PRODUCTS OF DISTRIBUTIONS IN COLOMBEAU ALGEBRA

Marija Miteva, Biljana Jolevska – Tuneska and Tatjana Atanasova -Pacemska

- Products of distributions in Colombeau algebra
- Large employment of Schwartz's distributions
- Two main problems for distributional theory:
 - Product of distributions (not any two distributions can always be multiplied)

differentiating the product of distributions (the product of distributions not always satisfy the Leibniz rule)

- Two complementary points of view:
- Continuous linear functional f

$$\varphi \rightarrow \langle f, \varphi \rangle$$

arphi - smooth function with compact support (test function)

sequential approach

$$\varphi_n \to \delta(x)$$

$$f_n(x) = (f * \varphi_n)(x) = \langle f(y), \varphi_n(x - y) \rangle$$

$$f_n \to f$$

- representatives of f

- nets of regularization

$$\varphi_{\varepsilon} = \frac{1}{\varepsilon} \varphi \left(\frac{x}{\varepsilon} \right)$$

- Non-linear structure is lost in a way identifying sequences with their limit
- All the operations then are done with the regularized functions (the sequences of smooth functions)
- With the inverse process starting from the result, the function is returned from the regularization

- Jean-Francois Colombeau
- New generalized functions and multiplication of distributions, 1984
- Colombeau algebra $\mathcal{G}(\mathbf{R})$
- New theory of generalized functions more general then the theory of Schwartz's distributions

- Diferentiation same properties as distributions
- Multiplication and nonlinear operations properties different from distributions
- Any finite product of generalized functions is still generalized function
- The algebra of these generalized functions is closed with respect to many nonlinear operations
- Any finite product of distributions is a generalized function and not a distribution in general

- Associative differential algebra of generalized functions, containing the algebra of smooth functions as a subalgebra
- The distribution space \mathcal{D}' is linearly embedded in it as a subspace
- Multiplication is compatible with the operations of differentiation and products with C^{∞} differentiable functions

- $N_0 = N \cup \{0\}$ set of non-negative integers
- $\mathcal{D}(\mathbf{R})$ the space of all C^{∞} functions $\varphi: \mathbf{R} \to \mathbf{C}$ with compact support
- For $j \in \mathbf{N}_0$ and $q \in \mathbf{N}_0$ we denote $A_q \left(\mathbf{R} \right) = \left\{ \varphi \left(x \right) \in \mathcal{D} \left(\mathbf{R} \right) \middle| \int_{\mathbf{R}} \varphi \left(x \right) dx = 1; \int_{\mathbf{R}} x^j \varphi \left(x \right) dx = 0, j = 1, ..., q \right\}$
- $A_1 \supset A_2 \supset A_3$... and $A_k \neq \emptyset$, $k \in \mathbb{N}$

$$\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon} \varphi\left(\frac{x}{\varepsilon}\right) \qquad \stackrel{\vee}{\varphi}(x) = \varphi(-x) \qquad \varepsilon > 0$$

- **Deffinition**: $\mathcal{E}(\mathbf{R})$ algebra of functions $f(\varphi, x)$ $f(\varphi, x): A_0(\mathbf{R}) \times \mathbf{R} \to \mathbf{C}$ - infinitely differentiable for fixed 'parameter' φ
- Embedding of distributions in a way that the embedding of C^{∞} functions will be identity

- f , g smooth functions
- $(f * \varphi_{\varepsilon})_{\varepsilon > 0}$ an embedding of f
- $(g * \varphi_{\varepsilon})_{\varepsilon > 0}$ an embedding of g

$$(f * \varphi_{\varepsilon})(g * \varphi_{\varepsilon}) \neq (fg) * \varphi_{\varepsilon}$$

• The generalized functions of Colombeau are elements of the quotient algebra

$$\mathcal{G} \equiv \mathcal{G}(\mathbf{R}) = \frac{\mathcal{E}_{M}[\mathbf{R}]}{\mathcal{I}[\mathbf{R}]}$$

• $\mathcal{E}_{M}[\mathbf{R}]$ - subalgebra of 'moderate' functions such that for each compact subset K of \mathbf{R} and any $p \in \mathbf{N}_{0}$ there is $q \in \mathbf{N}$ such that for each $\varphi \in A_{q}(\mathbf{R})$ there are $c > 0, \eta > 0$ and it holds

$$\sup_{x\in K}\left|\partial^{p}f\left(\varphi_{\varepsilon},x\right)\right|\leq c\varepsilon^{-q}$$

for $0 < \varepsilon < \eta$.

• $\mathcal{I}[\mathbf{R}]$ is an ideal of $\mathcal{E}_{M}[\mathbf{R}]$ consisting of all functions $f(\varphi, x)$ such that for each compact subset K of \mathbf{R} and any $p \in \mathbf{N}_{0}$ there is $q \in \mathbf{N}$ such that for every $r \ge q$ and each $\varphi \in A_{r}(\mathbf{R})$ there are $c > 0, \eta > 0$ and it holds

$$\sup_{x\in K}\left|\partial^{p}f\left(\varphi_{\varepsilon},x\right)\right|\leq c\varepsilon^{r-q}$$

for $0 < \varepsilon < \eta$.

• $\mathcal{G}(\mathbf{R})$ contains the distributions on \mathbf{R} canonically embedded by the map $i: \mathcal{D}'(\mathbf{R}) \to \mathcal{G}(\mathbf{R}): u \to \tilde{u} = \left\{ \tilde{u}(\varphi, x) = \left(u * \varphi \right)(x): \varphi \in A_q(\mathbf{R}) \right\}$

$$(f * g)(x) = \int_{\mathbf{R}} f(y)g(x-y)dy$$

$$\tilde{u}(\varphi, x) = \langle u(y), \varphi(y-x) \rangle$$

• Generalized functions $f,g \in \mathcal{G}(\mathbf{R})$ are said to be **associated** $(f \approx g)$ if for some representatives $f(\varphi_{\varepsilon}, x)$ and $g(\varphi_{\varepsilon}, x)$ and arbitrary $\psi(x) \in \mathcal{D}(\mathbf{R})$ there is a $q \in \mathbf{N}_0$ such that for any $\varphi(x) \in A_q(\mathbf{R})$

$$\lim_{\varepsilon \to 0_{+}} \int_{\mathbf{R}} \left| f\left(\varphi_{\varepsilon}, x\right) - g\left(\varphi_{\varepsilon}, x\right) \right| \psi(x) dx = 0$$

• A generalized function $f \in \mathcal{G}$ is said to admit some $u \in \mathcal{D}'(\mathbf{R})$ as 'associated distribution' $(f \approx u)$ if for some representative $f(\varphi_{\varepsilon}, x)$ and any $\psi(x) \in \mathcal{D}(\mathbf{R})$ there is a $q \in \mathbf{N}_0$ such that for any $\varphi(x) \in A_q(\mathbf{R})$

$$\lim_{\varepsilon \to 0_+} \int_{\mathbf{R}} f(\varphi_{\varepsilon}, x) \psi(x) dx = \langle u, \psi \rangle$$

- ✓ Above definitions are independent of the representatives chosen
- ✓ The distribution associated, if it exists, is unique
- ✓ The association is a faithful generalization of the equality of distributions

- Product of two distributions in G is in general Colombeau generalized function which may not always be associated to the third distribution
- By Colombeau product of distributions is meant the product of their embeddings in *G* whenever the result admits an associated distribution
- If the regularized model product of two distributions exists, then their Colombeau product also exists and it is same with the first one

Colombeau products of distributions

• **Theorem1**: The product of the generalized functions $(\cos x - \sin x)$ and $\widetilde{\delta^{(r)}(x)}$ for r = 0, 1, 2, ... in $\mathcal{G}(\mathbf{R})$ admits associated distribution and it holds:

$$\widetilde{(\cos x - \sin x)} \cdot \widetilde{\delta^{(r)}(x)} \approx \sum_{i=0}^{r} \binom{r}{i} (-1)^{b_i} \delta^{(r-i)}(x)$$

where $b_0 = 1; b_1 = 3, b_n = b_{n-2} + 5$ for $n \ge 2$.

Colombeau products of distributions

• **Theorem2**: The product of the generalized functions $(\sin x + \cos x)$ and $\widetilde{\delta^{(r)}(x)}$ for r = 0, 1, 2, ... in $\mathcal{G}(\mathbf{R})$ admits associated distribution and it holds:

$$\overline{(\sin x + \cos x)} \cdot \widetilde{\delta^{(r)}}(x) \approx \sum_{i=0}^{r} \binom{r}{i} (-1)^{b_i} \delta^{(r-i)}(x)$$

where $b_0 = 1; b_1 = 4, b_n = b_{n-2} + 5$ for $n \ge 2$.

Colombeau products of distributions

• **Theorem3**: The product of the generalized functions e^{x} and $\overline{\delta^{(r)}(x)}$ for r = 0, 1, 2, ...in $\mathcal{G}(\mathbf{R})$ admits associated distribution and it holds:

$$\widetilde{e^{x}} \cdot \widetilde{\delta^{(r)}}(x) \approx \sum_{i=0}^{r} \binom{r}{i} (-1)^{1+i} \delta^{(r-i)}(x)$$

THANK YOU FOR YOUR ATTENTION