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Abstract: The Plavica Au-Ag-Cu porphyry and high sulfidation (HS) epithermal deposit is located at
the Kratovo–Zlatovo volcanic field in Eastern Former Yugoslavian Republic of Macedonia. In this
study, new fluid inclusions data provide additional evidence of the presence of a porphyry style
mineralization which is associated with an overlain HS epithermal deposit. The Oligocene–Miocene
magmatic rocks have a calc–alkaline to high-K calc–alkaline affinity and consist of sub-volcanic
intrusions and volcanic rocks. Previous studies distinguished four alteration types: (a) Sericitic,
(b) advanced argillic, (c) silicification, and (d) propylitic alteration. Fluid inclusions showed
an early magmatic brine in porphyry style veins with high salinity (33–57 wt% NaCl equiv.),
which coexists with a vapor rich fluid with lower salinity (14–20 wt% NaCl equiv.), at temperatures
380–500 ◦C, under boiling conditions. At shallower depths, the fluid inclusions demonstrate various
HS–epithermal deposits which were formed by moderate to low salinity (3–14 wt% NaCl equiv.)
hydrothermal fluids at lower temperatures from 200 to 300 ◦C.
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1. Introduction

High sulfidation (HS) epithermal deposits are temporally and genetically linked to intrusions
that may be associated with deeper porphyry style mineralization [1–4]. Both styles of mineralization
are found at subduction and post-subduction geotectonic settings and are related to the generation
of hydrous calc–alkaline and alkaline magmas in convergent tectonic regimes [3,5,6]. Additionally,
for these deposits, either a direct magmatic–hydrothermal contribution of precious metals
or a remobilization of primary magmatic–hydrothermal ores under the influence of meteoric
water-dominated convecting systems, has been proposed [7].

The ore deposits in the epithermal and porphyry environment are characterized by the distribution
of hydrothermal alteration assemblages and ore minerals, which sometimes demonstrate zonation
patterns. HS epithermal systems are commonly associated with lithocaps that are alteration domains
with a horizontal to subhorizontal cover over intrusions. Lithocaps are characterized by two main
hypogene alterations: Silicic (dominated by residual vuggy quartz) and advanced argillic (dominated
by alunite, pyrophyllite, and dickite) alteration [4,7]. In volcanic centers, lithocaps are easy to find since
they are erosional remnants and are typically prominent at the surface. The presence of lithocaps of
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large surface extent is a good indicator during exploration for deep deposits, because they may indicate
extensive magmatic and hydrothermal activity and a potential for deeper porphyry and marginal
epithermal vein mineralization [4].

However, lithocaps do not always show the exact location of the porphyry deposit in depth,
due to the lack of directional indicators. This means that despite their potential for discovering deeper
magmatic–hydrothermal deposits, their large areal extent (sometimes >10 km in lateral dimensions
and >1 km thick) makes the exploration for porphyry mineralization typically difficult [4]. Sometimes
the early, deep porphyry mineralization is overprinted or juxtaposed by late, shallow epithermal
mineralization [8]. This process is called telescoping and is caused due to violent eruptions and the
subsequent collapse of the paleosurfaces of the volcanoes.

A very good example of a HS epithermal mineralization associated with a porphyry style
mineralization is the Plavica Au-Ag-Cu deposit in Eastern Former Yugoslavian Republic of Macedonia
(FYROM). This deposit is located 5 km southwest of Kratovo and belongs to the Oligocene–Miocene
Kratovo–Zlatovo volcanic complex (Figure 1). On the basis of the geological setting, mineralogical
features, hydrothermal alteration, stable isotopes, and previous fluid inclusion studies, the Plavica
deposit was considered as a typical example of a volcanic-hosted, HS epithermal deposit [9–15].
The close spatial and temporal relationship of the epithermal system with a porphyry deposit was
recently documented by Serafimovski et al. [16,17].

Mining of copper and gold from pyrite–enargite veins in Plavica dates back to the Roman times, or
even earlier at the time of Philip II (4th century BC). During the Ottoman period (15th–17th centuries),
gold was extracted for coin production [18]. In 1934–1936, the British company “Selection Mines
Ltd.” carried out some exploration and further exploitation of the enargite veins with more than
2800 m of underground workings. Drilling exploration was undertaken by “Zletovo mine” and the
National Geological Survey in Skopje in 1945–1952, 1961–1962, and 1963–1974. The National Geological
Survey and the mining company “RIK Sileks” continued exploration during 1976–1986 with 30 km of
drillings [19].

Since the late 1980s, further prospecting for Cu and Au has been carried out by “Cominco”,
“Cyprus Amax”, “Minorco”, “Goldfields”, “Rio Tinto”, and “European Minerals”, with emphasis on
gold which is associated with the peripheral silicified ore bodies (e.g., lithocaps). The latest exploration
in the Plavica concession area was performed in 2011–2015 by the Australian company “Genesis
Resources International Ltd.” for several economically interesting commodities, such as Au, Cu, Ag,
Mo, Pb, and Zn. The resources in Plavica have been calculated to 37.4 Mt ore with 926 koz Au and
7.76 koz Ag, using a gold cut-off grade of 0.4 ppm Au [20].

All those exploration projects contributed to a significant scientific database, which improved
the knowledge about the geology of the Plavica HS epithermal type deposit [21–23], its geochemical
features [24,25], the hydrothermal alterations [26,27] as well as the metallogenesis [11,14,16,17,28].
In addition, a fluid inclusion study by Alderton and Serafimovski [11] was conducted on samples
from four drilling cores at the broader area of the HS epithermal deposit and estimated the formation
conditions of the mineralization.

The purpose of the present work is the study of the fluid inclusions in additional samples from
three drillings of the Plavica prospect, in order to verify the mineralogical and geochemical indication
of a porphyry-type mineralization at the deep parts of Plavica hill, which was previously mentioned
by other researchers [11,17,29,30]. Therefore, in this work, we present new fluid inclusions data and
re-interpretation of the mineralogical composition of hydrothermal alteration assemblages and ore
mineralization, which confirmed the presence of a porphyry style mineralization, associated with the
HS epithermal deposit in Plavica. This study shows that detailed exploration for the discovery of new
ore deposits requires a thorough fluid inclusion study that will interpret fluid phase relations and
evaluate fluid characteristics in view of the ore forming conditions in the Serbo–Macedonian and the
Rhodope metallogenic provinces [31].
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2. Geological Setting

The Kratovo–Zletovo volcanic field is part of a NW–SE trending magmatic belt which extends
for several hundred kilometers from Serbia, through FYROM, to Greece. Magmatic activity in
this belt dates back in Eocene to Miocene and is associated with large ore deposits [9,10,32–34].
This metallogenic zone is called Lece–Buchim–Kilkis–Chalkidiki and is one of the most significant ore
districts in SE Europe for future exploration for Au, Ag, Cu, Pb, Zn, Sb, and various rare and critical
metals. The magmatic belt and the associated mineralization extend in the Serbo–Macedonian massif
(Figure 1), between the Dinarides–Hellenides in the west and the Carpatho–Balkanides in the east.
The geological structure of the region is closely related to the early stages of the Alpine orogeny, during
the closure of the Tethys ocean and the subsequent subduction of the ocean lithosphere below the
Eurasian plate [9,33,34].

The Plavica Au-Ag-Cu deposit is located in the Probištip basin, which is controlled by extended
faults and hosts intercalations of magmatic and sedimentary rocks with ~1 km in thickness.
The crystalline basement in the area consists of schists and amphibolites of the Serbo–Macedonian
massif with a Pre-Cambrian to Palaeozoic age. The magmatic rocks are calc–alkaline to high-K
calc–alkaline in character and have an Oligocene–Miocene age. They consist of sub-volcanic intrusions
(granodiorites, quartz–monzonites, and quartz–diorites) and volcanic rocks such as trachyandesites,
andesites, basaltic trachyandesites, dacites, and trachytes occurring as lava flows, stocks, dykes,
ignimbrites, breccias and ash, lapilli and crystal tuffs (Figure 1) [35,36]. K–Ar and Rb–Sr ages of
andesites at the deposit are 26.5 ± 2 Ma [10].

According to Serafomovski [10], Alderton and Serafimovski [11]. Stefanova et al. [13], Zlatkov et
al. [14], and Serafimovski et al. [17], structural and geomorphological characteristics of the basin show
a concentric, arcuate structure around the Plavica deposit, suggesting the presence of a small caldera
~1.5 km across. Moreover, there are abundant mineralized fractures with a NW–SE, ENE–WSW and
E–W strike [10,23,37] (Figure 1).
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Reid et al. [38]. KZ: Kratovo–Zletovo volcanic field, P: Pindos zone, Pl: Pelagonian zone, VZ: Vardar
zone, SM: Serbo–Macedonian massif.
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Alteration of the volcanic rocks is intense in the central part of the deposit and in the vicinity
of the lithocaps. Previous studies of the hydrothermal alteration in Plavica [9–11,17] distinguished
four alteration types: (a) Sericitic alteration, with sericite and quartz, plus minor titanite, tourmaline,
barite, and adularia; (b) advanced argillic alteration, characterized by kaolinite, alunite, zunyite,
pyrophyllite, diaspore, and corundum; (c) silicification, which is widespread, particularly as massive
replacement silica bodies with evident vuggy silica (Figure 2a), forming characteristic lithocaps that
are laterally and vertically extensive; (d) propylitic alteration, with chlorite, epidote, sericite, calcite,
rutile, and magnetite. A zonation of these alteration types is apparent, with sericitic alteration covering
the central and deeper parts of the deposit and the advanced argillic alteration occurring in the
surrounding areas, including mainly the lithocaps. Propylitic alteration is observed in the andesites
(Figure 2b) at the periphery of the deposit, outside the studied area.

The lithocaps in Plavica have a significant distribution, at the highest levels of the ore deposit,
and stick out of the ground in the form of steep cliffs. Those lithocaps occur in two elongated zones:
The northern and the southern zone (Figure 1) [39]. Towards the east, the lithocaps contain significant
amount of alunite–quartz alteration (Figure 2c). Gold grades in the lithocaps reach up to 3.0 g/t [25].
The mineralization and the intensive hydrothermal alteration exceed 1000 m in depth [23]. The 3D
model of Au and Cu distribution has shown an isometric to lens and lensoid morphology, with an
increase of a ductile deformation as the depth increases [15].

Ore minerals at Plavica has been studied by several authors (e.g., [11–15,17]). They have
distinguished four types of mineralization: (a) A porphyry style stockwork and disseminated Cu–Au
(Mo, Ag) mineralization which occurs in the central and deepest part of the system; (b) quartz
veins with pyrite, sphalerite, enargite, and ±gold, which occur at the intermediate levels and are
superimposed on the stockworks; (c) massive, brecciated, and vuggy silica bodies enriched in Au
reaching up to 10 g/t, with quartz, opal, alunite, kaolinite, jarosite, and sulfur, at the periphery of the
central zone. These bodies mostly have a maximum development at depths of 100 m but may extend
to greater depths reaching up to 400 m; (d) Pb–Zn veins which extend from the periphery of the ore
system, around the margins of the caldera. Hydrothermal breccias are common in Plavica and consist
mainly of alunite, quartz, and ore minerals (Figure 2d).

The mineral assemblages of (a) disseminated and (b) vein type mineralization at the Plavica
deposit are complex, and several paragenetic stages have been suggested [11–17]. The ore minerals
include pyrrhotite, pyrite, chalcopyrite, bornite, molybdenite, magnetite, hematite, rutile, scheelite,
sphalerite, galena, tennantite–tetrahedrite (Figure 2e,f), enargite, luzonite, famatinite, seligmannite,
chalcocite, proustite, pearceite, melnikovite, petzite, bogdanovite, bezsmertnovite, sylvanite,
bilibinskite, and native gold [11–17]. Supergene processes in the upper part of the deposit led to
the formation of malachite, azurite, smithsonite, anglesite, cerussite, chalcocite, digenite, covellite
(Figure 2e,f), native copper, hematite, and hydrated Fe– and Mn–oxides [11–17].

The age of the advanced argillic alteration in Plavica was determined by 40Ar/39Ar in alunite,
demonstrating an exact age range of 25.50–25.83 ± 0.38 Ma, whereas the host volcanic rocks have been
dated by U–Pb in zircons at 27 Ma [38]. According to Alderton and Serafimovski [11], stable isotopes
in quartz showed a narrow range of δ18O, from 12.71 to 15.41‰ SMOW (Standard Mean Ocean Water),
which is typical of volcanic-hosted precious metal deposits. The δ18O fluid composition calculated
for an assumed constant temperature of 250 ◦C falls in a range of 3.74–6.44‰ SMOW, indicative of a
mixed magmatic–meteoric water system. These fluid values are similar to HS deposits, with a high
portion of magmatic fluid [1,40,41]. Sulfur isotopes in selected vein minerals (pyrite, galena, enargite)
showed small variations in δ34S values, from −4.1 to +0.6‰ CDT (Canyon Diablo Troilite), with most
values gathering near 0‰. This S isotopic signature indicates a magmatic source for sulfur [11].
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to alunite-quartz (alun–qz), with Fe–oxides and Fe–hydroxides (Fe–ox) cross-cut by kaolinite (kln). 
(d) Photomicrograph of quartz (qz) and alunite (alun) alteration of the volcanic tuff with Fe–
hydroxides (dark); (transmitted light, plane polarized). (e) Photomicrograph of bornite (bn), 
tennantite (tn), and chalcopyrite (cp), which is partly replaced by covellite (cv); (reflected light, plane 
polarized). (f) Photomicrograph of sphalerite (sl) crosscut by a tennantite (tn), which is replaced by 
covellite (cv) (reflected light, plane polarized). 
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Figure 2. Photographs of the products of hydrothermal alteration of rocks and the ore minerals in
Plavica. (a) Vuggy silica, which is widespread, particularly as replacement of massive silica bodies.
(b) Propylitized andesite at the periphery of the deposit. (c) Brecciated volcanic tuff which was altered
to alunite-quartz (alun–qz), with Fe–oxides and Fe–hydroxides (Fe–ox) cross-cut by kaolinite (kln).
(d) Photomicrograph of quartz (qz) and alunite (alun) alteration of the volcanic tuff with Fe–hydroxides
(dark); (transmitted light, plane polarized). (e) Photomicrograph of bornite (bn), tennantite (tn),
and chalcopyrite (cp), which is partly replaced by covellite (cv); (reflected light, plane polarized).
(f) Photomicrograph of sphalerite (sl) crosscut by a tennantite (tn), which is replaced by covellite (cv)
(reflected light, plane polarized).

3. Sampling and Methods of Analyses

A total of five samples from three drill holes located at different parts of the Plavica deposit were
studied in this work (Figure 1). This study aimed at improving the suggested metallogenic models
for Plavica system, despite the restricted number of the samples. For this reason, two samples were
obtained from the drill hole PNDD014 (42.045344, 22.164689) at the depths of 126 m (PLV 3581) and
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480 m (PLV 3583). Two additional samples came from the borehole PNDD007 at the depth of 238 m
(PLV 3590) and 265 m (PLV 3591). The last studied sample was taken from the borehole MRDD005
(42.041089, 22.181598) at the depth of 40 m (PLV 3586).

All the samples, apart from sample PLV 3583, were from low depths, up to 265 m. At those
low depths, the drillings have penetrated mainly the andesitic tuffs and ignimbrites which host
the epithermal type mineralization. Sampling focused on the mineralized hydrothermal quartz,
which forms small veinlets or disseminations within these volcanic rocks (Figure 3a–c). The sample
PLV 3583 is from the deeper part of the Plavica system, at 460 m, where a porphyry granodiorite
intrusion with a porphyry style mineralization is crosscut by quartz veins and veinlets (Figure 3d).
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Figure 3. Photographs of the studied samples in Plavica. (a) and (b) Epithermal quartz (qz) veins
crosscutting the argillized andesitic tuffs with ore mineralization (samples PLV 3581 and PLV 3591,
respectively). (c) Transparent equigranular quartz grains (qz) in an epithermal veinlet crosscutting
the andesitic tuff (sample PLV 3586) (transmitted light, plane polarized). (d) Quartz (qz) veinlets
crosscutting the porphyry granodiorite with ore mineralization (sample PLV 3583).

Three other samples (PLV 3578, PLV 3580, PLV 3587) that were collected from Plavica
mineralization were not suitable for fluid inclusion studies due to the lack of proper inclusions
for heating/freezing measurements.

In the present study, fluid inclusion spatial relationships and phase changes within the
inclusions during heating and freezing runs were studied in hydrothermal quartz. Microthermometric
measurements were carried out on 312 fluid inclusions in doubly polished wafers at the Department
of Mineralogy, Petrology and Economic Geology at Aristotle University of Thessaloniki (Greece), with
a LINKAM THM-600/TMS 90 heating–freezing stage coupled to a Leitz SM-LUX-POL microscope.
Calibration of the stage was achieved using organic standards with known melting points and ice
(H2O). The precision of the heating and freezing measurements was ±1 ◦C and ±0.2 ◦C, respectively.
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Fluid compositions and properties were derived from the computer program “FLINCOR” [42] based
on equations of Bodnar [43] in the system H2O–NaCl.

4. Fluid Inclusions Data

4.1. Previous Fluid Inclusion Studies

A preliminary fluid inclusions study in hydrothermal quartz of the HS epithermal system in
Plavica was carried by Alderton and Serafimovski [11] who mainly recognized two-phase aqueous
vapor-rich inclusions. In rare cases, quartz also contained two-phase aqueous liquid-rich inclusions
and three-phase liquid-rich inclusions with a halite solid phase. The homogenization temperature
data suggested that boiling began when temperatures exceeded ~200 ◦C, assuming near-hydrostatic
conditions. During boiling, the temperatures reached at least 250–300 ◦C and then decreased to <70 ◦C,
leading to later stages of hydrothermal activity.

Alderton and Serafimovski [11] suggested three mechanisms for ore deposition and speculated
the exsolution of a magmatic fluid from a buried stock, which subsequently separated into a low
density vapor and a saline brine: (a) Acidification could lead to precipitation of Au, (b) boiling and
loss of CO2 would cause an increase in pH and precipitation of Cu, and (c) mixing with meteoric fluids
in the upper parts of this system was widespread.

4.2. Morphology and Types of Fluid Inclusions

Quartz in the studied samples was distinguished under optical microscope in two types:
A recrystallized transparent quartz which predates the ore mineralization and is free of fluid inclusions,
and a clear granular quartz, sometimes euhedral, which was formed contemporaneously with the
ore, being in equilibrium with the ore minerals. This quartz type contains fluid inclusions which were
suitable for microthermometric measurements.

The fluid inclusions are either found isolated along the quartz growth zones or are arranged in
clusters and planes along healed cracks. On the basis of the criteria suggested by the authors of [44,45],
they are considered to be primary or secondary, respectively. The shape of the studied fluid inclusions
is rounded to elongate, and only rarely do they demonstrate “negative crystals”. Negative crystal
shapes are common for many natural fluid inclusions and represent cavities that tend to form crystal
phases due to recrystallization or dissolution processes [44]. The maximum length of the studied fluid
inclusions is 45 µm.

Four types of primary fluid inclusions were identified in Plavica depending on the phase ratios
observed at room temperature and their behavior during freezing and heating experiments. Type 1,
two-phase aqueous inclusions contain a vapor bubble occupying 10 to 20 vol% (Figure 4a) and
homogenize into the liquid phase. Type 2 fluid inclusions contain a liquid phase, a vapor bubble
occupying 10 to 20 vol%, and a colorless isotropic daughter mineral identified as halite (NaCl;
Figure 4b). They mainly homogenize either by bubble disappearance or very rarely by dissolution of
the halite. Two-phase type 3 inclusions contain a large vapor bubble (~80 vol%) and a liquid phase
(Figure 4c) and homogenize into the vapor state. The least common are the type 4 aqueous inclusions
that are dominated by a vapor bubble (80–90 vol%) and a halite crystal (Figure 4d). They homogenize
only by bubble disappearance. It is very possible that the type 4 inclusions trapped a halite crystal
along with the vapor. However, post-trapping re-equilibration with vapor loss or volume shrinkage
due to necking and/or stretching of the inclusions cannot be excluded, although there is not any clear
evidence for post-trapping processes.
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Figure 4. Fluid inclusions in quartz from the Plavica ore deposit. (a) Type 1 fluid inclusion from the
proximal high sulfidation (HS) epithermal style mineralization (sample PLV 3590). (b) Co-existing
types 2 and 3 fluid inclusions at the porphyry style mineralization (sample PLV 3583). (c) Type 3 fluid
inclusion from the porphyry style mineralization (sample PLV 3583). (d) Rare type 4 fluid inclusion
from the porphyry style mineralization (sample PLV 3583).

In some cases, one-phase inclusions containing only a vapor phase were observed in quartz.
They are mainly found along microcracks and are possibly attributed to volume changes of the
inclusions through a “stretching” process. Stretching is a post-entrapment modification of fluid
inclusions along healed microcracks due to mechanical intracrystalline strain. A characteristic of the
fluid inclusions of all types is that they occasionally contain an opaque mineral phase (probably pyrite
or chalcopyrite).

Interpretation of the fluid inclusions was based on fluid inclusion clusters that occur within
a limited area in parts of quartz which escaped recrystallization [45]. On the basis of the criteria
suggested by Bodnar [45], two discrete primary fluid inclusion clusters were identified. The first
group is characterized by type 1 inclusions, which exist in all samples of the epithermal mineralization
(PLV 3581, PLV 3590, PLV 3591, and PLV 3586). The second group is related with the porphyry style
mineralization and contains inclusions of type 1, 2, 3, and 4. This cluster is found only in the sample
PLV 3583 from the drill hole PNDD014 at the depth of 480 m. The absence of liquid CO2 or clathrate
formation during freezing experiments suggests that the fluid inclusions do not contain any CO2.

5. Microthermometry

Results of the microthermometric determinations in the samples from Plavica are summarized in
Table 1. On the basis of the fluid inclusions characteristics and the microthermometric data, the samples
represent different parts of the Plavica ore system, including the porphyry style mineralization (PLV
3583), the telescoped HS epithermal mineralization (PLV 3581) above the porphyry mineralization,
and the proximal (PLV 3590, PLV 3591) and the distal (PLV 3586) HS epithermal mineralizations related
to the porphyry mineralization.
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Table 1. Fluid inclusion data for quartz in the porphyry–HS epithermal styles mineralization at Plavica. D-HS Epithermal: Distal HS epithermal mineralization; P-HS
Epithermal: Proximal HS epithermal mineralization, related to the porphyry style mineralization; T-HS Epithermal: Telescoped HS epithermal mineralization; Qtz:
Quartz; L: Liquid; V: Vapor; S: Solid phase of halite; n: Number of measurements.

Sample Drill hole
(Elevation) Host Mineral Ore Style

Fluid
Inclusions
Character

Fluid Inclusion Type
(Homogenize to

Phase)

Homogenization
Temperature (◦C)

Range

Final Melting
Temperature (◦C)

Range

Salinity (wt%
NaCl Equiv.)

Range

PLV 3586 MRDD005
(40.6 m) Qtz

D-HS
sulfidation
epithermal

Primary 1 L+ V→ L 200–294 (n = 46) −3.82 to −2.03 (n = 46) 3.33–6.11

PLV 3590 PNDD007
(238.9 m) Qtz P-HS sulfidation

epithermal Primary 1 L + V→ L 208–251 (n = 33) −9.67 to −5.49 (n = 33) 8.50–13.59

PLV 3591 PNDD007
(265 m) Qtz P-HS sulfidation

epithermal Primary 1 L + V→ L 208–258 (n = 30) −9.02 to −6.42 (n = 30) 9.74–12.88

PLV 3581 PNDD014
(126 m) Qtz T-HS sulfidation

epithermal Primary 1 L + V→ L 240–307 (n = 22) −9.35 to −4.60 (n = 22) 7.25–13.24

PLV 3583
PNDD014

(460 m) Qtz Porphyry Primary

1 L + V→ L 358–515 (n = 47) −16.78 to −9.67 (n = 36) 13.59–19.9
2 L + V + S→ L 337–476 (n = 57) 223–413 (n = 57) 33–51

3 L+ V→ V 340–522 (n = 32) −16.57 to −11.63 (n = 9) 15.60–19.87
4 L + V + S→ V 457–485 (n = 4) 423–461 (n = 4) 50–57
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5.1. Microthermometric Data for the Telescoped Porphyry–Epithermal Style Mineralization

Initial ice melting temperatures (Te) of fluid inclusions in the porphyry style mineralization
(sample PLV 3583) vary from −54 to −35 ◦C, suggesting a diversity of the dissolved salts including
NaCl, CaCl2, KCl, MgCl2, and FeCl2 in various concentrations. The observed Te may be compared
with the initial ice melting temperatures for the systems of H2O-NaCl-MgCl2 (Te = −35.0 ◦C),
H2O-NaCl-FeCl2 (Te = −37.0 ◦C), H2O-CaCl2 (Te = −49.5 ◦C), H2O-KCl-CaCl2 (Te = −50.5 ◦C),
H2O-MgCl2-CaCl2 (Te = −52.2 ◦C), and H2O-NaCl2-CaCl2 (Te = −55.0 ◦C) [46]. Final ice melting
temperatures of type 1 inclusions ranged from −16.78 to −9.67 ◦C, indicating that they have salinities
of 13.59–19.96 wt% NaCl equiv. [43,47]. Dissolution temperatures of halite in the type 2 inclusions
(223–413 ◦C) indicated brine salinities ranging from 33.09 to 50.73 wt% NaCl equiv. The salinity of
type 3 inclusions, on the basis of freezing point depression (−16.57 to −11.63 ◦C), ranged from 15.60 to
19.87 wt% NaCl equiv. Type 4 fluid inclusions showed halite dissolving at temperatures between 423
and 461 ◦C, which indicates salinities from 50.30 to 56.64 wt% NaCl equiv.

Homogenization temperatures (Th) for type 1 inclusions in quartz from the porphyry style
mineralization ranged from 358 to 515 ◦C (Figure 5). Type 2 fluid inclusions homogenized to the
liquid phase and the last disappearing phase was vapor or halite, at temperatures from 337 to 476 ◦C.
Homogenization temperatures of type 3 inclusions ranged from 340 to 522 ◦C and of type 4 between
457 and 485 ◦C (Figure 5). The majority of the homogenization temperatures of the inclusions from
the porphyry style mineralization range between 380 and 500 ◦C, with a distinct maximum at 440 ◦C
(Figure 5).
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Epithermal: Proximal HS epithermal mineralization, related to the porphyry style mineralization; D-HS
Epithermal: Distal HS epithermal mineralization.

A plot of homogenization temperatures versus salinity (Figure 6) of fluid inclusions in quartz from
the porphyry style mineralization shows that there are two populations of fluid inclusions that exhibit
similar homogenization temperatures (340–522 ◦C), but different salinities. Type 1 and 3 inclusions
with moderate salinities (13.59 to 19.96 wt% NaCl equiv.) and type 2 and 4 inclusions with high salinity
(33.09 to 56.64 wt% NaCl equiv.) have a clear gap in salinity between 20 and 33 wt% NaCl equiv.
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This suggests a heterogeneous trapping of both phases of a boiling fluid during the porphyry style ore
formation in Plavica [44,48]. The estimated densities are >0.85 g·cm−3 for the high-salinity fluids (type
2), and <0.78 g·cm−3 for the moderately saline vapor-rich fluids (type 3).Geosciences 2018, 8, x FOR PEER REVIEW  2 of 18 
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The fluid inclusions in quartz from the HS epithermal mineralization (sample PLV 3581) show
similar first melting temperatures of the ice with the porphyry style mineralization, demonstrating
the presence of K+, Ca2+, Fe2+ or Mg2+ in addition to Na+. Temperatures of final ice melting (−9.35
to −4.60 ◦C) in quartz indicate salinities of 7.25 to 13.24 wt% NaCl equiv. [43]. The homogenization
temperatures (Th) range from 240 to 307 ◦C, with a maximum at 280 ◦C (Figure 5). The estimated
densities for these fluids are <0.90 g·cm−3 on the basis of the equation of state for volumetric properties
of Archer [49].

5.2. Microthermometric Data for the HS Epithermal Style Mineralization Proximal to the Porphyry
Style Mineralization

Microthermometric measurements in the epithermal mineralization from samples PLV 3590 and
PLV 3591 were obtained from type 1 fluid inclusions in quartz (Table 1). Eutectic temperatures were
around−40 ◦C, suggesting the presence of CaCl2, FeCl2, and MgCl2 in addition to NaCl in the fluid [46].
Final ice melting temperatures of type 1 inclusions in quartz (−9.67 to −5.49 ◦C) corresponded to
salinities of 8.50–13.59 wt% NaCl equiv. Values of Th ranged between 208 and 258 ◦C, with a peak
at 240 ◦C (Figure 5). These values demonstrate a cooler but less saline fluid compared with the fluid
related to the telescoped HS sulfidation epithermal mineralization (Figure 6).

5.3. Microthermometric Data for the HS Epithermal Style Mineralization Distal to the Porphyry
Style Mineralization

The sample PLV 3586 from the borehole MRDD005 is probably at the periphery of the porphyry
style mineralization and the fluid inclusions of type 1 in quartz showed extended homogenization
temperatures, from 200 to 294 ◦C with a maximum at 270 ◦C (Table 1), overlapping those from the
telescoped and the proximal HS epithermal mineralization (Figure 5). Initial melting temperatures
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were approximately −40 ◦C, implying that the fluid contained NaCl, CaCl2, FeCl2, and MgCl2 [46].
The salinities obtained from the final ice melting temperatures (−3.82 to −2.03 ◦C) varied from 3.33
to 6.11 wt% NaCl equiv., demonstrating a more dilute fluid with a meteoric origin and only a small
contribution of a magmatic input.

6. Discussion

Alderton and Serafimovski [11] and Serafimovski et al. [17] classified the Plavica Au–Ag–Cu
deposit as an HS epithermal style mineralization, although they mentioned the presence of Cu–sulfides,
magnetite, and molybdenite associated with sericitic alteration, which were encountered by the
only deep borehole. Therefore, they suggested that Plavica is underlain at depth by a porphyry
style mineralization.

The studied fluid inclusions indicate that mineralization in Plavica formed over broad ranges of
temperature and salinity. This reflects multiple hydrothermal events rather than one prolonged event.
On the basis of the fluid inclusion data for the sample PLV 3583 from the drill hole PNDD014 (depth:
460 m), an early magmatic fluid, exsolving at 700 to 800 ◦C at shallow depth from the crystallizing
intrusion, in the porphyry style veins, dissociated into a high saline (33–57 wt% NaCl equiv.) brine
and a moderate saline (15.60 to 17.59 wt% NaCl equiv.) vapor phase. This process evolved at relatively
high temperatures (mainly 380–500 ◦C, with a peak at 440 ◦C) under boiling conditions (Figure 6).
The moderate salinities (13.59 to 19.90 wt% NaCl equiv.) of type 1 and 3 fluid inclusions in the porphyry
style veins from Plavica are not common for porphyry type deposits. Normally, salinities of liquid or
vapor rich inclusions are low (5 to 12 wt% NaCl equiv.) and represent the primary exsolved magmatic
fluids from a crystallizing magma [50,51]. However, in several porphyry type deposits, relatively
higher salinities (up to 20 wt% NaCl equiv.) have been observed (e.g., Dalli porphyry Cu-Au deposit,
Central Iran [52]; Collahuasi porphyry Cu-Mo deposit, northern Chile [53]; Shabutai porphyry Mo
deposit, Inner Mongolia [54]; Thames porphyry Cu-Mo-Au deposit, New Zealand [55]) and have been
discussed in details by Bodnar et al. [56].

According to Brathwaite et al. [55], the moderate saline (up to 20 wt% NaCl equiv.) liquid-rich fluid
inclusions (Type 1 in Plavica) represent a fluid that exsolved from the magma. In this case, the fluid
cools across the plastic–brittle boundary deformation generating moderate temperature–salinity vapor-
and liquid-rich inclusions and does not form halite-bearing fluid inclusions [55]. Brittle fracturing,
which generates the veins and stockworks in the porphyry systems, results in decompression from
lithostatic to hydrostatic conditions and incursion of meteoric water, which is responsible for the
sericitic alteration [51,55].

The ore-forming fluid conditions described here from the deep levels of the Plavica system are
similar to those of many porphyry-style deposits, where mineral deposition is associated with a rapid
reduction in metal solubilities as moderately saline supercritical fluids or vapors or hypersaline liquid
condensates ascend from the source magma [6]. This temperature interval is critical because over 400
◦C, SO2 in the fluid phase begins to form H2S and H2SO4. This mechanism results in the precipitation
of pyrite, molybdenite, chalcopyrite, and bornite, from an increasingly acidic fluid, which is associated
with the progressive change from sericitic, through argillic to advanced argillic alteration [6].

The trapping pressures of the fluid inclusions from the porphyry type veins can be approximately
estimated, suggesting that the fluid inclusions were trapped under boiling conditions in the NaCl-H2O
system. On the basis of the homogenization temperatures and the equation of Reference [49],
the minimum trapping pressures for type 2 inclusions range from 100 to 430 bars, and for type
3 inclusions, from 140 to 460 bars. These pressures show a maximum depth of ore formation of 1.7 km
under lithostatic pressures.

Fluid inclusion data of the samples PLV 3583, PLV 3590, PLV 3591, and PLV 3581 from the drill
holes PNDD014, PNDD007, and PNDD005, respectively, suggest that HS mineralization was deposited
from moderate to low salinity (3–14 wt% NaCl equiv.) fluids at temperatures <300 ◦C (Figure 6). The
estimated minimum trapping pressures calculated from the measured Th for the studied samples
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range between 0.01 and 0.09 kbar, which corresponds to paleo-depths up to 300 m under lithostatic
conditions. Due to the shallow epithermal environment of the mineralization formation, the pressure
correction is likely to be <10 ◦C (e.g., [57]).

Fluid salinities and temperatures obtained for Plavica fit within the spectrum of fluid
characteristics (salinities from <1 to 45 wt% NaCl equiv.) suggested for several HS deposits elsewhere
(e.g., [1,41]). A few fluid inclusions studies on enargite at Julcani, Peru, Lepanto, Radtka and Chelopech,
and Bor, Serbia describe salinities within the range of 5 to 20 wt% NaCl equiv. (e.g., [58]), similar to
those found at Plavica in the present study.

On the basis of previous studies, especially of stable isotope data, the origin of the hydrothermal
fluids responsible for the porphyry and the HS mineralization at Plavica can be suggested, with similar
magmatic vapor, magmatic brine, and unseparated magmatic fluid all having been proposed [58].
At Plavica, these later-stage magmatic–hydrothermal fluids may have contracted from the original
supercritical fluid to the liquid phase upon cooling at pressure [6,41], or by vapor expansion under
low-pressure conditions from very low density vapors, which led to condensation, super-saturation,
and mineral deposition as proposed by Henley and Berger [59].

7. Conclusions

Fluid inclusions from the deep levels of the Plavica system (e.g., 460 m, drill hole PNDD014)
revealed an early magmatic brine in porphyry style veins with a high salinity (33–57 wt% NaCl equiv.),
which coexists with a lower salinity (14 to 20 wt% NaCl equiv.) vapor dominated fluid, at relatively
high temperatures (380–500 ◦C) under boiling conditions. The porphyry type mineralization was
formed at a maximum depth of 1.7 km. At lower depths (40–265 m, drill holes PNDD014, PNDD007,
MRDD005), the fluid inclusions showed that the HS mineralization was deposited from moderate to
low salinity (3–14 wt% NaCl equiv.) fluids at temperatures <300 ◦C (Figure 6), under low pressures
(maximum depth of 300 m).
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