
Geochemical Detection of the pp-Neutrino flux with ²⁰⁵Tl LOREX collaboration

M. K. Pavićević ¹, Yuri A. Litvinov ², Takayuki Yamaguchi ³, Dejan Joković ⁴, Vladan Pejović ⁴, Vladica Cvetković ⁵, Blažo Boev ⁶, Ragandeep Singh Sidhu^{2*}, Tomohiro Uesaka ³

¹University of Salzburg, Division of Material Sciences and Physics, Hellbrunnerstr. 34 A-5020 Salzburg, Austria
²Gesellschaft für Schwerionenforschung GSI, Planckstr. 1, D-64291 Darmstadt, Germany
³RIKEN Nishina Center for Accelerator Based Science 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
⁴Institute of Physics, Zemun, Pregrevica 118, 1100 Belgrade, Serbia
⁵University of Belgrade, Faculty of Mining and Geology, Studentski Trg 16/III, 11000 Belgrade, Serbia
⁶University of Štip, Faculty of Mining and Geology, Goce Delčev 89, 92000 Štip, FYR Macedonia

Determination the probability for capturing Solar neutrinos on ²⁰⁵Tl leading to the first excited state in ²⁰⁵Pb

An indispensable goal of this proposal still remains the determination of the neutrino capture probability by ²⁰⁵Tl. The ratio ²⁰⁵Pb/²⁰⁵Tl in lorandite provides only the product of solar neutrino flux and neutrino capture probability into the different nuclear states of ²⁰⁵Pb (Fig.1).

Fig.1. Decay scheme of neutral ²⁰⁵Pb atoms (black) and of bare ²⁰⁵Tl⁸¹⁺ ions (red). Whereas neutral ²⁰⁵Pb atoms decay by unique first-forbidden orbital electron capture (EC) from the L and higher electron shells to stable neutral ²⁰⁵Tl atoms with a half-life of 17.3 million years and a Q value of 50.5 keV, bare ²⁰⁵Tl⁸¹⁺ (or H-like ²⁰⁵Tl⁸⁰⁺) ions can decay to almost 100% by β_b decay to the first excited state of ²⁰⁵Pb-205⁸¹⁺ at E*=2.3 keV, where the generated electron will be captured into the K shell [3].

Collection of sufficient amount, around several kilograms, of lorandite and to determine background contributions producing ²⁰⁵Pb

The activities should be directed in such a way that the following estimates are ensured:

(i) Minimal quantity of pure lorandite, which guarantees a successful determination of ²⁰⁵Pb after the separation of Pb (SADM – Single Atom Detection Methods);

(ii) The estimate of the expected error of measurements of ²⁰⁵Pb and

(iii) The dependence of the number of ^{205}Pb atoms from paleo-depth, i.e. from the acuracy of erosion rate determinations e [4].

Taking into account the current status of the LOREX Project, in this very moment these values can only roughly be determined. The main reason for the latter is that three essential values for the project are not experimentally constrained but calculated, namely: (i) The number of ^{205}Pb atoms that originates from pp-neutrino capture by ^{205}Tl ; (ii) The number of ^{205}Pb atoms that are produced by fast muons of cosmic radiation, and (iii) absolute detection limit δ_a of the SADM method, which should be $\delta_a \leq x \ 10^{-3}$

Chemical extraction of Pb from lorandite

Identification of the ²⁰⁵Pb nuclei in the lead sample extracted from the lorandite mineral (Fig.2) requires 10⁻¹⁰ to 10⁻¹¹ overall detection sensitivity for ²⁰⁵Pb/Pb and a comparable suppression of the ²⁰⁵Tl isobar.

The extraction of lead from pure lorandite should be conducted in two phases: (i) Pilot experiment with a few grams of minerals and (ii) extraction of lead from a few kilograms of minerals.

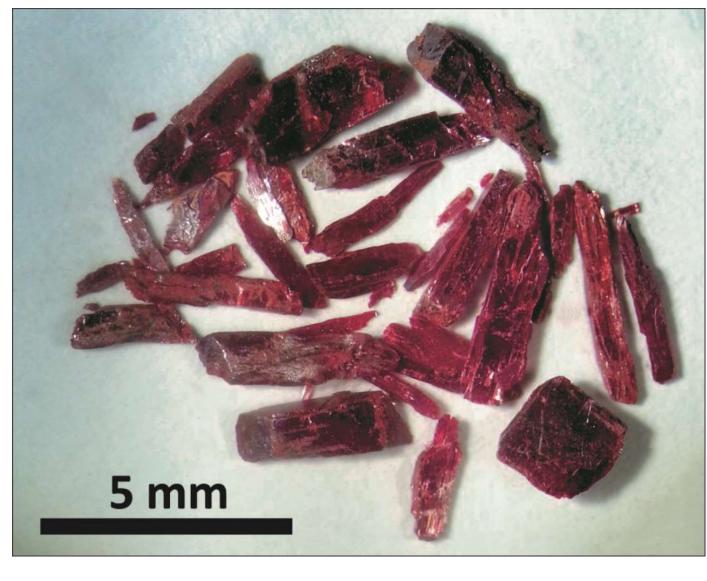
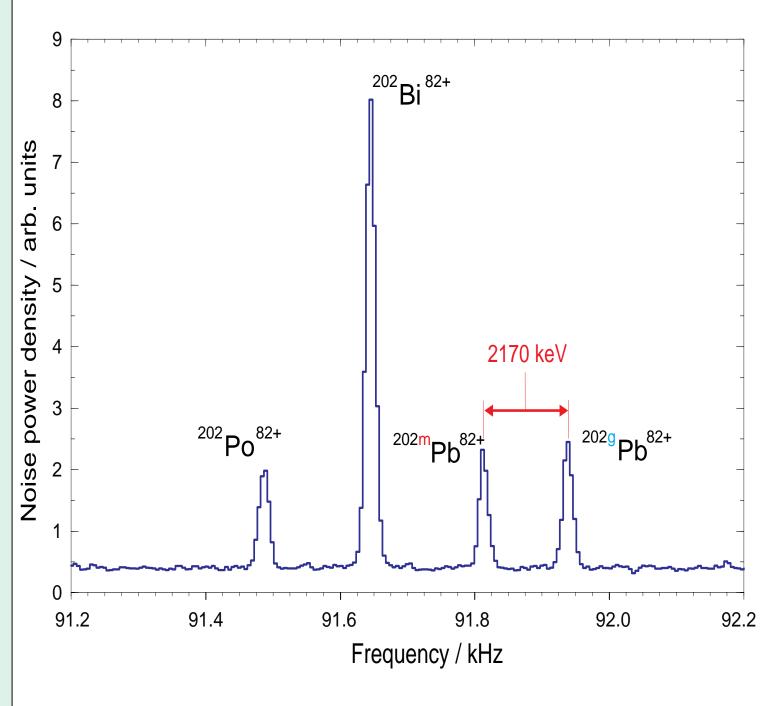



Fig. 2 Lorandite crystals from Crven Dol ore body, Allchar ore deposit.

Fig. 3 Schottky frequency spectrum of stored A=202 isobars in the ESR The area of the frequency peaks is directly proportional to the number of stored ions. Here, the peaks of ²⁰²Po and ²⁰²Pb correspond to single stored ions. Furthermore, two particles of ²⁰²Pb indicated as "m" and "g" correspond to the ground and isomeric states.

Motivation and Goals of LOREX

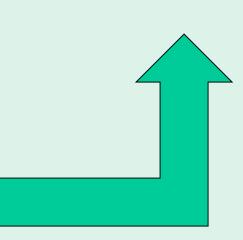
The central goal of the LOREX LORandite EXperiment [1] is the determination of the long-time average (over ~ 4 MY) of the solar neutrino flux Φ_{v} with the neutrino-capture reaction [2]:

$$^{205}\text{Tl} + v_e \text{ (Eve} \geq 50\text{keV)} \rightarrow ^{205}\text{Pb} + e^- \dots (1)$$

As was pointed out originally by Freedman [2], the thallium-bearing mineral lorandite, $TlAsS_2$, from the mine of Allchar, Macedonia. The average flux Φ over the exposure time (age of lorandite since its mineralization) follows from the common activation equation, where σ is the solar neutrino capture cross section and λ the decay constant of ^{205}Pb :

$$\Phi_{v} = N^{-1} (T - B) (\sigma \varepsilon)^{-1} \lambda [1 - \exp(-\lambda a)]^{-1} \dots (2)$$

T – total number of 205 Pb atoms; B – background number of 205 Pb atoms [205 Tl (μp , n) 205 Pb]; λ – decay constant of 205 Pb; ϵ – overall detection efficiency; σ – neutrino capture cross section


This renders finally the mean solar neutrino flux, i.e. the mean luminosity of the sun during the last 4.3 million years, the geological age of lorandite.

Determination of the ratio of ²⁰⁵Pb/²⁰⁵Tl

For the LOREX experiment, a direct detection and counting of the ²⁰⁵Pb atoms was proposed, either with massspectrometric methods measurements of characteristic atomic transition radiation. The intrinsic limitation of these methods to small sample sizes is substantially helped with an initial chemical Pb-Tl separation, which has been established to provide a separation factor of 10^{13} . The methods that appear suitable, in principle, for the detection of ²⁰⁵Pb at trace amount levels under consideration here, are high-energy mass spectrometry (i.e. Accelerator

Mass Spectrometry (AMS)) and laser-

induced atomic spectroscopy.

Acknowledgement: We thank the FWF – Wien for supporting this project by grant P 25084 N27.

Conclusion:

Taking into account the present-day state-of-the-art of all the techniques needed to solve the four perennial problems of LOREX, we conclude that it is realistic to expect the first result for the solar pp neutrino flux averaged over the last 4.3 million years in the foreseeable future. This number will have most probably still an error margin in the order of 30% or larger, at the 68% CL. We expect, however, that this accuracy could be improved with time, and that it might reach finally a level below $\leq 30\%$ (3).

References:

- 1. M.K. Pavićević at al. NIM A **271**, 287 (1988)
- 2. M.S. Freedman et al., Science 193, 1117 (1976)
- 3. Yu. A. Litvinov and F. Bosch, Rep. Prog. Phys. **74**, 016301 (2011)

4. M. K. Pavićević et al., Nucl. Instr. and Meth. A 895, 62 (2018)

