JP.096. Let $a, b, c$ positive numbers such that $a^{4}+b^{4}+c^{4}=3$. Prove that

$$
\left(\frac{a^{3}}{b^{5}}+\frac{b^{3}}{c^{5}}+\frac{c^{3}}{a^{5}}\right)\left(\frac{b^{3}}{a^{5}}+\frac{c^{3}}{b^{5}}+\frac{a^{3}}{c^{5}}\right) \geq 9
$$

Proposed by Nguyen Ngoc Tu - Ha Giang - Vietnam

JP.097. Let $a, b, c>0$ such that $(a+b)(b+c)(c+a)=8$.
Prove that

$$
\frac{a}{a+1}+\sqrt{\frac{2 b}{b+1}}+2 \sqrt[4]{\frac{2 c}{c+1}} \leq \frac{7}{2}
$$

Proposed by Nguyen Ngoc Tu - Ha Giang - Vietnam

JP.098. Let $a, b$, and $c$ be the side lengths of a triangle $A B C$ with incenter $I$. Prove that

$$
\frac{1}{I A^{2}}+\frac{1}{I B^{2}}+\frac{1}{I C^{2}} \geq 3\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}\right)
$$

Proposed by George Apostolopoulos - Messolonghi - Greece

JP.099. Find the value of the following expression:

$$
E=\left(\frac{x^{2}}{y^{2}}+\frac{y^{2}}{z^{2}}\right)^{2}+\left(\frac{y^{2}}{z^{2}}+\frac{z^{2}}{x^{2}}\right)^{2}+\left(\frac{z^{2}}{x^{2}}+\frac{x^{2}}{y^{2}}\right)^{2}
$$

where $x=\tan 20, y=\tan 40, z=\tan 80$.
Proposed by Kevin Soto Palacios - Huarmey - Peru

JP.100. Let in triangle $w_{a}, w_{b}, w_{c}$ be the angle bisectors and $R, r$ the circumradius and inradius respectively. Prove the inequality:

$$
\frac{3}{R+r} \leq \frac{1}{w_{a}}+\frac{1}{w_{b}}+\frac{1}{w_{c}} \leq \frac{1}{r}
$$

Proposed by D.M. Bătineţu - Giurgiu - Romania, Martin Lukarevski - Skopje

JP.101. Let $x, y, z$ be positive real numbers with $x y z=1$.
Prove that:

$$
\begin{aligned}
& \frac{\sqrt{\boldsymbol{x}^{4}+1}+\sqrt{\boldsymbol{y}^{4}+1}+\sqrt{\boldsymbol{z}^{4}+\mathbf{1}}}{\boldsymbol{x}^{\mathbf{2}+\boldsymbol{y}^{2}+\boldsymbol{z}^{2}} \leq \sqrt{\mathbf{2}}} \\
& \text { Proposed by George Apostolopoulos - Messolonghi - Greece }
\end{aligned}
$$

JP.102. Let $x, y, z>0$ be positive real numbers. Then

$$
\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x} \geq \frac{4 \sqrt{3 x y z(x+y+z)}}{(x+y)(y+z)(z+x)}
$$

Proposed by D.M. Bătineţu - Giurgiu - Romania, Martin Lukarevski - Skopje

