
Southeast Asian

Bulletin of

Mathematics
c©SEAMS. 2019

Southeast Asian Bulletin of Mathematics (2019) 43: 61–66

Extension of Some Results of Inequality Relations

Involving Multivalent Functions

Elena Karamazova
Department of Mathematics and statistics, Faculty of computer science, Goce Delcev

University, Krste Misirkov No.10-A, Stip-2000, Republic of Macedonia

Email: elena.gelova@ugd.edu.mk

Nikola Tuneski
Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje,

Karpoš II b.b., 1000 Skopje, Republic of Macedonia

Email: nikola.tuneski@mf.edu.mk

Received 20 October 2016
Accepted 19 June 2017

Communicated by S.S. Cheng

AMS Mathematics Subject Classification(2000): 30C45

Abstract. In this paper, we extend our results of some inequality relations in which we
include multivalent functions in order to give sufficient conditions (unfortunately not
sharp) when the following implication holds:
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Here f(z) is a multivalent function, i.e., analytic on the unit disk and of the form

f(z) = zp + ap+1z
p+1 + · · · , p = 2, 3 . . . .
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1. Introduction

Let for n ∈ N and a ∈ C, H[a, n] =
{
f ∈ H(D) : f(z) = a + anz

n + an+1z
n+1

+ · · ·
}
, where H(D) is the class of all functions that are analytic in the open

unit disk D = {z ∈ C : |z| < 1}. Also, let for a positive integer p, Ap be the
subclass of H(D) consisting of functions of the form f(z) = zp + ap+1z

p+1 + · · ·
and A ≡ A1, so that A is the class of functions f(z) which are analytic in D with
normalization f(0) = 0 and f ′(0) = 1. More details can be found in [7, 10, 15].
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A function f is multivalent or p-valent in D if it takes no value more than p
times in D and there is some ω0 such that f(z) = ω0 has exactly p solutions in
D, when roots are counted in accordance with their multiplicities.

N. Xu and D.G. Yang given some interest results on multivalent functions
in [17]. In this work, the idea is to extend inequality results for multivalent
functions obtained in our previous paper [9]:
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with an aim to give sufficient conditions when
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Results related to this can be found in the work of Cho et al. (see [3] - [6]).
In [16], a linear combination of the analytical expressions of starlikeness and
convexity is studied as a necessary and sufficient condition for starlikeness of an
analytic function. In [14], the author consider a class of analytic and multivalent
functions to investigate some sufficient conditions for that class.

We will use method from the theory of differential subordinations to get our
result. Comprehensive references on this topic are [10] and [2]. Here are basic
definitions and notations.

Let f(z), g(z) ∈ A. We say that f(z) is subordinate to g(z), and write f(z) ≺
g(z), if there exists a function ω(z), analytic in the unit disc D, such that ω(0) =
0, |ω(z)| < 1 and f(z) = g(ω(z)) for all z ∈ D. Also, if g(z) is univalent in D

then f(z) ≺ g(z) if and only if f(0) = g(0) and f(D) ⊆ g(D).

The general theory of differential subordinations, as well as the theory of
first-order differential subordinations, was introduced by Miller and Mocanu in
[11] and [12]. In fact, if φ : C2 → C, C complex plane, is analytic in a domain
D, if h(z) is univalent in D, and if p(z) is analytic in D with (p(z), zp′(z)) ∈ D
when z ∈ D, then p(z) is said to satisfy a first-order differential subordination if

φ(p(z), zp′(z)) ≺ h(z). (3)

A univalent function q(z) is called a dominant of the differential subordination
(3) if p(z) ≺ q(z) for all p(z) satisfying (3). If q̃(z) is a dominant of (3) and
q̃(z) ≺ q(z) for all dominants of (3), then we say that q̃(z) is the best dominant

of the differential subordination (3).
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In [8] strong differential subordination and superordination results are ob-
tained for analytic functions in the open unit disk, which are associated with an
integral operator. The object of the [13] is to find a subclass of p-valent starlike
(or p− valent convex) functions in the unit disk which are mapped by certain
integral operator onto p−valent starlike (or p− valent convex) functions.

To obtain conditions when (1) implies (2) we will use the following lemma
from the theory of differential subordinations.

Lemma 1.1. [10, Theorem 2.3i(i), p. 35] Let Ω ⊂ C and suppose that the function

ψ : C2 × D → C satisfies ψ(ix, y; z) /∈ Ω for all x ∈ R, y ≤ −(1 + x2)/2, and
z ∈ D. If q ∈ H [1, 1] and ψ(q(z), zq′(z); z) ∈ Ω for all z ∈ D, then Re q(z) > 0,
z ∈ D.

2. Main Results

Theorem 2.1. Let f ∈ Ap, p ≥ 2, 0 < βk−1 ≤ 1, 2 ≤ k ≤ p, k integer, and

suppose that f (m)(z) 6= 0 for all z ∈ D \ {0} and for all positive integer m. Now,

let define a sequence βk, (k = 1, 2, ..., p) such that β1 = β and
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2
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2

, k = 2, 3, ...., p,
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]
.

Then the following implication holds:
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i.e.
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Further, for the function ψ(r, s; z) so that ψ(r, s; z) = β1
s
r + rβ1 − 1, we have
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we get that it is enough to show that

ψ(ix, y; z) = −β1 ·
y

x
· i+ (ix)β1 − 1 /∈ Ω

for all real x, y ≤ − 1+x2
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In the case x > 0 we have
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Similarly, in the case x < 0,
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h(x) is continuous on (0,+∞), h(0) = 0, lim
x→+∞

h(x) > 0, h′(0) < 0 and

lim
x→+∞

h′(x) > 0. Furthermore, h(x) has exactly one local minimum (at point

x∗∗ ) and exactly one local maximum (at point x∗ > x∗∗ ) on (0,+∞) (explained
in [9]). So,

sup

{
| argψ(ix, y; z)| : x > 0, y ≤ −

1 + x2

2
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= arcctg[h(x∗)] = β2(β1),

where β1 ≡ β.

In a similar way we can show that the same is true also for x < 0.

When x = 0 we have

lim
|x|→0

|argψ(ix, y; z)| = lim
x→0+

arcctg[h(x)] =
π

2
≥ β2(β1).
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Then for all z ∈ D,
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Next, we choose as before
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Applying the same proof as before by iteration we receive
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To prove that implication we use the proof of Theorem 2.1 from article [9],
so that β1 we replaced by βp

This completes the proof of the theorem.

For p = 2 we receive.

Corollary 2.2. Let f ∈ A2, 0 < β1 ≤ 1, and suppose that f ′(z) 6= 0 for all
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where x∗ is the bigger, of the only two positive solutions of the equation
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Then the following implication holds:
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