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JP.096. Let a, b, c positive numbers such that a4 + b4 + c4 = 3.
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Proposed by Nguyen Ngoc Tu - Ha Giang – Vietnam

JP.097. Let a, b, c > 0 such that (a+ b)(b+ c)(c+ a) = 8.
Prove that
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Proposed by Nguyen Ngoc Tu - Ha Giang – Vietnam

JP.098. Let a, b, and c be the side lengths of a triangle ABC with
incenter I. Prove that
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Proposed by George Apostolopoulos – Messolonghi – Greece

JP.099. Find the value of the following expression:
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where x = tan 20, y = tan 40, z = tan 80.

Proposed by Kevin Soto Palacios - Huarmey - Peru

JP.100. Let in triangle wa, wb, wc be the angle bisectors and R, r
the circumradius and inradius respectively. Prove the inequality:
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Proposed by D.M. Bătineţu – Giurgiu – Romania, Martin Lukarevski – Skopje

JP.101. Let x, y, z be positive real numbers with xyz = 1.
Prove that:
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Proposed by George Apostolopoulos – Messolonghi – Greece

JP.102. Let x, y, z > 0 be positive real numbers. Then
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Proposed by D.M. Bătineţu – Giurgiu – Romania, Martin Lukarevski – Skopje
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