COST Action CA16205, COST Association European Network on Understanding Gastrointestinal Absorption-related Processes

Preliminary study on screening the intermolecular interactions of

organic cation drugs from BSC Class III

case study Metformin

Cvetkovski Aleksandar, Gjorgieva Ackova Darinka, Smilkov Katarina

Department of Pharmacy, Faculty of Medical Sciences, University Goce Delcev, Stip, R. Macedonia

aleksandar.cvetkovski@ugd.edu.mk

Introduction

SUNGAPO

Among the orally administered drugs, about 40% share the properties of organic cations (protonated bases) or neutral bases at physiological pH, which indicates one important point for studying their transport mechanisms [1]. Antineoplastic platinum compounds [2,3], the histamine H₂ receptor antagonist cimetidine [4], the antiviral drugs (acyclovir, gancyclovir, lamivudine and zalcitabine) [5-7], the antidiabetic drug metformin [8,9], and the antiarrhythmic drug quinidine [10], are the identified to be transported by the organic cation transporters OCT1, OCT2 and OCT3 (membrane) transporters) [2]. The case study of drug model (DM) metformin (MET), that according to Biopharmaceutical Classification System (BCS) belongs to the class III drugs (high solubility, low permeability) [11], emphasizes the importance of non-covalent interactions of this dication drug with range of ligands selected from the GRAS (Generally Recognized as Safe by FDA for food additives list) [12]. MET (*N*,*N*-dimethylbiguanide) is the only approved hypoglycemic drug of the biguanide class used in oral therapy of type 2 diabetes, marketed as hydrochloride, embonat (pamoate) and p-chlorophenoxy acetate salt [13]. Because of the biguanide π conjugated system, MET in solution can exist in three resonance-stabilized forms, *i.e.* as neutral molecule (MET), monoprotonated (METH⁺) or diprotonated (METH²⁺) cation, with dissociation constants in water typical of biguanides:

Compounds Studied

Molecular salts of metformin

Drug-Drug type of molecular crystals

Dichloroacetic acid and Dichloroacetate (DCA):

Introduced as novel class of oral ant diabetic drug that reduce blood glucose and lipids without stimulating insulin secretion. Recent studies reveled its anticancer effect []

MET-DCA 1: 1 & 1:2 exhibited enhanced *in vitro* anti-leukemic activity [13]

Acetic acid: Ameliorate the insulin secretion [14]

Diclofenac: Widely used anti-inflammatory drugs in pain-killer therapy.

Metformin = L;

[HL]/[L][H] p*K*_{a1}(N−H⁺)~12.40;

[H₂L]/[HL][H] pK_{a2}(N-H⁺)= 2.96 (NIST database)

Characterization of PCC

Structure determination was performed by Single Crystal X-Ray Diffraction Analysis confirming the structure 1 and structure 2 to be molecular salt forms of New Chemical Entity (NEC) not so far deposited in the Cambridge Structure Database CCDC.

MET diclofenac 1 : 1

Metforminium monocation/ monoprotonated

FT-IR spectra

DSC Thermograms

Work in Progress

Testing Dissolution patterns of MET molecular salts, and flow- cytometry testing

FTIR Spectr

$R_2^2(8)$ N—H···O dimer $R_2^2(8)$ N—H···N dimer $R_4^2(8)$ N—H···O tetramer N4-H1···O2; ribbon connection

References

- 1. 1. Neuhoff S, Ungell AL, Zamora I, Artursson P. (2003). Pharm. Res. 20(8), 1141–1148
- 2. Zhang S, Lovejoy KS, Shima JE et al. (2006) Cancer Res.66(17), 8847–8857
- 3. Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui KI. (2006) *J. Pharmacol. Exp. Ther.*319(2), 879–886
- 4. Barendt WM, Wright SH. (2002) J. Biol. Chem.277(25), 22491–22496
- 5. Takeda M, Khamdang S, Narikawa S *et al.* (2002) *J. Pharmacol. Exp. Ther.*300(3), 918– 924.
- 6. Jung N, Lehmann C, Rubbert A et al. (2008) Drug Metab. Dispos.36(8), 1616–1623.
- 7. Minuesa G, Volk C, Molina-Arcas M *et al.* (2009) *J. Pharmacol. Exp. Ther.*329(1), 252–261.
- Kimura N, Masuda S, Tanihara Y et al. (2005) Drug Metab. Pharmacokinet.20(5), 379– 386.
- 9. Nies AT, Koepsell H, Winter S *et al.* (2009) *Hepatology*50(4), 1227–1240.
- 10. Hasannejad H, Takeda M, Narikawa S et al. (2004). Eur. J. Pharmacol. 499(1–2), 45–51
- 11. Cheng CL, Yu LX, Lee HL, Yang CY, Lue CS, Chou CH., (2004)Eur J Pharm Sci.;22(4):297-304.

