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Abstract. The standard representation of a quasigroup of order m uses m2 bits. 

In this paper, it is introduced a new way for representation of a class of 

quasigroups of order 2n, that reduces the number of bits required for the 

representation. The focus is placed on a class of quasigroups that can be 

represented as a linear combination of the operands, which requires ln(m) bits for 

storage a quasigroup of order m. Moreover, some characteristics about the 

parameters, i.e. matrices, that are used for defining such quasigroups are given. 

This model for presentation of quasigroups can be easily used for further testing 

of their coding and cryptographic features. 
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1 Introduction 

Like many other mathematical theories, the theory of quasigroups is introduced with 

no useful purpose and without taking care about its applicability. But, because of the 

interesting properties of these structures, the theory of quasigroups has been developed 

into a very respectable branch of mathematics with various applications. Quasigroups, 

in theory of designs known as Latin squares, found statistical applications as 

experimental designs. Many row-column designs are constructed by concatenating 

Latin squares [1]. Nowadays, they have practical applications in cryptology and coding 

theory. A class of codes, Random codes, based on quasigroups, is proposed in [2] and 

their properties are analyzed in [3]. There are also many cryptographic algorithms 

formed based on quasigroups. J. Denes and A. D. Keedwell are the first cryptologists 

that apply quasigroups [4-6]. Quasigroups with some specific properties are used for 

construction of block ciphers [7-9] and hash functions [10-12]. Since the quality of a 

crypto product depends of its resistance on different types of attacks, the differential 

and statistical crypto analysis are integral part in designing such product [7, 9]. 

Studying the quasigroup properties, is of crucial importance [10].  

The interesting nature, as well as their applicability, contributes researching 

quasigroups to not lose its popularity. Many researchers are involved in studying some 



specific quasigroups like quadratic and rectangular quasigroups, [13, 14], right product 

quasigroups, [15], inverse quasigroups, [16] and some other. Those researches are 

mostly concentrating in finding conditions when some properties or identities are 

satisfied. Other approach is counting the number of Latin squares as well as 

enumerating them up to isomorphism or equivalences [17-20]. 

Because the number of bit strings of length n is 2n, quasigroups of order 2n and their 

parastrophe operations have special importance in coding theory and cryptography [7]. 

Therefore, our interest here is based on these types of quasigroups. The representation 

of such quasigroups as vector valued Boolean functions is initially introduced by 

Gligoroski et al [21, 22], and the benefit of this representation in cryptography and 

coding theory is given in [7] and [23]. According to the degree of the polynomials in 

the Boolean presentations, the quasigroups of order 4 are classified as linear, semi-

linear and quadratic. Further analyze of this type of representation is done in [24], while 

in [25] it is shown that all quasigroups of order 4 can be presented using binary matrices 

of order 2. Using this approach, the quasigroups can be classified depending on the type 

of matrices that characterizes it. This classification is the same with that given in [22]. 

Moreover, it can be concluded that greater number of linearly independent vectors that 

characterizes given quasigroups indicates better cryptographic properties. From the 

other hand, such matrix representation is very simple and clear, needs fewer bits for 

presentation than the standard way, and can be easily used for further investigations of 

its cryptographic and coding properties [24]. All this have contributed to the idea of 

considering a generalization of matrix presentation of quasigroups of order 2n. 

Therefore, in this paper is considered a special type of quasigroups having Boolean 

presentation that can be represented as a sum of linear combinations of the multipliers. 

The benefit of such quasigroups is in the fact that it is needed small number (O(n2)) of 

bits for their representation. That makes them usable in applications that requires 

limited memory. They are defined in the next section, while some properties about the 

form of matrices that are used for representations are given in the sections 3 and 4. 

2 Boolean Bilinear Quasigroups  

Definition 1. Given groupoid (G, ∗) is a quasigroup iff for all 𝑎, 𝑏, 𝑐 ∈ 𝐺 the 

following statements holds: 

𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐 ⇔ 𝑏 = 𝑐  

𝑏 ∗ 𝑎 = 𝑐 ∗ 𝑎 ⇔ 𝑏 = 𝑐. 

 

Definition 2. Given a set G = {0, 1, …, m–1}, the mm quadrate structure is called 

Latin square iff all elements in each column and each row are distinct. 

Each Latin square defines finite quasigroup on G and vice versa.  

Let G = {0, 1, 2, ..., m–1}. Then, a normalized, or reduced, Latin square, is a Latin 

square with the first row and column given by {0, 1, 2, ..., m–1}. Similarly, can be 

defined a normalized quasigroup as a quasigroup that satisfies 𝑎 ∗ 0 = 0 ∗ 𝑎 = 𝑎. The 

total number of Latin squares N(m,m) of order m, can be computed from the number of 

normalized Latin squares, L(m,m), using the formula N(m, m) = m!(m –1)!L(m,m). The 



 

exact number of Latin squares is known only for m ≤ 11, while the asymptotic value of 

L(m,m) is not known [19]. 

Our interest is concentrated only on quasigroups with |G|=2n. One can choose a 

bijection G → {0,1}n and represent each element from G as a n-bit sequence. Now, 

each quasigroup can be considered as a binary function 𝑓: {0,1}n x {0,1}n →{0,1}n. 

And as it is stated in [7] it can be represented as a vector valued Boolean polynomials. 

 

Lemma 1. For every quasigroup ({0,1}n, ∗) and for each bijection {0,1}2n →{0,1}n 

there are uniquely determined vector valued Boolean functions 𝑓1, … , 𝑓𝑛  such that, for 

each 𝑥, 𝑦 ∈{0,1}n  

𝑥⃗ ∗ 𝑦⃗ = 𝑓(𝑥⃗, 𝑦⃗) = (𝑓1(𝑥⃗, 𝑦⃗), … , 𝑓𝑛(𝑥⃗, 𝑦⃗)) 

Moreover, as it is proven in [22], each quasigroup of order 2n can be represented as 

vector value Boolean polynomials (this is not true for different order).  

The quasigroups of order 2n with degrees of the polynomial Boolean functions 

greater than 2 are not suitable for construction of multivariate quadratic public-key 

cryptosystem. Those with degree at most two are named in [21] as Multivariate 

Quadratic Quasigroups (MQQ). Special types of MQQ, having a property that all 

quadratic terms are of the form xiyj, are introduced in [23] as bilinear MQQ, and we 

will refer them here as a Bilinear Quasigroups (BQ). Formally BQs are defined as 

follows:   

 

Definition 3. The quasigroup ({0,1}n, ∗) is a Bilinear Quasigroup if the quasigroup 

operation can be represented by a vector valued Boolean function  𝑓(𝑥⃗, 𝑦⃗) = 𝑧 = 𝑥⃗ ∗ 𝑦⃗ 

where for some constants 𝑐𝑘 , 𝑎𝑘𝑖 , 𝑏𝑘𝑖 ∈ {0,1}, 𝑘, 𝑖 = 1, 𝑛̅̅ ̅̅ ̅  

 
1 1 , 1

,
n n n

k k ki i ki kij

i i

i i

i j

jb y d xa yz c x
= = =

= + + +      (1) 

Using following notation: 𝐴 = [𝑎𝑘𝑖], 𝐵 = [𝑏𝑘𝑖], 𝑐 = [𝑐𝑘], 𝐷′𝑖 = [𝑑′𝑘𝑗
𝑖 ], where 

𝑑′𝑘𝑗
𝑖 = 𝑑𝑘𝑖𝑗, and 𝐷′′𝑗 = [𝑑′′𝑘𝑖

𝑗
] where 𝑑′′𝑘𝑖

𝑗 = 𝑑𝑘𝑖 , 𝑥⃗ ∗ 𝑦⃗ can be represented as 

 
1 1

* .
n n

i j

ji i jx y z c Ax By x y c AxD DBy xy
= =

= = + + + = + + +                  (2) 

Note 1. Note that the j-th column of the matrix 𝐷′𝑖 is the same with the i-th column 

of the matrix 𝐷′′𝑗. According to Note 1, for a given matrix 𝐷′𝑖 we may construct matrix 

𝐷′′𝑗 and vice versa.  

Next Example gives features of matrices A and B. 

Example 1 Given quasigroup of order 23 defined by 

( )1 3 2 3 3 2 1 3 3 3 3 3 1 2 3 2( , 1, ).x y x x y x y x y y x y x y x x x y = + + + + + + + + + + +  

we have 𝑐 = (0,1,0), 𝐴 = [
1 0 1
0 1 0
0 0 1

] , 𝐵 =     [
0 1 0
1 0 1
0 0 1

] , 𝐷′1 = 𝐷′2 = [
0 0 0
0 0 0
0 1 0

] 

and  



𝐷′3 =  [
0 0 1
0 0 1
0 1 0

]. Also 𝐷′′1 = 𝟎, 𝐷′′2 = [
0 0 0
0 0 0
1 1 1

] and 𝐷′′3 = [
0 0 1
0 0 1
0 0 0

]. 

 

3 Normalized Bilinear Quasigroups and Connection 

between BQ and Normalized BQ 

 

It is easy to check that the matrices A and B in the Example 1 are nonsingular. Next 

Theorem proves that this assumption must be always true. 

 

Theorem 1. Let a BQ ({0,1}n, ∗) is defined by (2). Then the matrices 𝐴 and 𝐵 are 

nonsingular. 

Proof. Clearly for different 𝑥⃗, 𝑥⃗ ∗ 0⃗⃗ = 𝑐 + 𝐴𝑥⃗ are all different. This is possible iff A 

is a nonsingular. The non-singularity of B can be shown similarly.        

 

Theorem 2. Let ({0,1}n, ∗) be a groupoid where ∗ is defined as 

1

n

i i

i

x y x y x D y
=

 = + +  and ({0,1}n, ∗ ′) be a groupoid with *’ is defined as 𝑥⃗ ∗′ 𝑦⃗ =

(𝐴𝑥⃗) ∗ (𝐵𝑦⃗) + 𝑐, where 𝐴 and 𝐵 are nonsingular 𝑛 × 𝑛 binary matrices and 𝑐 is a 

binary n-vector. Then, ({0,1}n, ∗) is a quasigroup iff ({0,1}n, ∗ ′) is a quasigroup. 

Proof. Let assume that ({0,1}n, ∗) is a quasigroup, and let 𝑥⃗ ∗′ 𝑦⃗ = 𝑥⃗ ∗′ 𝑧, then it is 

obtained 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).x y x z Ax By c Ax Bz c Ax By Ax Bz  =    + =  +   =    

Since ∗ is a quasigroup operation 

( ) ( ) ( )*( )Ax By Ax Bz By Bz =  = , and because 𝐵 is nonsingular we obtain that 

𝑦⃗ = 𝑧.  

Similarly, it can be proven that 𝑥⃗ ∗′ 𝑦⃗ = 𝑡 ∗′ 𝑦⃗ ⇔ 𝑥⃗ = 𝑡, which completes the proof 

that ({0,1}n, ∗ ′) is a quasigroup. 

In opposite, let us assume that ({0,1}n, ∗ ′) is a quasigroup, and let 𝑥⃗ ∗ 𝑦⃗ = 𝑥⃗ ∗ 𝑧. 

Because 𝐴 and 𝐵 are nonsingular 𝐴−1 and 𝐵−1 exist, therefore, it is obtained: 
1 1 1 1

1 1 1 1

( )* ( ) ( ) ( )

( )* ( ) ( ) ( )

x y x z A A x B B y c A A x B B z c

A x B y A x B z

− − − −

− − − −

 =   + =  + 

  = 
. 

Since ∗ is a quasigroup operation 𝐵−1𝑦⃗ = 𝐵−1𝑧 ⇔ 𝑦⃗ = 𝑧. The proof that 𝑥⃗ ∗ 𝑦⃗ =

𝑡 ∗ 𝑦⃗ ⇔ 𝑥⃗ = 𝑡, is similar. This completes the proof that ({0,1}n, ∗) is a quasigroup.    

 

 It is easy to check that a BQ is normalized if and only if 𝐴 = 𝐵 = 𝐸 and 𝑐 = 0, so we 

will refer to them as normalized BQs, (NBQ). Note that not all normalized quasigroups 

are of this form. 

Below we will prove that each BQ can be represented using NBQ, two nonsingular 

𝑛 × 𝑛 binary matrices and a binary n-vector. 

 



 

Theorem 3. Let a BQ ({0,1}n, ∗) is defined with (2). Then there is a NBQ ({0,1}n, 

∗′ ) such that 

 ( )*( ) ,x y Ax By c = +   (3) 

where 𝐴 and 𝐵 are nonsingular 𝑛 × 𝑛 Boolean matrices and 𝑐 is a Boolean n-vector. 

Proof. Since, 𝐴 and 𝐵 are nonsingular, 𝐴–1 and 𝐵–1 exist and (2) can be represented 

as  

( )1 1 1

1 1

( ) ( ) ( )

n n
T T
i i i i

i i

x y c Ax By e x D B By c Ax By e A Ax D B By− − −

= =

  = + + + = + + +   

If we denote the m-th coordinate of the vector 𝑒⃗𝑖
𝑇

𝐴−1 with 𝑎̂𝑖𝑚 and the m-th 

coordinate of the vector 𝐴𝑥⃗ with (𝐴𝑥⃗)𝑚, the above equation can be represented as: 

( )

( )

1 1

1 1 1

1

1 1

ˆ( ) ( )

ˆ ( )

n n n
T

i i im im
i i m

n n

im im
m i

x y c Ax By e x D B By c Ax By a Ax D B By

c Ax By Ax a D B By

− −

= = =

−

= =

  = + + + = + + + =

 
= + + +  

 

 

 

 

Taking 1

1

ˆ ( )
n

m im i

i

D a D B−

=

 = , the quasigroup operation defined by

1

ˆ '
n

m m

m

x y x y x D y
=

 = + +  is a NBQ, for which (3) exists.                                        

Example 2. The quasigroup of order 23 defined in Example 1 can be represented by 

(𝐴𝑥⃗) ∗ (𝐵𝑦⃗) + 𝑐, where 𝐴, 𝐵 and 𝑐 are given in Example 1 and its corresponding NBQ 

({0,1}3, *) is defined by: 

( ) ( )1 2 3 1 2 3 1 1 3 1 3 2 2 2 3 1 3 2 3 3 1 1 2 1, , , , ( , , )x x x y y y x y x y x y x y x y x y x y x y x y = + + + + + + + + +  

For this NBQ 𝐷′1 = 𝐷′2 = [
0 0 0
0 0 0
1 0 0

] and 𝐷′3 = [
1 1 0
1 1 0
0 0 0

]. 

The last Theorem shows that, for a given NBQ operation we may construct others 

BQ by choosing two 𝑛 × 𝑛 nonsingular binary matrices and one n-binary vector. 

This result shows that using this type of representation, BQ can be defined with log 

complexity, while standard definition has quadratic complexity. In fact, to represent 

quasigroup (G, *) of order m=2n in standard way, n bits representation is needed for 

each element of G and 4𝑛 places for representation of the quasigroup operation. There 

are total  𝑛4𝑛 = 𝑚2 log2 𝑚 = Θ(𝑚2 ln 𝑚) bits. Using the results obtained here, it is 

shown that each normalized BQ can be represented using n nonsingular binary matrices 

of order n, which requires 𝑛3 bits. For matrices A and B, 2𝑛2 bits are required, while to 

represent the n-vector 𝑐 , n bits are needed. There are total  𝑛3 + 2𝑛2 + 𝑛 = Θ(ln 𝑚) 

bits, which is significantly better compared to the standard way. 
   Note that for a given normalized quasigroup of order m, there are m!(m – 1)! other 

quasigroups that are obtained by permutation of column and rows of the corresponding 

Latin square. And not all of them are obtained on this way. The number of BQ is given 

by the next Theorem. 

 



Theorem 4. Given NBQ ({0,1}n, ∗), there are exactly  

2
1

0

2 (2 2 )n n
n

k

k
−

=

− BQ ({0,1}n, ∗ ′) such that 𝑥⃗ ∗′ 𝑦⃗ = (𝐴𝑥⃗) ∗ (𝐵𝑦⃗) + 𝑐. 

Proof. The number of such BQs of order 2n depends of the number of choices for 

𝐴, 𝐵 and 𝑐, i.e. if 𝑁𝐴 , 𝑁𝐵  and 𝑁𝑐 are numbers of choices for 𝐴, 𝐵 and 𝑐 respectivly, then 

the number of BQs ({0,1}n, ∗ ′) such that 𝑥⃗ ∗′ 𝑦⃗ = (𝐴𝑥⃗) ∗ (𝐵𝑦⃗) + 𝑐 is equal to 

𝑁𝐴𝑁𝐵𝑁𝑐. Clearly, 𝑁𝑐 = 2𝑛. Moreover,  𝑁𝐴 = 𝑁𝐵 is equal to the number of nonsingular 

binary matrices of order n. It can be proven that this number is equal to 
1

0

(2 2 )
n

k

n k
−

=

− . 

Given first k row vectors of A, there are exactly 2𝑛 − 2𝑘  possibilities to choose k+1-th 

row vector. The last statement is true for k = 1, since the first-row vector of 𝐴 can be 

any other n-vector except 0⃗⃗ and that can be chosen in 2𝑛 − 1 = 2𝑛 − 20 different ways. 

The k + 1-th row vector is independent of the previously chosen k vectors, 

𝑎⃗1, 𝑎⃗2, … . , 𝑎⃗𝑘, therefore, it can be represented as 
1

k

i i

i

a
=

 . Since there are 2𝑘  possibilities 

for choosing such vector, this one can be chosen in  2𝑛 − 2𝑘  ways. Those are the 

number of  𝑛 × 𝑛 nonsingular binary matrices that are equal to
1

0

(2 2 )
n

k

n k
−

=

− , which 

completes the proof.                        

Directly from the last Theorem we obtain the following: 

Corollary 1. The number of BQ({0,1}n, ∗ ′) is equal to 
1

0

22 (2 2 )
n

n n k

k


−

=


−


 
 
 , where 

𝜂 is the number of NBQ of order 2𝑛. 

 

4 Properties of NBQs 

Since any BQ of order 2𝑛 can be represented trough some NBQ of order 2𝑛, the 

problem of constructing some BQ is reduced to a problem of constructing NBQ. But, 

not all matrices D define quasigroup. Therefore, in this section we make a deeper 

analysis of the properties of that matrices. That can be helpful for determining and 

generating a BQ. Let us refer to the form of the NBQ:  

 
1 1

n n

i i j j

i j

x y x y x D y x y y D x
= =

  = + + = + +     (4) 

It is clear that, each NBQ is completely defined by one of the vectors of binary 𝑛 × 

𝑛 matrices (𝐷′
1, … , 𝐷′

𝑛) and (𝐷′′
1, … , 𝐷′′

𝑛). The first vector, (𝐷′
1, … , 𝐷′

𝑛), 

corresponding to the first operand is called NBQ matrix vector for the first operand 

(NBQV1), and the second one, the vector (𝐷′′
1, … , 𝐷′′

𝑛) corresponding to the second 

operand, is called NBQ matrix vector for the second operand (NBQV2). According to 

Note 1, the j-th column of the matrix 𝐷′𝑖 is the same with the i-th column of the matrix 



 

𝐷′′𝑗. Thus, if NBQV1 (𝐷′
1, … , 𝐷′

𝑛) is given, NBQV2 is uniquely determined. Therefore, 

we will refer NBQV2 corresponding to NBQV1 (𝐷′
1, … , 𝐷′

𝑛), to the vector of binary 𝑛 

× 𝑛 matrices (𝐷′′
1, … , 𝐷′′

𝑛) obtained such that i-th column of the matrix 𝐷′′𝑗 is equal 

to the j-th column of the matrix 𝐷′𝑖. Similarly, for a given NBQV2, (𝐷′′
1, … , 𝐷′′

𝑛) the 

vector of binary 𝑛 × 𝑛 matrices (𝐷′
1, … , 𝐷′

𝑛) obtained such that j-th column of the 

matrix 𝐷′𝑖 is equal to the i-th column of the matrix 𝐷′′𝑗 will be called NBQV1 

corresponding to NBQV2 (𝐷′′
1, … , 𝐷′′

𝑛).  

   Next, we analyze a property NBQVk, k=1,2, that matrices have.  

 

Theorem 5. A vector of binary 𝑛 × 𝑛 matrices (𝐷̂1, … , 𝐷̂𝑛) is a NBQV1 (NBQV2) for 

some BQ ({0,1}n, *) if and only if ∀𝛼1, … , 𝛼𝑛 ∈ {0,1},
1

1ˆ
n

i i

i

E D
=

+ =  

Proof. We will give the proof for NBQV1 only, since the proof for NBQV2 is similar. 

Let  𝑥⃗ = (𝛼1, … , 𝛼𝑛). Since the operation * is quasigroup operation, from (4) follows 

that 𝑦⃗1 ≠ 𝑦⃗2 and implies  

1 2

1 1

ˆ ˆ
n n

i i i i

i i

E D y E D y 
= =

   
+  +   

   
   so, 

 
1

1ˆ
n

i i

i

E D
=

+ = . 

On the other hand, let (𝐷̂1, … , 𝐷̂𝑛) ∀𝛼1, … , 𝛼𝑛 ∈ {0,1}, 
1

1ˆ
n

i i

i

E D
=

+ = and let 𝑥⃗, 𝑦⃗1 

and 𝑦⃗2 are vectors such that 𝑥⃗ ∗ 𝑦⃗1 = 𝑥⃗ ∗ 𝑦⃗2. Choosing 𝑥⃗ such that 𝑥𝑖 = 𝛼𝑖  , can be 

obtained: 

1 1 2 2 1 2

1 1 1 1

ˆ ˆ ˆ ˆ .
n n n n

i i i i i i i i

i i i i

y D y y D y E D y E D y   
= = = =

   
+ = +  + = +   

   
     

From 
1

1ˆ
n

i i

i

E D
=

+ =  follows that 

1

1

ˆ
n

i i

i

E D
=

−

 
 
 

+ exists, so 𝑦⃗1 = 𝑦⃗2.                                      

 

Example 3. For the normalized BQ given in Example 2 follows: 

|𝐸 + 𝐷′1| = |𝐸 + 𝐷′2| = |
1 0 0
0 1 0
1 0 1

|,   

|𝐸 + 𝐷′
3| = |𝐸 + 𝐷′1 + 𝐷′2 + 𝐷′

3| = |
0 1 0
1 0 0
0 0 1

|,  

|𝐸 + 𝐷′1 + 𝐷′2| = |𝐸| and |𝐸 + 𝐷′1 + 𝐷′3| = |𝐸 + 𝐷′2 + 𝐷′3| = |
0 1 0
1 0 0
1 0 1

|. 

All those determinants are equal to 1. 

The next Lemma gives characteristic about row and column vectors of the 𝑛 × 𝑛 

matrix H which satisfies 𝐻 + 𝐸 = 1. 

 



Lemma 2. Given 𝑛 × 𝑛 matrix H, we denote i-th row vector by ℎ⃗⃗𝑖  and i-th column 

vector by ℎ⃗⃗′𝑖 . Then,  |𝐻 + 𝐸| = 1 iff ∀𝛼1, … , 𝛼𝑛 ∈ {0,1} such that at least one of them 

is different than 0, 
1 1

n n

i i i i

i i

h e 
= =

   and 
1 1

n n

i i i i

i i

h e 
= =

   . 

Proof. Assume that ∃𝛼1, … , 𝛼𝑛 ∈ {0,1} such that at least one of them is different than 

0 and 
1 1

n n

i i i i

i i

h e 
= =

  ,  (
1 1

n n

i i i i

i i

h e 
= =

   ). This is equivalent to ( )
1

0
n

i i i

i

h e
=

+ = , 

( ( )
1

0
n

i i i

i

h e
=

 + = ). This is true if and only if there is a nontrivial linear combination 

of the row vectors (column vectors) in 𝐻 + 𝐸, equals to 0. That is in contradiction with 

|𝐻 + 𝐸| = 1.                   

Using this Lemma, the following will be proven: 

 

Theorem 6. The vector of binary 𝑛 × 𝑛 matrices (𝐷̂1, … , 𝐷̂𝑛) is a NBQV1 and NBQV2 

for some quasigroup ({0,1}n, *) if and only if ∀𝛼1, … , 𝛼𝑛 ∈ {0,1} such that 
1

0

(1 ) 0i

n

k


−

=

+  , the vector space generated by the column vectors of the matrix 

1

ˆ
n

i i

i

D
=

   is independent of the vector 
1

n

i i

i

e
=

  . And the vector space generated by the 

row vectors of the matrix 
1

ˆ
n

i i

i

D
=

  is independent of the vector 
1

n

i i

i

e
=

 . 

Proof. The proof only for NBQV1 and the vector space generated by column vectors 

of the matrix 
1

ˆ
n

i i

i

D
=

 will be given, since the proof for NBQV2 and the proof for row 

vectors are similar. Let (𝐷̂1, … , 𝐷̂𝑛) = (𝐷′1, … , 𝐷′𝑛). In order to prove that the vector 

space generated by column vectors of the matrix 
1

ˆ
n

i i

i

M D
=

=  is independent of the 

vector 
1

n

i i

i

e
=

 , we need to prove that ∀𝑥1, … , 𝑥𝑛 ∈ {0,1}, 
1 1

n n

i i j j

i j

e x m
= =

  . Let 

(𝐷′′1, … , 𝐷′′𝑛) be the NBQV2 corresponding to (𝐷′
1, … , 𝐷′

𝑛) and set
1

n

j j

j

H x D
=

=  , 

for arbitrary 𝑥1, … , 𝑥𝑛 ∈ {0,1}. From Theorem 5 |𝐻 + 𝐸| = 1 and from Lemma 2 this 

is equivalent to 
1 1

n n

i i i i

i i

h e 
= =

  . Now, 

( )
1 1 1 1 1 1

,
n n n n n n

i i i i i j j i j j
i

i i i j i j
i

e h x D x D   
= = = = = =

 
  = = 

 
       



 

where (∑ 𝑥𝑖𝐷′′𝑗
𝑛
𝑗=1 )

𝑖

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is the i-th column vector of the matrix ∑ 𝑥𝑖𝐷′′𝑗
𝑛
𝑗=1 , and (𝐷′′𝑗)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

𝑖
 

is the i-th column vector of the matrix 𝐷′′𝑗. Since j-th column vector of the matrix 𝐷′𝑖 

is equal to the i-th column vector of the matrix 𝐷′𝑗 , it follows  

( ) ( )
1 1 1 1 1 1

ˆ .
n n n n n n

i i i j i j i i j jj j
i i j j i j

e x D x D x m  
= = = = = =

 = =                           

Using NBQV1 vector of binary 𝑛 × 𝑛 matrices (𝐷′
1, … , 𝐷′

𝑛) or NBQV2 vector of 

binary 𝑛 × 𝑛 matrices (𝐷′′
1, … , 𝐷′′

𝑛), we will construct new matrices 𝐹𝑖 from the i-th 

rows of the matrices 𝐷′𝑗 , 𝑗 = 1, . . 𝑛 , accordingly. According to Note 1, the columns of 

𝐹𝑖 are in fact the i-th rows of the matrices  𝐷′′𝑖 . More formally, next definition is given. 

 

Definition 5. Given NBQV1, (𝐷′
1, … , 𝐷′

𝑛) and its corresponding NBQV2 

(𝐷′′
1, … , 𝐷′′

𝑛), we define vector of matrices (𝐹1, … , 𝐹𝑛 ), where the j-th row of the 

matrix 𝐹𝑖 is equal to the i-th row of the matrix 𝐷′𝑗 and the j-th column of the matrix 𝐹𝑖 

is equal to the i-th row of the matrix 𝐷′′𝑗 . This vector will be called normalized BQ 

matrix vector (NBQMV). 

Note that besides NBQV1, and NBQV2, each NBQ is completely defined by NBQMV 

, too. Moreover, given a NBQMV (𝐹1, … , 𝐹𝑛 ), its corresponding NBQV1, (𝐷′
1, … , 𝐷′

𝑛) 

and NBQV2 (𝐷′′
1, … , 𝐷′′

𝑛), can be constructed, by setting the i-th row of the matrix 𝐷′𝑗 

to be the j-th row of the matrix 𝐹𝑖, and i-th row of the matrix 𝐷′′𝑗  to be the j-th column 

of the matrix 𝐹𝑖 . 

From the last Theorem and the construction of row vectors of (𝐹1, … , 𝐹𝑛 ) the 

following is obtained: 

 

Theorem 7. The vector of binary 𝑛 × 𝑛 matrices (𝐹1, … , 𝐹𝑛 ) is NBQMV if and  only 

if ∀𝛼1, … , 𝛼𝑛 ∈ {0,1},  the vector 
1

n

i i

i

e
=

  is independent of the vector spaces generated 

by the row-vectors and the column-vectors of the matrix  
1

n

i i

i

F
=

 . 

Next Theorem gives a form of the matrices (𝐹1, … , 𝐹𝑛). 
 

Theorem 8. If the vector of binary 𝑛 × 𝑛 matrices (𝐹1, … , 𝐹𝑛 ) is NBQMV then the 

i-th row vector of the matrix 𝐹𝑖 is a linear combination of the other row vectors of 𝐹𝑖 

and the i-th column vector of the matrix 𝐹𝑖 is a linear combination of the other column 

vectors of 𝐹𝑖 . 

Proof. Assume that (𝐹1, … , 𝐹𝑛) is NBQMV and that the i-th column vector of 𝐹𝑖 is 

not a linear combination of the other column vectors of 𝐹𝑖. It can be constructed the 𝑛 

× (𝑛 − 1) matrix 𝐹′𝑖 by deleting the i-th column of 𝐹𝑖. Clearly, the rang of 𝐹′𝑖, k’, is less 

than the rank of 𝐹𝑖, k, i.e. k’< k < n. By row Gauss transformation, 𝐹′𝑖  can be 

transformed in upper triangular matrix 𝐹′̂𝑖, and there is a matrix N such that 𝑁𝐹′𝑖 = 𝐹′̂𝑖 . 

By the same transformation on 𝐹𝑖 , matrix 𝑁𝐹𝑖 = 𝐹̂𝑖  can be obtained. And since the rank 

of 𝐹̂𝑖 is lower than the rank of 𝐹′̂𝑖 , the k+1-th row vector of that matrix 𝐹̂𝑖 must be 𝑒⃗𝑖. 

Now, it is obtained that the k + 1-th row vector of the matrix N defines linear 

transformation of the row vectors of 𝐹𝑖 equal to 𝑒⃗𝑖 . That is in contradiction with 



Theorem 7, which says that the vector 𝑒⃗𝑖 is independent to the vector spaces generated 

by the row vectors of the matrix 𝐹𝑖. Similarly, it can be proven that, when the i-th row 

vector of 𝐹𝑖 is not a linear combination of the other row vectors of 𝐹𝑖, then there is a 

linear combination of the column vectors of 𝐹𝑖 equal to 𝑒⃗𝑖 .                             

According to the last Theorem, instead with 𝑛2 parameters, each 𝑛 × 𝑛 matrix 𝐹𝑖 can 

be represented by (𝑛 − 1)2 + 2(𝑛 − 1) parameters. (𝑛 − 1)2 of those parameters are 

for the coordinates that are not on the i-th row and i-th column, and the rest 2(𝑛 − 1) 

parameters define the linear combinations of the the i-th row and i-th column.  

 

Example 4. Refer to the NBQ from Example 2 where 

𝐹1 = 𝐹2 = [
0 0 0
0 0 0
1 1 0

] and 𝐹3 = [
1 0 0
1 0 0
0 0 0

]. 

Because, the first-row vector of 𝐹1, the second-row vector of 𝐹2 and the third row 

and column vector of 𝐹3 are zero vectors. Therefore, they can be represented as a 

(trivial) linear combination of other row vectors of appropriate matrices. On the other 

hand, the column vectors of 𝐹1 and 𝐹2 are (0,0,1), (0,0,1) and (0,0,0). Since (0,0,1) = 1 

(0,0,1) +1 (0,0,0), the first column vector of 𝐹1 is a linear combination of the other 

column vectors of 𝐹1 and the second column vector of 𝐹2 is a linear combination of the 

other column vectors of 𝐹2. 

    Let us consider the vector spaces generated by the row vectors of the linear 

combinations of those matrices. First, the row vectors of 𝐹1 and 𝐹2 generate the vector 

space: {(0,0,0), (0,1,1)} and it is obvious that (1,0,0) and (0,1,0) are not in that vector 

space. Also, (0,0,1) and (1,1,1) are not in the vector space generated by the row vectors 

of 𝐹3 = 𝐹1 + 𝐹2+𝐹3: {(0,0,0), (1,0,0)}. 𝐹1+𝐹2 = 0, therfore, this matrix generates the 

vector spaces {(0,0,0)}. Clearly, (1,1,0) is not in this space. With 𝐹1+𝐹3 = 𝐹2+𝐹3 =

[
1 0 0
1 0 0
1 1 0

] the vector space {(0,0,0), (1,0,0), (0,1,1), (1,1,1)} is generated. The vectors 

(1,0,1) and (0,1,1) are not in this space. 

 

5 Conclusion and Future Work 

 

Starting from the representation of the quasigroups of order 2n as a vector valued 

Boolean polynomials, we consider all quasigroups having a property that by fixing one 

of the operands, the Boolean function becomes a linear, named BLCO-quasigroups. It 

is shown that each BQ operation on {0,1}n can be represent as 𝑥⃗ ∗ 𝑦⃗ = (𝐴𝑥⃗) ∗′ (𝐵𝑦⃗) +
𝑐, where ({0,1}n , ∗′ ) is a NBQ and A and B are nonsingular n ×n Boolean matrices. 

This type of representation allows us to define BQ using  (n) bits, instead  (2n) bits 

required for standard definition. This is usable for application where a small memory 

for memorizing quasigroups is essential. In the rest of the paper, some properties about 

the matrices that are used for defining a normalized BLCO-quasigroup, are given. 



 

   By using the obtained results, future work can be focused on few directions: 

determining additional regularities of matrices that define BLCO-quasigroups; 

classification of B and finding formulas that define all normalized quasigroups for small 

orders, especially for order 23 and 24; as well as analyzing properties in order to 

determine whether such quasigroups are suitable to be used in coding theory and 

cryptography. Initial observations show that these quasigroups do not have good 

cryptographic properties although there are some attempts to be used in cryptography. 

But simplicity of these quasigroups can be helpful in designing algorithms for error 

detection in codding theory. 
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