

VISOKA TEKSTILNA STRUKOVNA ŠKOLA ZA DIZAJN, TEHNOLOGIJU I MENADŽMENT

Visoka tekstilna strukovna škola za dizajn tehnologiju i menadžment, kao sledbenik Više tehničke tekstilne škole osnovana je 30. juna 1958. godine. Odlukom Komisije za akreditaciju i proveru kvaliteta Republike Srbije od 03. maja 2007. godine Viša tehnička tekstilna škola u Beogradu je akreditovana pod nazivom Visoka tekstilna strukovna škola za dizajn, tehnologiju i menadžment. U novom ciklusu akreditacije, Škola je u januaru 2012. godine podnela zahtev za akreditaciju delom postojećih modernizovanih studijskih programa i delom novih studijskih programa koji su nastali kao logičan rezultat istraživanja potreba društva i tekstilne industrije.

HIT

Škola se kroz ispunjenje standarda za akreditaciju opredelila da našim studentima obezbedi strukovna znanja koja se mogu primeniti kako u teoriji, tako i u praksi. Naši studenti se praktično obučavaju u preduzećima tekstilne industrije, učestvuju na izložbama, revijama, konferencijama, objavljuju radove u časopisima, aktivno učestvuju u životu i radu Škole.

Škola uspešno sarađuje sa Privrednom komorom Srbije, Privrednom komorom Beograda, Savezom inženjera i tehničara, aktivni je član klastera modne industrije FACTS. Škola je akreditovala sledeće studijske programe:

Studijski programi osnovnih strukovnih studija:

- Dizajn tekstila i odece; Tekstilno inženjerstvo; Menadžment u tekstilnoj industriji.

Studijski programi specijalističkih strukovnih studija: - Odeća specijalne namene ; Modni menadžment.

() 011 32 32 430; 32 33 694

n www.vtts.edu.rs

a 011 32 34 002

x vtts@eunet.rs

Starine Novaka 24 Beograd

TI.

SAVEZ INŽENJERA I TEHNIČARA TEKSTILACA SRBIJE UNION OF TEXTILE ENGINEERS AND TECHNICIANS OF SERBIA

ndus 0

1868 - 2018

Dr Ana Jelić-Aksentijević DTM, Beograd

D., D:I:-

Naučni i stručni časopis tekstilne industrije Scientific and professional journal of the Union of textile engineers and technicians of Serbia

UDK 677+687

ISSN 0040-2389

Godina LXVI • Broj 1 • Beograd 2018 • Strana 1-100 • Tiraž 100 Izdavač: SAVEZ INŽENJERA I TEHNIČARA TEKSTILACA SRBIJE 11000 Beograd, Kneza Miloša 7a/II, tel: 064 15 03 053 e-mail: casopistekstilnaindustrija@gmail.com Tekući račun: 295-1201292-77 Srpska banka Štampa: M studio, Stara Pazova

Za izdavača: Prof. dr Snežana Urošević Predsednik Izdavačkog saveta: Stanko Kiš, dipl. ing. Redakcioni savet: Prof. dr Snežana Urošević, Prof. dr Dragan Đorđević, dr Ana Jelić-Aksentijević, dr Danijela Paunović, dr Gordana Čolović Glavni i odgovorni urednik: Prof. dr Snežana Urošević Lektor: Bojana Pejčić, M.Sc.

Tehnički urednik: ing. Aleksandar Sokolović Dizajn korica: ing. Aleksandar Sokolović

REDAKCIONI ODBOR:

SADRŽAJ

Dr Biljana M. Pejic	DTM, Beograd		
Dr Biljana Popović	DTM, Beograd	Rec urednika	
Dr Branislava Lazić	DTM, Beograd		
Dr Božidar Stavrić	Tehnološko-metalurški fakultet, Beograd	Maja Jankoska, Goran Demboski	
Dr Danijela Paunović	DTM, Beograd	RELATION BETWEEN PRESSURE FOOT	
Dr Dragan Đorđević	Tehnološki fakultet, Leskovac	DISPLACEMENT AND SEWING PROCESS	
Dr Dušan Trajković	Tehnološki fakultet, Leskovac	DARAMETERS	
Dr Gordana Čolović	DTM, Beograd		
Dr Gordana Kokeza	Tehnološko-metalurški fakultet, Beograd	Ineta Nemeša	
Dr Ineta Nemeš	Tehnički fakultet "Mihajlo Pupin" Zrenjanin	illeta Nelliesa	
Dr Jovan Stepanović	Tehnološki fakultet, Leskovac	AUTOMATIZOVANO KROJENJE MNOGOSLOJNIH	
Dr Koviljka Asanović	Tehnološko-metalurški fakultet, Beograd	KROJNIH NASLAGA	ł
Dr Nada Strbac	Tehnički fakultetu u Boru, Bor		
Dr Nemanja Kašiković	Fakultet tehničkih nauka, Novi Sad	Suzana Đorđević, Slađana Antić, Dragan Đorđević	
Dr Slobodan Pokrajac	Mašinski fakultet, Beograd	DEFORMACIJE NA ISTEZANJE I HABANJE	
Dr Mirjana Kostić	Tehnološko-metalurški fakultet, Beograd		
Dr Snežana Urošević	Tehnički fakultet u Boru, Bor		
Dr Suzana Đorđević	Visoka tehnološko umetnička	PREPLEIAJA	1
Linda ant Kuania	strukovna skola, Leskovac	King D. Mairan Daulus Andrewillers, And Januardi, Camia	
Herbert Kranjc	Pancevo	KIRO D. IVIOJSOV, DARKO ANGRONIKOV, ACO JANEVSKI, SONJA	
Mr Katarina Nikolic	DTM, Beograd	Jordeva, Marija Kertakova, Saska Golomeova, Stevan	
NIT Marina Kocareva	DTM Beograd	Gaber, Ivan Ignjatov	
Dr Mira Beliić	Institut CIS Schile Beograd	PRODUCTION AND APPLICATION OF g-AMYLASE	
Dr Nenad Ćirković	Tehnološki fakultet Leskovac	ENZYME IN TEXTILE INDUSTRY	
INTERNACIO	NALNI REDAKCIONI ODBOR:	Subrata Das, Aamirah Anium S, Devi M, Bamva K	
Dr Bruno Završnik	Ekonomsko poslovna fakulteta, Maribor	Subluce Day, Administration of Devring, Administration	
Dr Goran Demboski	lehnološko-metalurški, fakultet, Skopje	DISCHARGE STYLE OF PRINTING USING	
Dr Isak Karabegović	Tehnički fakultet, Bihač	DIFFERENT DISCHARGING AGENTS ON	
Dr Svjetlana Janjic	lehnoloski fakultet u Banjoj Luci, Rosna i Horcogovina	REACTIVE DYED COTTON FABRICS	ł
Dr Simona levčnik	Tehnološki fakultetu u Banioi Luci		
	Tehnološki fakultet, Banja Luka	Nebojša Ristić, Ivanka Ristić, Dragana Marković Nikolić,	
Mr Almina Duraković	Fakultot za dizajn Trzin Slovonija	Aleksandra Mičić	
Dr Damiana Celcar	Fakultet za dizajn, Tizin, Slovenija		
Dr Zoran Stienanovič	Fakulteta za stroiništvo. Maribor		
Dr Liliana Indrie	Faculty of Energy Engineering and	REAK IIVNIH BOJA	
Di Elliana marie	Industrial Management,		
	University of Oradea, Romania	Dragan Dimitrijević, Obrad Spaić, Snežana Urosević,	
Dr Zlatina Kazlacheva	Faculty of Technics and Technologies,	Zivoslav Adamović, Zeljko Đurić	
	Trakia University, Bulgaria	KORELACIJA SPECIFIČNIH PERFORMANSI MSP	
Mr Sanja Risteski	Tehnološko-tehnički fakultet,	ODEVNE INDUSTRIJE DRŽAVA U RAZVOJU I	
	Stip, Makedonija		,
Dr Elsayed Elnashar	Faculty of Specific Education,		•
Dr Luber Her	Faculty of Toytilos, Tachnical University of	Violeta Stefanović	
DI LUDOS HES	Libered Creek Benublic	violeta Stelanovie	
Dr Paily Padhyo	Contro for Advanced Materials and	UTICAJ USLOVA RADNE SREDINE NA	
Di hajiv rauliye	Performance Textiles RMIT Fashion and	ZADOVOLJSTVO ZAPOSLENIH U TEKSTILNOJ	
	Textiles, RMIT University, Australia	INDUSTRIJI	j
Dr Boris Mahltig	Hochschule Niederrhein, Faculty of		
· · · · · · · · · · · · · · · · · · ·	Textile and Clothing Technology	Vesti i informacije 64	
	Monchengladbach, Germany	vesu i ilionnacije	1
Dr Rajkishore Nayak	School of Fashion & Textiles, RMIT	Tržište tekstila 81	
Du Facili Att 1	University, Australia	Prikaz kniige	;
Dr Emilia Visileanu	Nacional Research and Development		,
	Rucharost Pomania	Uputstvo autorima	
	Duchalest, nomania		

SAVEZ INŽENJERA I TEHNIČARA TEKSTILACA SRBIJE UNION OF TEXTILE ENGINEERS AND TECHNICIANS OF SERBIA

1868 - 2018

Ana Jelić-Aksentijević Ph.D. DTM, Belgrade

UDK 677+687 ISSN 0040-2389 Naučni i stručni časopis tekstilne industrije Scientific and professional journal of the Union of textile engineers and technicians of Serbia

Volume LXVI • Number 1 • Beograd 2018 • Page 1-100 • Printing 100 Publisher: Textile Engineers and Technicians Union of the Republic Serbia Editoral offices: Serbia, 11000 Beograd, Kneza Miloša 7a/II, tel: 064 15 03 053 e-mail: casopistekstilnaindustrija@gmail.com

For publisher: Snežana Urošević, Ph.D. President of the Publishing Council: Stanko Kiš, dip.ing. Editorial Council: Snežana Urošević, Ph.D., Dragan Đorđević, Ph.D. Ana Jelić-Aksentijević, Ph.D., Danijela Paunović, Gordana Čolović, Ph.D. Editor in Chief: Snežana Urošević, Ph.D Translation: Bojana Pejčić M.Sc. Technical Editor: Aleksandar Sokolović, ing. Cover design: Aleksandar Sokolović, ing.

EDITORIAL BOARD:

CONTENT

Biljana Pejić Ph.D.	DTM, Belgrade	Editorial Council	2
Biljana Popović, Ph.D.	DTM, Belgrade		J
Branisalava Lazić, Ph.D.	DTM, Belgrade	Maja Jankoska Goran Demboski	
Božidar Stavrić Ph.D.	Faculty of Technology and Metallurgy, Belgrade	RELATION BETWEEN PRESSURE FOOT	
Danijela Paunović Ph.D.	DTM, Belgrade	DISPLACEMENT AND SEWING PROCESS	
Dragan Đorđević Ph.D.	Faculty of Technology, Leskovac		1
Dušan Trajković Ph.D.	Faculty of Technology, Leskovac		4
Gordana Čolović Ph.D.	DTM, Belgrade	Inota Namača	
Gordana Kokeza Ph.D.	Faculty of Technology and Metallurgy,		
Ineta Nemeš Ph D	Technical Faculty Mihailo Pupin" Zrenianin	AUTOMATED CUTTING OF MULTI-PLY	_
Jovan Stepanović Ph.D.	Faculty of Technology, Leskovac	SPREADS 1	0
Koviljka Asanović Ph.D.	Faculty of Technology and Metallurgy, Belgrade	Suzana Đorđević, Slađana Antić, Dragan Đorđević	
Nada Štrbac Ph.D.	Technical Faculty, Bor	DEFORMATION OF COTTON FARRICS OF	
Nemania Kašiković Ph.D.	Faculty of Technical Sciences, Novi Sad		
Slobodan Pokrajac Ph.D.	Faculty of Mechanical Engineering,	DIFFERENT WEAVES ON ELONGATION AND	_
,	Belgrade	ABRASION	6
Mirjana Kostić Ph.D.	Faculty of Technology and Metallurgy, Belgrade	Kiro D. Mojsov, Darko Andronikov, Aco Janevski, Sonja	
Snežana Urošević Ph.D.	Technical Faculty, Bor	Jordeva, Marija Kertakova, Saska Golomeova, Stevan	
Suzana Đorđević Ph.D.	Technological artistic college, Leskovac	Gaber, Ivan Ignjatov	
Herbert Kranjc	Pančevo		
Katarina Nikolić Mr	DTM, Belgrade		~
Marina Kocareva Papisavliov Mr	DTM Relarado	ENZYME IN TEXTILE INDUSTRY	3
Miriana Belijć Ph D	Institut CIS Schile Belgrade	Subrata Das Asmirah Anium C. Davi Mand Damus K	
Nenad Ćirković Ph D	Faculty of Techology Leskovac	Subrala Das, Aamiran Anjum S, Devi M and Ramya K	
Jelena Lazarević	School for design textile. Belgrade	DISCHARGE STYLE OF PRINTING USING	
Bruno Završnik Ph.D.	Faculty of Economics and Business, Maribor	DIFFERENT DISCHARGING AGENTS ON	
Goran Demboski Ph.D.	Faculty of Technology and Metallurgy, Skoplie	REACTIVE DYED COTTON FABRICS 2	9
lsak Karabegović Ph.D.	Tehnički fakultet, Bihać		-
Svjetlana Janjić Ph.D.	Technical Faculty, Banja Luka	Nebojša Ristić, Ivanka Ristić, Dragana Marković Nikolić,	
Simona Jevšnik Ph.D.	Technical Faculty, Banja Luka	Aleksandra Mičić	
Miloš Sorak, Ph.D.	Technical Faculty, Banja Luka		
Mr Sanja Risteski	University "Goce Delchev", Faculty of technology, Shtip, Macedonia	SUBSTANTIVITY OF HYDROLIZED REACTIVE DYES 3	5
Mr Almina Duraković	Faculty of Design, Trzin, Slovenia		5
Damjana Celcar Ph.D.	Faculty of Design, Trzin, Slovenia		
Zoran Śtjepanovič Ph.D.	Faculty of Mechanical Engineering, Maribor	Dragan Dimitrijević, Obrad Spaić, Snežana Urosević,	
Liliana Indrie Ph.D.	Faculty of Energy Engineering and	Zivoslav Adamović, Zeljko Đurić	
	Industrial Management,	CORRELATION OF SPECIFIC PERFORMANCES OF	
	University of Oradea, Romania	SMES OF APPAREL INDUSTRY IN DEVELOPING	
Ziatina Kaziacheva Ph.D.	Faculty of lechnics and lechnologies, Trakia University Bulgaria	COUNTRIES AND IMPLEMENTATION OF ICT	
Elsayed Elnashar Ph.D.	Faculty of Specific Education,	TECHNOLOGIES	2
Lubas Has Ph D	Faculty of Taytilas, Tashnisal University of		
Ludos Hes Ph.D.	Liberec, Czech Republic	Violeta Stefanović	
Rajiv Padhye Ph.D.	Centre for Advanced Materials and	THE WORKING ENVIRONMENT ON SATISFACTION	
	Textiles, RMIT University, Australia	OF EMPLOYEES IN THE TEXTILE INDUSTRY 5	5
Boris Mahltig Ph.D.	Hochschule Niederrhein, Faculty of		
	Textile and Clothing Technology		
	Monchengladbach, Germany	News and information	4
Rajkishore Nayak Ph.D.	School of Fashion & Textiles, RMIT University, Australia	Textile market 8	1
Emilia Visileanu Ph.D.	Nacional Research and Development	New books 8	8
	Bucharest Romania	Instructions for Autors	7

PRODUCTION AND APPLICATION OF α-AMYLASE ENZYME IN TEXTILE INDUSTRY

Kiro D. Mojsov¹, Darko Andronikov¹, Aco Janevski¹, Sonja Jordeva¹, Marija Kertakova¹, Saska Golomeova¹, Stevan Gaber², Ivan Ignjatov²

Review paper UDC: 677.027.001.76

¹Faculty of Technology, University "Goce Delčev" Shtip, Republic of Macedonia e-mail: kiro.mojsov@ugd.edu.mk; aco.janevski@ugd.edu.mk; darko.andronikov@ugd.edu.mk; sonja.jordeva@ugd.edu.mk.

²Faculty of Economics, University "Goce Delčev" Shtip, Republic of Macedonia, e-mail: stevan.gaber@ugd.edu.mk; ivan.ignjatov@ugd.edu.mk.

Abstract: Amylases are important hydrolase enzymes which have een widely used in industry. Such enzymes hydrolyze the starch molecules into polymers composed of glucose units. Among amylases a-amylase is in maximum demand due to its wide range of applications. a-Amylase can be obtained from plants, animals and microorganisms. However, a-amylase from fungal and bacterial sources has dominated application in industrial sectors. A large number of microbial a-amylase has applications in different industrial processes such as food, textile, pharmaceutical, paper, fermentation and detergent industries. The production of a-amylase has generally been carried out using submerged fermentation. This review focuses on the production of bacterial and fungal a-amylases, their physical and chemical parameters, and the use of these enzymes in textile industry.

Keywords: enzymes, *a*-Amylase, production, applications, textile industry.

PROIZVODNJA I PRIMENA ENZIMA α-AMILAZA U TEKSTILNOJ INDUSTRIJI

Apstrakt: Amilaze su važni hidrolazni enzimi koji se široko koriste u industriji. Takvi enzimi hidrolizuju molekule skroba u polimere sastavljene od jedinica glukoze. Među amilazama a-amilaza je u maksimalnoj potražnji zbog širokog spektra primene. a-Amilaza se može dobiti od biljaka, životinja i mikroorganizama. Međutim, a-amilaza iz gljivičnih i bakterijskih izvora dominira primenom u industrijskim sektorima. Veliki broj mikrobnih a-amilaza ima primene u različitim industrijskim procesima kao što su prehrambena, tekstilna, farmaceutska, papirna, fermentacijska i deterdžentska industrija. Proizvodnja a-amilaze je generalno sprovedena korišćenjem submerzne fermentacije. Ovaj pregled se fokusira na proizvodnju bakterijskih i gljivičnih a-amilaza, njihovih fizičkih i hemijskih parametara i upotrebu ovih enzima u tekstilnoj industriji.

Ključne reči: enzimi, α-amilaza, proizvodnja, primena, tekstilna industrija.

1. INTRODUCTION

Enzymes are very effective and specific biocatalysts. Tyey are globular proteins, and like the other proteins, they contain long linear chains of amino acids. Every individual amino acid sequence creates a unique structure, with properties specific to it. The main sources of enzymes are collected from several primary sources, such as plants, microbes and animal tissue [1, 2]. Enzymes are rapidly becoming very important, especially in the spheres of sustainable technology and green chemistry.

One of the sectors of industry that holds a major share in the global pollution is textile industry. Therefore use of enzymes on textiles play a key role as an alternative process for textile processing and have become an integral part of the textile processing industry [3]. The process of use of enzymes is energy saving and does not require any special equipment for heat resistance, pressure or corrosion. Their efficiency, high biodegradability and the mild conditions of working mark their use in a wide range of industrial applications. Enzymes work only on renewable raw materials, so can be handled without any risks [2].

Enzyme usage has been a tradition in textile manufacturing, specifically in the modern industries. Starch and its derivatives make up for 75% of the worldwide usage of sizing agents [5]. Starch is widely used as a sizing agent, being readily available, relatively cheap and based on natural, sustainable raw materials. Use of amylase for removing of starch sizes is among the oldest applications of enzymes [2, 6]. Among the many enzymes that are widely used a-amylase has been in increasing demand due to its role of starch hydrolysis [7]. Amylases are among the most important enzymes and are of great significance for biotechnology.

α-Amylases (E.C.3.2.1.1) are enzymes that catalyses the hydrolysis of internal a-1,4-glycosidic linkages in starch in low molecular weight products, which constitute a mixture of shorter oligosaccharides with varying length with an α -configuration and α -limit dextrins [8, 9, 10]. Today a large number of microbial α -amylases are available commercially and they have a broad spectrum of industrial applications as they are more stable than when prepared with plant and animal a-amylases [11]. In the recent past, there has been extensive research on microbial production of α-amylase. The most widely used source among the bacterial species is the Bacillus spp., B. amyloliquefaciens and B. licheniformis [12]. Fungal sources of α-amylase are confined to mostly to Aspergillus species and to only few species of *Penicillium* [13]. The fungal α-amylases are preferred over other microbial sources due to their more accepted GRAS (GenerallyRecognized As Safe) status [14].

The commercial use of α -*amylase* generally does not require purification of the enzyme, but enzyme applications in pharmaceutical and clinical sectors require high purity amylases. Enzymes application comes with many benefits when being compared to the non-enzymatic processes. They can be used in catalytic concentrations with low temperatures and at pH-values near to neutral [15]. Modern production processes in the textile industry can cause breaking of the warp thread. To strengthen the thread, sizing agents are used which strengthen the thread by forming a layer on it and can be removed after the fabric is

woven [7, 14]. The enzymatic desizing of cotton with a-amylases is state-of-the-art since many decades [16]. Starch is a polysaccharide composed of two types of polymers: amylose and amylopectin. Amylose constitutes 20-25% of the starch molecule (linear chain consisting of repetitive glucose units linked by a-1,4-glycosidic linkage). Amylopectin constitutes 75-80% of starch (branched chains of glucose units). The amylose is bioconverted to 100% into glucose whereas the amylopectin is bioconverted to 50% into glucose and maltose by the a-amylase [7]. The hydrolysate composition is dependent on the effect of the origin of enzyme, temperature, pH, and the conditions of hydrolysis. Amylases bring about complete removal of the size without any harmful effects on the fabric. The advantage of enzymatic desizing over traditional desizing are:

- there is no adverse effect on cellulose, resulting in strength retention;
- process time of desizing can be reduced;
- neutralisation is not required;
- saving of energy;
- feel of fabric is much softer;
- the use of acid in the conventional method increases the BOD and COD of the process considerably compared to that of bio desizing [17, 18].

2. α-AMYLASE

The α -amylase (α -1,4-glucan-4-glucanohydrolase) can be found in microorganisms, plants and higher organisms. The α-amylase (E.C.3.2.1.1) is a hydrolase enzyme belongs to a family of endo-amylases that catalyses the initial hydrolysis of internal α-1,4-glycosidic linkages in starch in low molecular weight products. The end products of α -amylase action are a mixture of maltose, maltotriose, and branched oligosaccharides of 6–8 glucose units that contain both α -1,4 and α -1,6 linkages [9, 10]. α -Amylases are one of the most popular and important form of industrial amylases. Specificity, thermostability and pH response of the enzymes are critical properties for industrial use [19]. a-Amylases from most bacteria and fungi are quite stable over a wide range of pH from 4 to 11. Optimum temperature of a-amylases is usually related to growth of the producer micro-organism. In general, microbial α -amylases display the highest specificity towards starch. α-Amylase find application in all the industrial processes such as in food, detergents, textiles and in paper industry, for the hydrolysis of starch [14].

3. STARCH

In the green leaves of plants carbon dioxide and water are transformed into glucose and oxygen under the influence of sunlight and with the help of chlorophyll. This process is known as photosynthesis. Starch is a carbohydrate consisting of a large number of glucose units joined by glycosidic bonds. Native starch, the starch as it occurs in the plant, can not be dissolved in cold water. Gelatinizing starch into viscous substances (swellings) is one of the most important characteristics of starch. This phenomenon lies at the basis of the successful application of starch in a large number of sectors. Starch is a polymer of glucose linked to another one through the glycosidic bond. Two types of glucose polymers are present in starch: amylose (*Figure 1*) and amylopectin (*Figure 2*).

to cleave α -1,4 glycosidic bonds present in the inner part of the amylose or amylopectin chain [10, 21]. *Exo*-amylases act on the external glucose residues of amylose or amylopectin and thus produce only glucose (glucoamylase and α -glucosidase), or maltose and β -limit dextrin (β -amylase).

4. MICROBIAL α-AMYLASE PRODUCTION AND PURIFICATION

The naturally occurring enzymes are quite often not readily available in sufficient quantities for food applications or industrial use. However, by isolating microbial strains that produce the desired enzyme and optimizing the conditions for growth, commercial quantities can be obtained. This technique, well known for more than 3,000 years, is called fermentation [20]. The en-

Figure 1. Structure of amylose [21]

Figure 2. Structure of amylopectin [21]

Amylose and amylopectin have different structures and properties. Amylose is a linear polymer consisting of up to 6000 glucose units with α -1,4glycosidic bonds. Amylopectin consists of short α -1,4 linked to linear chains of 10–60 glucose units and α -1,6 linked to side chains with 15–45 glucose units [20]. α -Amylase is a well-known *endo*-amylase. α -Amylase is able zymes are inducible, i.e., produced only when needed. Several methos, such as submerged fermentation (SmF) and solid-state fermentation (SSF) have been successfully used for α -amylase production from various microorganisms. Submerged fermentation has been traditionally used for the production of industrially important enzymes because of the ease of control of different parameters such as pH, temperature, aeration and oxygen transfer and moisture [22]. The optimization of fermentation conditions, are important in the development of fermentation processes due to their impact on the economy [23]. Agro-industrial residues such as wheat bran, rice bran, maize bran, rice husk, coconut oil cake, mustard oil cake, corn bran, etc., are generally considered the best substrates for processes [20, 24].

 α -Amylase can be produced by different species of microorganisms, but for commercial applications α -amylase is mainly derived from the genus *Bacillus* [25]. α -Amylases produced from *Bacillus licheniformis*, *Bacillus stearothermophilus*, and *Bacillus amyloliquefaciens* find potential application in a number of industrial processes such as in food, fermentation, textiles and paper industries [26].

Thermostability is a desired characteristic of most of the industrial enzymes. Thermostable enzymes isolated from thermophilic organisms have found a number of commercial applications because of their stability. *Bacillus subtilis, Bacillus stearothermophilus, Bacillus licheniformis,* and *Bacillus amyloliquefaciens* are known to be good producers of thermostable α -amylase [27].

Enzymes produced by some halophilic bacteria such as *Chromohalobacter sp.*, *Halobacillus sp.*, *Halomonas meridiana*, and *Bacillus dipsosauri* have optimal activity at high salinities and could therefore be used in many harsh industrial processes [28].

The fungal source used predominantly for commercial production of α -Amylase are the strains of *Aspergillus spp. Aspergillus oryzae, A. niger* and *A. awamori* [12]. Genetically modified organisms are also being used for production of α -amylase. *Bacillus amyloliquefaciens UNG-16* was subjected to mutation by both the chemical and radiation method [29].

Enzymes used for industrial applications generally require less downstream processing and are usually crude preparations. The commercial use of α-amylase generally does not require purification of the enzyme. Purification methods commonly employed are ion exchange, gel filtration, precipitation, liquid-liquid extraction and reverse phase chromatography depending on the properties of the enzyme desired [30, 31]. These conventional multi-step methods requires expensive equipments at each step. However, liquidliquid extractions consist of an interesting purification alternative. Liquid-liquid extraction is the transfer of certain components from one phase to another when immiscible or partially soluble liquid phases are brought into contact with each other. This purification has been successfully carried out on a large scale for more than a decade. Advantages of using this system are lower viscosity, lower cost of chemicals and shorter phase separation time [32]. From the fermented mass by filtration and centrifugation can be obtained the crude extracellular enzyme sample [33].

5. APPLICATION OF α -AMYLASE IN TEXTILE INDUSTRY

The textile industry is one of the largest contributors to environmental pollution from desizing of fabrics, bleaching chemicals and dye. In such industries, enzymes are used to allow the development of environmentally friendly technologies in fiber processing [34]. The main classes of enzymes involved in cotton pre-treatment and finishing processes are hydrolase and oxidoreductase. The group of hydrolase includes amylase, cellulase, cutinase, protease, pectinase and lipase and the group of oxidoreductase includes catalase, laccase, peroxidase, and ligninase [35]. Applications of enzymes in textiles industries are shown in *Table 1*.

Enzyme	Microorganisms	Use
Amylase	Bacillus sp., B. licheniformis	Desizing
Cellulase	Aspergillus niger, Penicillium funiculosum	Cotton softening, denim finishing
Cutinase	Pseudomonas mendocina	Cotton scouring
Protease	Aspergillus niger, B. subtilis	Removal of wool fiber scales, degumming of silk
Pectate lyase	Bacillus sp., Pseudomonas sp.	Bioscouring
Lipase	Candida Antarctica	Removal of size lubricants
Catalase	Aspergillus sp.	Bleach termination
Laccase	Bacillus subtilis	Bleaching, fabric dyeing
Ligninase	Trametes versicolor, Phlebia radiata	Wool finishing

Table 1. Uses of enzymes in textile industry

 α -Amylase is gaining increased attention due to its starch hydrolyzing properties and widely used applications on the industrial front. Enzymes have replaced the previously used chemical methods of hydrolysis in various industrial sectors to make the process easie and environment friendly [7, 25].

Amylases are used in textile industry for desizing process. Sizing agents like starch are applied to yarn before fabric production to ensure a fast and secure weaving process. Desizing involves the removal of starch from the fabric. a-Amylase is employed to cleave starch particles randomly into water soluble components that can be removed by washing. This also reduced the discharge of waste chemicals to the environment. The α-amylases remove selectively the size and do not attack the fibres [14, 25, 36]. Before the discovery of amylases, desizing used to be carried out by treating the fabric with acid, alkali or oxidizing agents at high temperatures and the chemical treatment was not totally effective in removing the starch, and also resulted in a degradation of the cotton fibre. [37].

6. CONCLUSION

a-Amylase can be produced using microbes by submerged fermentation (SmF) or solid state fermentation (SSF) which employs waste products of other processes. SmF is primarily used for the extraction of secondary metabolites that need to be used in liquid form. SmF allows the utilization of genetically modified organisms to a greater extent than SSF.

The prospects of industrial uses of microbial enzymes have increased greatly in 21st century and continuously increasing as enzymes have significant potential for many industries. Enzymes of microbial origin have significant potential in textile industry, and consequently in the development of green environment.

The search for new microorganisms that can be used for amylase production is a continuous process. Nowadays amylases are commercialized and preferred for desizing due to their high efficiency and specificity, completely removing the size without any harmful effects on the fabric [38, 39]. There is still considerable potential for new and improved enzyme applications in future textile processing. More recently, many authors have presented good results in developing α -amylase purification techniques.

REFERENCES

- [1] Mojsov, K. (2015). Enzymatic desizing of cotton fabric and glucose generation in desizing liquor. *Tekstilna industrija*, 62(2), 15-20.
- [2] Mojsov, K., (2014). Industrial enzymes in textile processing and the healty environment: A review. *Tekstilna industrija*, 61(1), 12-16.
- [3] Meyer-Stork, L. S. (2016). Enzymatic Finishing of Textiles. *International Journal of Science and Research*, 5(5), 674-677.
- [4] Mojsov, K. (2016). Effects of enzymatic treatment on the physical properties of handloom cotton fabrics. *Tekstilna industrija*, 63(1), 21-26.
- [5] Opwis, K., Knittel, D., Kele, A., Schollmeyer, E. (1999). Enzymatic Recycling of Starch-Containing Desizing Liquors. *Starch/Starke*, 51, 348 - 353.
- [6] Ciechańska, D., Kazimierczak, J. (2006). Enzymatic Treatment of Fibres from Regenerated Cellulose. *Fibres & Textiles in Eastern Europe*, 14(1), 92-95.
- [7] Sundarram, A., Murthy, T. P. K. (2014). α-Amylase Production and Applications: A Review. *Journal of Applied & Environmental Microbiology*, 2(4), 166-175.
- [8] Rajagopalan, G., Krishnan, C. (2008). Alpha-amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. *Bioresour Technology*, 99, 3044-3050.
- [9] Whitcomb, D. C., Lowe, M. E. (2007). Human pancreatic digestive enzymes. *Digestive Diseases and Sciences*, 52(1), 1-17.
- [10] Van der Maarel, M. J., van der Veen, B., Uitdehaag, J. C., Leemhuis, H., Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the alpha-amylase family. *Journal of Biotechnology*, 94(2), 137–155.
- [11] Tanyildizi, M. S., Ozer, D., Elibol, M. (2005). Optimization of α-amylase production by Bacillus sp. using response surface methodology. *Process Biochemistry*, 40, 2291-2296.
- [12] Konsoula, Z., Liakopoulou-Kyriakides, M. (2007). Co-production of alpha-amylase and beta-galactosidase by Bacillus subtilis in complex organic substrates. *Bioresource Technology*, 98, 150-157.
- [13] Erdal, S. E. R. K. A. N., Taskin, M. E. S. U. T. (2010). Production of alpha-amylase by Penicillium expansum MT-1 in solid-state fermentation using waste Loquat (Eriobotrya japonica Lindley) kernels as substrate. *Romanian Biotechnological Letters*, 15(3), 5342-5350.
- [14] Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., Chauhan, B. (2003). Microbial α-amylases: a bio-

technological perspective. *Process Biochemistry*, 38, 1599-1616.

- [15] Mojsov, K. (2015). Comparison between conventional chemical processes and bioprocesses in cotton fabrics. *Tekstilna industrija*, 62 (1), 21-25.
- [16] Marcher, D., Hagen, H. A., Castelli, S. (1993). Entschlichten mit enzyme. *ITB Veredlung*, 39, 20-32.
- [17] Khanna, A., Maheshwari, R. C. (2004). Wet processing of denim garments. *Colourage*, 51(9), 47-50.
- [18] Karpagam Chinnammal, S., ArunKumar, K. V. (2013). Production and Application of Amylase Enzyme for Bio-desizing. *Journal of Environmental Nanotechnology*, 2(2), 6-12.
- [19] Kandra, L. (2003). α-Amylases of medical and industrial importance. *Journal of Molecular Structure* (*Theochem*), 666–667, 487–498.
- [20] Mojsov, K. (2012). Microbial Alpha-Amylases and their industrial applications: a review. *International Journal of Management, IT and Engineering (IJMIE)*, 2 (10), 583-609.
- [21] Muralikrishna, G., Nirmala, M. (2005). Cereal α-amylases – an overview. *Carbohydrate Polymers*, 60, 163-173.
- [22] Couto, S. R., Sanromán, M. A. (2006). Application of solid-state fermentation to food industry - A review. *Journal of Food Engineering*, 76, 291-302.
- [23] Francis, F., Sabu, A., Nampoothiri, K. M., Ramachandran, S., Ghosh, S., Szakacs, G., Pandey, A. (2003). Use of response surface methodology for optimizing process parameters for the production of a-amylase by Aspergillus oryzae. Biochemical. Engineering Journal, 15, 107-115.
- [24] Sodhi, H. K., Sharma, K., Gupta, J. K., Soni, S. K. (2005). Production of a thermostable α-amylase from Bacillus sp. PS-7 by solid-state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. *Process Biochemistry*, 40, 525-534.
- [25] De Souza, P. M., Magalhães, P. D. (2010). Application of microbial α-amylase in industry - a review. *Brazilian Journal of Microbiology*, 41(4), 850-861.
- [26] Pandey, A., Nigam, P., Soccol, C. R., Soccol, V. T., Singh, D., Mohan, R. (2000). Advances in microbial amylases. *Biotechnology and Applied Biochemistry*, 31(2), 135-152.
- [27] Prakash, O., Jaiswal, N. (2010). α-Amylase: an ideal representative of thermostable enzymes. *Applied Biochemistry and Biotechnology*, 160(8), 2401-2414.
- [28] Amoozegar, M. A., Malekzadeh, F., Malik, K. A. (2003). Production of amylase by newly isolated

moderate halophile, Halobacillus sp. strain MA-2. *Journal of Microbiological Methods*, 52, 353-359.

- [29] Yoneda, Y., Maruo, B. (1975). Mutation of Bacillus subtilis Causing Hyperproduction of α-Amylase and Protease, and Its Synergistic Effect. *Journal of Bacteriology*, 124, 48-54.
- [30] Hamilton, L. M., Kelly, C. T., Fogarty, W. M. (1999). Purification and properties of the raw starch degrading α-amylase of Bacillus sp. IMD434. *Biotechnology Letters*, 21, 111-115.
- [31] Khoo, S. L., Amirul, A. A., Kamaruzaman, M., Nazalan, N., Azizan, M. N. (1994). Purification and characterization of alpha-amylase from Aspergillus flavus. *Folia Microbiologica (Praha)*, 39, 392-398.
- [32] Mazzola, P. G., Lopes, A. M., Hasmann, F. A., Jozala, A. F., Penna, T. C. V., Magalhaes, P. O., Rangel-Yagui, C. O., Pessoa, A. (2008). Liquid–liquid extraction of biomolecules: an overview and update of the main techniques. *Journal of Chemical Technology and Biotechnology*, 83, 143-157.
- [33] Shih, N-J., Labbe R. G. (1995). Purification and Characterization of an Extracellular α-Amylase from Clostridium perfringens Type A. *Applied and Environmental Microbiology*, 61, 1776-1779.
- [34] Choi, J. M., Han, S. S., Kim, H. S. (2015). Industrial applications of enzyme biocatalysis: current status and future aspect. *Biotechnology Advances*, 33, 1443-1454.
- [35] Mojsov, K. (2011). Applications of enzymes in the textile industry: a review. In: 2nd international congress: Engineering, Ecology and Materials in the Processing Industry: Jahorina, Bosnia and Herzegovina; Tehnoloski Fakultet Zvornik, p 230-239.
- [36] Ahlawat, S., Dhiman, S. S., Battan, B., Mandhan, R. P., Sharma, J. (2009). Pectinase production by Bacillus subtilisand its potential application in biopreparation of cotton and micropoly fabric. *Process Biochemistry*, 44, 521-526.
- [37] Araújo, R., Casal, M., Cavaco-Paulo, A. (2008). Application of enzymes for textiles fibres processing. *Biocatalysis and Biotransformation*, 26(5), 332-349.
- [38] Etters, J. N., Annis, P. A. (1998). Textile enzyme use: A developing technology. *Am Dyestuff Reporter*, 87, 18-23.
- [39] Cegarra, J. (1996). The state of the art in textile biotechnology. *Journal of the Society of Dyers and Colourists*, 112, 326-329.

Rad primljen: 15.12.2017. Rad prihvaćen: 30.01.2018.