICS	PP	350
ENVIRONMENTAL MICROBIOLOGY	EnvM	366
PARASITOLOGY	P	390
VARIA	Var	409
WORKSHOP: FROM RESULTS TO A PAPER	WSh	415

EnvM-3

IMPACT OF MICROBIOLOGICAL FERTILIZERS ON SOIL MICROBIOTA

Dz. Kungulovski¹, N. Atanasova-Pancevska¹, D. Dimovska²

Introduction. Microbiological fertilizers has been identified as an alternative to chemical fertilizers to increase soil fertility and crop production in sustainable farming. Microbiological fertilizers as a substance which contains living microorganisms which, when applied to seed, plant surfaces or soil, colonizes the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant.

Aim. Therefore this research is aimed at determining the impact of two type of microbial fertilizers (Bio-Vital I and Bio-Vital II) on soil microbiota, to test the possibility for its extensive use.

Materials and methods. Experiment was set on open field, on alluvium soil type, in the area of the village Jurumleri, Skopje. As research material was used carrot (*Daucus carota* L.), hybrid Maestro. The variants were set according to the type of microbiological fertilizer: Ø control - not applied microbiological fertilizer, variant 1- treatment with microbiological fertilizer Bio-Vital II.

Microbiological fertilizer Bio-Vital I and Bio-Vital II consist according to producer several groups of azotobacter, nitrifying microorganisms and phosphor-soluble microorganisms (Bio-Vital I) and azotobacter, nitrifying microorganisms, phosphor-soluble microorganisms and iron (Bio-Vital II). They also contains natural vitamins, enzymes and biostimulants.

Results. According to the results it was determined that the application of microbiological fertilizers Bio-Vital I and II influenced obtaining statistically significant differences between the variants, in terms of the total number of bacteria and the number of examined physiological groups of microorganisms in the rhizosphere (amilolytic bacteria, azotobacter, nitrifying bacteria, denitrifying bacteria, actinomycetes, yeasts and molds).

Conclusions. Using of microbial fertilizers do not improve soil structure and ratio of nutrients in the short term, but in 3-5 years it may lead the soil to a natural balance. The advantage of such fertilizers is that they can be used in combination with other fertilizers because they allow better utilization of plant less available nutrients, added by fertilizers.

Acknowledgements. We would like to thank Bioengineering Ltd., Skopje, Macedonia, for providing microbial fertilizers Bio-Vital I and Bio-Vital II.

Keywords. microbial fertilizers, physiological groups of microorganisms, Bio-Vital I, Bio-Vital II.

¹Department of Microbiology and Microbial Biotechnology, Institute of Biology, Faculty of Natural Sciences and Mathematics, "Ss. Cyril and Methodius" University, Skopje

²Faculty of Agriculture Sciences and Food, Skopje, Ss Cyril and Methodius University, Skopje