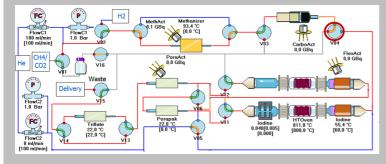
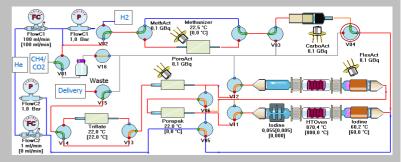

Optimization of production of [11C]CH₃I with Methylator II for synthesis and development of [11C]radiopharmaceuticals

^{1,2} Marija Atanasova, ^{1,2} Maja Chochevska, ^{1,2} Katerina Kolevska, ¹Maja Velickovska, ¹ Filip Jolevski, ^{1,2} Emilija Janevik

¹ University Institute for positron-emission Tomography, Skopje, Republic of Macedonia ² Faculty of Medical Sciences, University Goce Delčev Stip, Republic of Macedonia

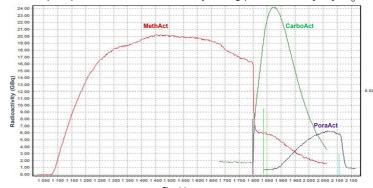
Introduction


Úniversity Institute for positron-emission tomography Skopje is equipped with the Methylator II (Comecer Spa. Former Veenstra Instruments BV.), a module designed for the production of high specific activity Methyllodide ([¹¹C]CH₃I) or Methyl Triflate ([¹¹C]CH₃OSO₂CF₃) and CarbonSynthon I (Comecer Spa.) for production of simple ¹¹C radiopharmaceuticals.


Materials & Methods

Optimization experiments where performed for maximizing the yield of [11 C]CH₃I. By changing the time for switching the valve V04 the effectiveness of the purification was influenced. Purification of the [11 C]CH₄ was done over a Carboxen 1000 column, with the knowledge that the H₂ will flow about 7 times faster than [11 C]CH₄ through carbon packing causing the separation of H₂ and CH₄.

In 'Active' state the formed [11C]CH₄ and excess of H₂ was directed toward waste


*I*n 'Inactive' state the formed [¹¹C]CH₄ in direction of the Iodine Oven.

Results

Purification time	Trapped [11C]CO ₂	Harvested [¹¹C]CH₃I	Yield (d.c) [11C]CH ₃ I	Yield (d.c) [11C]Choline
20s	4.5GBq 17:47	0.8 GBq 17:59 1.2 GBq 17:47	27%	22%
25s	7.2 GBq 1280s	1.25 GB 2500s 2.5 GBq 1280s	35%	25%
37s	19.564GBq 12:32	6.280GBq 12:39 8.1GBq 12:32	41.4%	34.6%

Graphic presentation of radioactivity during production of [11C]CH₃I

Conclusion

The module and the software give us a big opportunity and flexibility for testing and optimization of the production achieving a better yield, and also the development of new ¹¹C radiopharmaceuticals.