
Faculty of Natural and Technical Sciences, Stip and IGCP Committee of the Republic of Macedonia with a sponsorship from the UNESCO organize

1st INTERNATIONAL WORKSHOP ON THE PROJECT

ANTHROPOGENIC EFFECTS ON THE HUMAN ENVIRONMENT IN THE NEOGENE BASINS IN THE SE EUROPE

PROCEEDINGS

Edited by: Serafimovski & Boev Stip, June 2011

Faculty of Natural and Technical Sciences in Štip and IGCP Committee of the Republic of Macedonia with a sponsorship from the UNESCO

1st INTERNATIONAL WORKSHOP ON THE PROJECT

ANTHROPOGENIC EFFECTS ON THE HUMAN ENVIRONMENT IN THE NEOGENE BASINS IN THE SE EUROPE

PROCEEDINGS

Edited by: T. Serafimovski & B. Boev

Štip, June 2011

Organizing Committee:

Prof. D-r Todor Serafimovski, President

Faculty of Natural and Technical Sciences, University "Goce Delčev"-Štip, R. Macedonia

Prof. D-r Blažo Boev

Faculty of Natural and Technical Sciences, University "Goce Delčev"-Štip, R. Macedonia

Prof. D-r Tadej Dolenec

Faculty of Natural Sciences and Engineering, Department of Geology, University in Ljubljana, R. Slovenia

Prof. D-r Vladimir Bermanec

Faculty of Sciences, Institute of Mineralogy and Petrology, University of Zagreb, R. Croatia

Prof. D-r Trajče Stafilov

Institute of Chemistry, Faculty of Science, University "Sts. Cyril and Methodius"-Skopje, R. Macedonia

Prof. D-r Sonja Lepitkova

Faculty of Natural and Technical Sciences, University "Goce Delčev"-Štip, R. Macedonia

Prof. D-r Zoran Panov

Faculty of Natural and Technical Sciences, University "Goce Delčev"-Štip, R. Macedonia

Doc. d-r Goran Tasev

Faculty of Natural and Technical Sciences, University "Goce Delčev"-Štip, R. Macedonia

Scientific Committee:

Prof. D-r Todor Serafimovski, President

Faculty of Natural and Technical Sciences, University "Goce Delčev"-Štip, R. Macedonia

Prof. D-r Risto Stojanov, retired

Faculty of Natural and Technical Sciences, University "Goce Delčev"-Štip, R. Macedonia

Prof. D-r Simon Pirc, retired

Faculty of Natural Sciences and Engineering, Department of Geology, University in Ljubljana, R. Slovenia

Prof. D-r Blažo Boev

Faculty of Natural and Technical Sciences, University "Goce Delčev"-Štip, R. Macedonia

Prof. D-r Ladislav Palinkaš

Faculty of Sciences, Institute of Mineralogy and Petrology, University of Zagreb, R. Croatia

Prof. D-r David H. M. Aldeton

Department of Earth Sciences, Royal Holloway University of London, United Kingdom

Prof. D-r Rade Jelenković

Faculty of Mining and Geology, Department of Geology, University in Belgrade, R. Serbia

Prof. D-r Eugenia Tarassova

Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Sofia, Bulgaria

Language: English for presentations and papers

National UNESCO-IGCP Committee in the Republic of Macedonia has long tradition and active work in area of correlation in geology. More than five decades this Committee brings together scientific researchers in the area of geology within the Republic of Macedonia and creates basis for animation of geological problems in the country and abroad. Numerous active memebers of the Macedonian IGCP-Committee took participation in numerous scientific projects that were financially supported by UNESCO, but there are few teams in the Republic of Macedonia that have managed to be leaders of important projects in the area of geology and human environment, also.

During the last decade the Macedonian Nationa UNESCO-IGCP Committee successfully was involved in studies of anthropogenic effects on the human environment in a wider region that occupies area of former Yugoslavia, Mediterranean and presently Southeastern Europe. As main partners of the Macedonian UNESCO-IGCP Committee in these important activities participate national UNESCO-IGCP Committees of the Republic of Slovenia and Republic of Croatia, regularly supported by National UNESCO-IGCP Committees, groups and individual researchers from the UK, France, Switzerland, Bulgaria, Russia, Greece, Romania, Slovakia, Czech Republic, Germany etc.

The ongoing UNESCO-IGCP Project "Anthropogenic effects on the human environment in the Neogene basins in the SE Europe", which financially have been supported by the Participation Programme 2010-2011, represents just confirmation of the continuity of scientific activities of the National UNESCO-IGCP Committee and opens an opportunity for new studies and enclosure of more younger scientific workers in the country and from abroad. In that context speaks already organized 1st International Workshop on this project at 3-4 June 2011 in Stip, Republic of Macedonia where active participation took more than 40 participants from few European countries. These project activities have resulted with preparation of a Proceeding Book containing 14 selected scientific papers, which have been presented at the aforementioned Workshop.

Aknowledgement:

This Workshop was organized with a financial support from the UNESCO-IGCP Participation Programme 2010-2011through the National Commission for UNESCO in Skopje, Republic of Macedonia

CONTENTS

INSTEAD OF PREFACE	1
Petra Vrhovnik, Nastja Rogan Šmuc, Tadej Dolenec, Todor Serafimovski, Goran Tasev, Matej Dolenec CHALCOPHILE ELEMENTS IN KALIMANCI LAKE SURFACE SEDIMENTS (REPUBLIC OF MACEDONIA)-PRELIMINARY STUDY	6
Mariana G. Yossifova A REVIEW OF THE ANTHROPOGENIC EFFECTS ON THE HUMAN ENVIRONMENT IN THE REGIONS OF THE PERNIK, BOBOV DOL AND MARITZA EAST COAL BASINS, BULGARIA	12
Milihate Aliu, Robert Šajn and Trajče Stafilov ENRICHMENT OF SOME HEAVY METALS IN TOPSOILS AROUND A Pb-Zn SMELTER IN MITROVICA, KOSOVO	24
Mihail P. Tarassov, Eugenia D. Tarassova, Miroslav V. Abrashev, Lioudmila M. Lialina, Dmitry Zozulya, Yevgeny E. Savchenko FLUID-MEDIATED ALTERATION OF MONAZITE IN GRANITOIDS OF SOUTHWESTERN BULGARIA AS PREHISTORY AND PRECONDITION FOR REE, Th AND U REDISTRIBUTION IN WEATHERING ROCKS, SOILS AND CULTIVATED AREAS	30
Todor Serafimovski, Marjan Mihajlov, Konstantin Siderovski, Goran Tasev, Gerasim Konzulov ANTHROPOGENIC INFLUENCE OF THE BUCHIM MINE WASTE DUMP AND HYDROTAILING TO THE SURFACE AND GROUND WATERS IN THE LAKAVICA BASIN, MACEDONIA	39
Zdenka Stojanovska, Blažo Boev, Mimoza Ristova SPATIAL DISTRIBUTION OF K,Th AND U ELEMENTAL CONCE- NTRATION IN SOILS OF THE REPUBLIC OF MACEDONIA	53
Dejan Mirakovski, Marija Hadzi-Nikolova, Nikolinka Doneva, Zoran Despodov, Zoran Panov, Stojance Mijalkovski AIR POLLUTANTS EMISSION ESTIMATION FROM MINING INDUSTRY IN MACEDONIA	63
Biljana Jordanoska, Trajče Stafilov, Alfred Johny Wüest SURFACE SPRINGS OF LAKE OHRID - ACCESS OF PHYSICOCHEMICAL COMPOSITION	71
Vojo Mirčovski, Violeta Stefanova, Vlado Mirčovski PROTECTION OF POLLUTION OF THE ARTESIAN AQUIFER AT RAOTINCE SITE-POLOG BASIN, WESTERN MACEDONIA	78

Nastja Rogan, Petra Vrhovnik, Tadej Dolenec, Todor Serafimovski, Goran Tasev and Matej Dolenec	
HEAVY METAL CONTAMINATION OF PADDY SOILS FROM KOČANI FIELD (REPUBLIC OF MACEDONIA)	83
Marija Hadzi-Nikolova, DejanMirakovski, VioletaStefanova IDENTIFICATION OF HARMFUL IMPACT ON THE WORKING ENVIRONMENT OF OPERATIONS IN "BUCHIM" MINE	93
Orce Spasovski, Goran Tasev HEAVY METALS IN GROUND WATERS IN THE ALLUVIUM OF THE MAVROVICA RIVER-SVETI NIKOLE (EASTERN MACEDONIA)	99
Tena Sijakova-Ivanova, Blažo Boev CADMIUM CONCENTRATION IN THE SOILS OF THE VILLAGE GUJNOVCI	105
Beganović Martina, Hrenović Jasna, Posilović Hrvoje, Čobić Andrea, Bermanec Vladimir	
LICHEN INFLUENCE ON VARIOUS MINERAL SUBSTRATA	111
List of participants	114

AIR POLLUTANTS EMISSION ESTIMATION FROM MINING INDUSTRY IN MACEDONIA

Dejan Mirakovski¹, Marija Hadzi-Nikolova¹, Nikolinka Doneva¹, Zoran Despodov¹, Zoran Panov¹, Stojance Mijalkovski¹

Abstract

This paper presents air pollutants (particles and gaseous) emissions estimation from extraction and concentration processes of raw mineral materials (commonly referred as mining industry). Emissions estimations are based on extensive analysis of each specific site including production rates, equipment and processes used as much as type of material processed. Data for national mining industry are based on 2010 unofficial reports (obtained through authors direct research), and are compiled as per CORINAIR (CLRTAP) reporting requirements. Methodologies and results are discussed below.

Introduction

Emission estimations and creation of polluters inventory is first step for proper planning of protection measures, as much as requirements from international agreements signed by our government. Having this in mind and as a part of wider National reporting activities taken by MOEPP and different subcontractors of the specific project, an extensive efforts for inventory of mining operations and estimation of associated emissions were taken during the 2010.

Due to each mine/quarry unique characteristics and based on intensity and type of activities/processes involved, a different methodologies for emission estimations are applied, including:

- ✓ Guidelines for CLRTAP Emission Inventories 2001 ETC ACC (Group 05).
- ✓ US EPA (1998), Compilation of Air Pollutant Emission Factors, AP-42, Fourth Edition, United States Environmental Protection Agency.
- ✓ NATIONAL POLLUTANT INVENTORY GUIDE, 2004 Version 3.1, Australian Government, Department of Environment and Heritage.

Based on methodologies requirements, the emission inventory compiled includes all operations (active in 2010) at the national level, involved in some form of extraction and primary processing of raw mineral materials. Based on type of minerals involved, and according to industry standards all operation are classified in four major groups, as follow:

- Extraction and processing of energy minerals
- Extraction and processing of hard rock metallic minerals
- Extraction and processing of aggregates
- Extraction and processing industrial minerals

The inventory does not include sand and gravel operations as much as dimensioned stone quarries, where due to specific technologies and usual low intensity of activities, air pollutants emission are quite limited and of now importance at local or national level. Due to similar reasons underground mining operations are also omitted.

¹University "Goce Delecev"-Stip, Faculty of Natural and Technical Sciences,

Emission sources and air pollutants of interest

Using the same approach, common emission sources could be divided in two distinctive groups, emissions from raw mineral extraction processes and emissions from primary processing activities.

During the extraction processes common air pollutants include particulate matters (TSP and PM 10) and following gaseous substances CO, NO_x, SO_x and VOC_s, usually associated with following activities;

- blasting,
- material transportation and handling,
- vehicle exhaust emissions.

Pollutants of interest from primary processing activities are dominated by particulate matters (TSP and PM 10) and in many smaller rates gaseous substances including CO, NO_x, SO_x and VOC_s, associated with following activities;

- crushing
- grinding
- classification
- material transportation and handling

Processes of material destruction and natural disintegration, especially for energy minerals (oxidation, self-burning...) could result with greenhouse gasses emissions including methane, ethane and propane.

Largest part of this emissions could are fugitive emissions (>90%) and cannot be associated with specific location or process, while small part (<10%) comes from point or line sources.

Emission factors

As basis for estimation in the inventory creating processes, default emission factors recommended by US and Australian (USEPA, SPCC and NERDDC) reports were used. The emission factors used were drafted as a compilation of systematic measurements in real operating conditions in Australian and US mines.

Based on certainty expected, for each emission factor an appropriate rating (EFR) is defined. The EFR system is as follows:

- A Excellent
- B Above Average
- C Average
- D Below Average
- E Poor
- U Unrated

It must be noted that those ratings does not imply emission factors absolute precession. The main criterion affecting the uncertainty of an emission factor remains the degree of similarity between the equipment/process selected in applying the factor, and the target equipment/process from which the factor was derived. This means that if properly selected and applied factors could provide satisfactory precession and could be used with great certainty.

Emission factors for specific operations and associated activities are given bellow.

Table1. Default emission factors - coal extraction and processing

Activity	TSP	PM_{10}	Units	EFR
Draglines	0.06	0.026	kg/m ³	В
Excavators/Loaders	0.029	0.014	kg/t	С
Buldozers	102	32.5	kg/h	В
Bucket wheel	minimal	minimal		
Screpers	1.64	0.53	kg/VKT	A
Stockpiling	0.004	0.0017	kg/t	U
Reclaiming	0.03	0.013	kg/t	U
Transfer points	0.00032	0.00015	kg/t	U
Conveyor (runoff mine)	0.005	0.002	kg/t	С
Conveyor (dry material)	0.06	0.5	kg/t	С

Table 2. Default emission factors - extraction d processing of aggregates, construction materials and industrial minerals

Activity	TSP PM ₁₀		Units	EFR
Excavators/ loaders	0.025	0.012	kg/t	С
Bulldozers	17	4	kg/h	В
Mine roads, fugitive dusts	3.88	0.96	kg/VKT	U
Trucks	0.012	0.0043	kg/t	
Draglines	0.06	0.026	kg/m ³	В
Scrapers	1.64	0.53	kg/VKT	A

Table 3. Default emission factors - extraction of metallic ores

Activity	TSP	TSP PM ₁₀		EFR
Excavators/ loaders	0.025	0.012	kg/t	С
Bulldozers	17	4	kg/h	В
Mine roads, fugitive dusts	3.88	0.96	kg/VKT	U
Trucks	0.012	0.0043	kg/t	
Draglines	0.06	0.026	kg/m ³	В
Scrapers	1.64	0.53	kg/VKT	A

Table 4. Common emission factors for gaseous substances

A -4::4	Emission factors (kg/1000 l diesel)								
Activity	PM_{10}	СО	NO _x	SO _x	VOC _s	EFR			
Buldozer	3.03	9.4	34.16	1.7	3.31	С			
Excavator	17.7	14.73	34.29	1.7	1.58	С			
Screper	3.27	10.16	30.99	1.7	2.28	С			
Trucks	17.7	14.73	34.29	1.7	1.58	С			
Loader	3.51	11.79	38.5	1.7	5.17	С			

Table 5. Common emission factors - processing activities

Activity	TSP	PM_{10}	Units	EFR
Primary crushing	0.2	0.02	kg/t	С
Secondary crushing	0.6	ND	kg/t	D
Tertiary crushing	1.4	0.08	kg/t	Е
Material transport and handling	0.06	0.03	kg/t	С

Results obtained

Data collected for each site are used for construction of specific flow charts, in order to identify material flow and processes involved. Based on those flow charts, emissions are estimated and results are compiled in a format as per CLRTAP emission inventories requirements. Emission data compiled in tables for each of the major groups of national mining industry are presented below.

Table 6. Fugitive emissions - industrial minerals

Sites	(kg/year)							
5300	TSP	PM 10	CO	NOx	SOx	VOCs		
Govrlevo	205.950	60.408	2.304	5.944	284	452		
Usje	365.140	82.645	3.599	8.960	433	591		
Mikrogranulati-Gostivar	140.165	19.646	1.735	4.616	218	390		
Hamzali	128.278	16.720	247	615	30	40		
Memisli	291.516	33.031	502	1.264	61	88		
Opalit	365.305	58.336	848	2.060	100	121		
Strmos	154.648	39.161	970	2.427	117	164		
Silika Mineral	235.696	31.606	1.723	4.603	217	394		
Group Total	1.886.699	341.554	11.929	30.489	1.460	2.240		

Fig. 1. Total emission - industrial minerals group

Table 7. Fugitive emissions - energy minerals group

Sites	(kg/	year)	m³/year				
Sites	TSP	PM 10	Mhetane	Ethane	Propane	CO	
REK Bitola	1.814.021	1.222.461	14.146.000	1.028.800	514.400	771.600	
REK Oslomej	671.277	417.677	1.903.000	138.400	69.200	103.800	
BRIK Berovo	7.965	3.840	26.250	2.100	1.050	1.575	
Piskupstina-Struga	9.215	4.443	27.000	2.160	1.080	1.620	
Group Total	2.502.479	1.648.420	16.102.250	1.171.460	585.730	878.595	

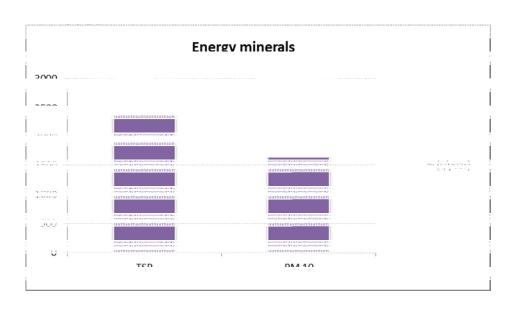


Fig. 2. Total particulate emission - energy minerals group

t			WAR STATE OF THE SECOND SERVICE	,
	79 797479			
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Î	*EANALANI			İ
	was included new reserver was even recent		and the second s	

Fig. 3. Total gaseous emission - energy minerals group

 Table 8. Fugitive emissions – construction materials/aggregates group

				-	_					
a.		(kg/year)								
Sites	TSP	PM 10	CO	NOx	SOx	VOCs				
Banjani	232.776	39.628	921	2.315	112	159				
Cajle	573.493	77.049	1.069	2.649	128	171				
FHL Sivec	1.231.208	176.954	13.449	36.914	1.724	3.424				
Brazda	133.050	34.827	2.516	6.477	309	489				
Zebrenjak	202.055	24.904	1.362	3.516	168	268				
Grupcin	16.772	5.514	1.835	4.947	232	435				
Prevalec	389.835	43.430	818	2.022	98	129				
Krasta	200.788	24.679	1.872	5.050	237	445				
Gopceli	138.040	19.298	2.021	5.399	255	462				
Tatarli-Cuka	108.271	14.501	1.925	5.157	243	445				
Trojaci	184.184	22.400	1.704	4.659	218	428				
Pelagonija-Gostivar	202.905	24.357	901	2.437	114	216				
Pelagonija Kavadarci	151.822	18.504	790	2.026	97	151				
Progres Gostivar	192.512	24.503	707	1.757	85	115				
Sopotnica	299.923	42.078	853	2.184	105	161				
Tajmiste	235.560	32.480	633	1.641	78	127				
Urban Invest	97.381	11.317	448	1.131	54	79				
Vratnica	187.344	23.929	781	2.024	96	156				
Zelenikovec	136.121	16.752	309	803	38	62				
Group Total	4.914.040	677.103	34.914	93.106	4.393	7.925				

Fig. 4. Total fugitive emissions - construction materials/aggregates group

Table 9. Fugitive emissions – metallic minerals group

	(kg/year)					
	TSP	PM 10	CO	NOx	SOx	VOCs
Feni	1.531.230	183.643	2.926	7.674	364	619
Buchim	9.884.902	1.167.752	15.505	40.275	1.918	3.140
Group Total	11.416.132	1.351.395	18.431	47.948	2.282	3.759

Fig. 5. Total fugitive emissions – metallic minerals group

Instead of conclusion

It must be noted that the results presented are indicative and for reporting/planning purposes only, and total values does not have any significance as an air pollution indicators for national level.

Of course parameters obtained for each specific sites or agglomeration operation located in close proximity could be a solid base for planning and licensing purposes.

REFERENCES:

- Bouncier A J & Davis W T (1992), Air Pollution Engineering Manual, Air & Waste Management Association (US), Van Nostrand Reinhold, New York.
- Holmes Air Sciences (1998), "Review of Load Based Licensing Requirements and Exploration of Alternative Approaches". Report to the Minerals' Council of NSW, April 1998.
- New South Wales Environment Protection Authority [NSWEPA] (1997), Metropolitan Air Quality Study: Air Emissions Inventory, NSWEPA, Sydney.
- NERDDC (1988), Air Pollution from Surface Coal Mining: Volume 2 Emission Factors and Model Refinement, National Energy Research and Demonstration Council, Project 921.
- Pitt, O. Fugitive PM10 Emission Factors, 15th International Clean Air and Environment Conference, Sydney, 27-30 November 2000, p303-306.
- SPCC (1986), Air Pollution from Coal Mining and Related Developments, ISBN 0 7240 59369.
- US EPA (1985), Compilation of Air Pollutant Emission Factors, AP-42, Fourth Edition United States Environmental Protection Agency, Office of Air and Radiation, Office of Air Quality Planning and Standards, Research Triangle Park, North Carolina, 27711.