ABSTRACT - Let f be an analytic function in the open unit disk normalized such that f(0) = f'(0) - 1 = 0. In this paper the modulus and the real part of the linear combination of f'(z) and f(z)/z is studied and conditions when f is of bounded turning are obtained.

MATHEMATICS SUBJECT CLASSIFICATION (2010). 30C45.

KEYWORDS. Analytic function, bounded turning, real part, modulus.

1. Introduction and preliminaries

Let \mathcal{A} denote the class of analytic functions in the unit disk $\mathbb{D} = \{z : |z| < 1\}$ that are normalized such that f(0) = f'(0) - 1 = 0, i.e. $f(z) = z + a_2 z^2 + a_3 z^3 + \cdots$

A function $f \in \mathcal{A}$ is in the class of *starlike functions*, S^* , if and only if

$$\operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right] > 0, \quad z \in \mathbb{D}.$$

Such functions are univalent and their geometric characterization (which motivates the name of the class) is that they map the unit disk onto a starlike region, i.e. if $\omega \in f(\mathbb{D})$ then $t\omega \in f(\mathbb{D})$ for all $t \in [0,1]$.

- (*) Indirizzo dell'A.: Faculty of Mechanical Engineering, Ss. Cyril and Methodius University in Skopje, Karpoš II b.b., 1000 Skopje, Republic of Macedonia.
 - E-mail: nikola.tuneski@mf.edu.mk
- (**) Indirizzo dell'A.: School of Mathematical Sciences, Faculty of science and Technology Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia.

E-mail: maslina@ukm.my

(***) Indirizzo dell'A.: University Goce Delcev, Štip, Republic of Macedonia.

E-mail: gelovae@yahoo.com

Another well-known class of univalent functions is the *class of functions* with bounded turning,

$$R = \{ f \in \mathcal{A} : \operatorname{Re} f'(z) > 0, z \in \mathbb{D} \}.$$

More details on these classes can be found in [2] (section 2.5) and [3] (section 5.5). One of the main results concerning them is due to Krzyz ([7]), who proved that S^* does not contain R and R does not contain S^* . This makes the class R interesting and lots of research is dedicated to it. Some references in that direction are [6] – [9].

In this paper we will study the linear combination of two simple expressions, f'(z) and f(z)/z, i.e. we will study the modulus and the real part of

(1)
$$\alpha \cdot f'(z) + \beta \cdot \frac{f(z)}{z}$$

and obtain criteria for a function $f \in \mathcal{A}$ to be of bounded turning. For that purpose we will use a method from the theory of differential subordinations. Valuable references on this topic are [1] and [3].

First we introduce subordination. Let $f, g \in A$. Then we say that f(z) is subordinate to g(z), and write $f(z) \prec g(z)$, if there exists a function $\omega(z)$, analytic in the unit disc \mathbb{D} , such that $\omega(0) = 0$, $|\omega(z)| < 1$ and $f(z) = g(\omega(z))$ for all $z \in \mathbb{D}$. In particular, if g(z) is univalent in \mathbb{D} then $f(z) \prec g(z)$ if and only if f(0) = g(0) and $f(\mathbb{D}) \subseteq g(\mathbb{D})$.

For obtaining our main result we will use the method of differential subordinations. The general theory of differential subordinations, as well as the theory of first-order differential subordinations, was introduced by Miller and Mocanu in [4] and [5]. Namely, if $\phi: \mathbb{C}^2 \to \mathbb{C}$ (where \mathbb{C} is the complex plane) is analytic in a domain D, if h(z) is univalent in \mathbb{D} , and if p(z) is analytic in \mathbb{D} with $(p(z), zp'(z)) \in D$ when $z \in \mathbb{D}$, then p(z) is said to satisfy a first-order differential subordination if

(2)
$$\phi(p(z), zp'(z)) \prec h(z).$$

A univalent function q(z) is said to be a *dominant* of the differential subordination (2) if $p(z) \prec q(z)$ for all p(z) satisfying (2). If $\tilde{q}(z)$ is a dominant of (2) and $\tilde{q}(z) \prec q(z)$ for all dominants of (2), then we say that $\tilde{q}(z)$ is the *best dominant* of the differential subordination (2).

From the theory of first-order differential subordinations we will make use of the following lemma.

LEMMA 1.1 [[5]]. Let q(z) be univalent in the unit disk \mathbb{D} , and let $\theta(\omega)$ and $\phi(\omega)$ be analytic in a domain D containing $q(\mathbb{D})$, with $\phi(\omega) \neq 0$ when $\omega \in q(\mathbb{D})$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$, and suppose that

i) Q(z) is starlike in the unit disk \mathbb{D} ; and

$$ii) \ \operatorname{Re} \frac{zh'(z)}{Q(z)} \left(= \operatorname{Re} \left\{ \frac{\theta'(q(z))}{\phi(q(z))} + \frac{zQ'(z)}{Q(z)} \right\} \right) > 0, \, z \in \mathbb{D}.$$

If p(z) *is analytic in* \mathbb{D} , *with* p(0) = q(0), $p(\mathbb{D}) \subseteq D$ *and*

(3)
$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)) = h(z),$$

then $p(z) \prec q(z)$, and q(z) is the best dominant of (3).

Now, using Lemma 1.1 we will prove the following result.

LEMMA 1.2. Let $f \in A$ and $\alpha, \beta \in \mathbb{C} \setminus \{0\}$ be such that $\alpha + \beta = 0$ or $\alpha + \beta = 1$. Also, let q(z) be univalent in the unit disk \mathbb{D} with q(0) = 0 and

(4)
$$\operatorname{Re}\left[1 + \frac{zq''(z)}{q'(z)}\right] > 0, \quad z \in \mathbb{D}.$$

Additionally, in the case when $\alpha + \beta = 1$, let Re $\frac{1}{\alpha} > -1$ and

(5)
$$\operatorname{Re}\left[1 + \frac{zq''(z)}{q'(z)}\right] > -\operatorname{Re}\frac{1}{\alpha}, \quad z \in \mathbb{D}.$$

If

(6)
$$\alpha \cdot f'(z) + \beta \cdot \frac{f(z)}{z} \prec (\alpha + \beta) \cdot [q(z) + 1] + \alpha z q'(z) (\equiv h(z))$$

then $\frac{f(z)}{z} - 1 \prec q(z)$, and q(z) is the best dominant of (6).

PROOF. The functions $\theta(\omega)=(\alpha+\beta)\cdot(\omega+1)$ and $\phi(\omega)=\alpha$ are analytic in the domain $D=\mathbb{C}$ which contains $q(\mathbb{D})$ and $\phi(\omega)\neq 0$ when $\omega\in q(\mathbb{D})$. Further, $Q(z)=zq'(z)\phi(q(z))=\alpha zq'(z)$ is starlike since

$$\operatorname{Re} \frac{zQ'(z)}{Q(z)} = \operatorname{Re} \left[1 + \frac{zq''(z)}{q'(z)} \right] > 0, \quad z \in \mathbb{D};$$

furthermore for the function $h(z) = \theta(q(z)) + Q(z)$ we have

$$\operatorname{Re} \frac{zh'(z)}{Q(z)} = \operatorname{Re} \left[1 + \frac{\alpha + \beta}{\alpha} + \frac{zq''(z)}{q'(z)} \right] > 0, \quad z \in \mathbb{D},$$

for $\alpha + \beta = 0$ due to (4) and for $\alpha + \beta = 1$ due to (5).

Now, let choose $p(z) = \frac{f(z)}{z} - 1$ which is analytic in \mathbb{D} , p(0) = q(0) = 0 and $p(\mathbb{D}) \subseteq D = \mathbb{C}$. Finally, bearing in mind that subordinations (3) and (6) are equivalent, from Lemma 1.1 we deduce the conclusions of Lemma 1.2. \square

2. Results on the modulus of (1)

In this section we will study the modulus of (1) and obtain conclusions that lead to criteria for a function f to be in the class R.

THEOREM 2.1. Let $f \in \mathcal{A}$, $\mu > 0$ and $\alpha, \beta \in \mathbb{C} \setminus \{0\}$ be such that $\alpha + \beta = 0$ or $\alpha + \beta = 1$. Also, when $\alpha + \beta = 1$ let $\operatorname{Re} \frac{1}{\alpha} > -1$. If

(7)
$$\left|\alpha \cdot f'(z) + \beta \cdot \frac{f(z)}{z} - (\alpha + \beta)\right| < \delta \equiv \begin{cases} \mu \cdot |\alpha|, & \alpha + \beta = 0\\ \mu \cdot |1 + \alpha|, & \alpha + \beta = 1 \end{cases}$$

for all $z \in \mathbb{D}$, then

(8)
$$\left| \frac{f(z)}{z} - 1 \right| < \mu, \quad z \in \mathbb{D}.$$

This implication is sharp, i.e., in the inequality (8) μ cannot be replaced by a smaller number for the implication to hold. Also,

$$|f'(z)-1|<\lambda\equiv\left\{egin{array}{ll} 2\mu, & lpha+eta=0\ \mu\cdot\left(\left|1+rac{1}{lpha}
ight|+\left|1-rac{1}{lpha}
ight|
ight), & lpha+eta=1 \end{array}
ight\}, & z\in\mathbb{D}.$$

This implication is also sharp, i.e., λ cannot be replaced by a smaller number for the implication to hold, if

(i)
$$\alpha + \beta = 0$$
; or
(ii) $\alpha + \beta = 1$ and $\left| 1 + \frac{1}{\alpha} \right| + \left| 1 - \frac{1}{\alpha} \right| = 2$.

PROOF. Choosing $q(z) = \mu z$ we have $1 + \frac{zq''(z)}{q'(z)} = 1$, meaning that (4) and (5) from Lemma 1.2 both hold. Further, for the function h(z) defined

in (6) we have

$$h(z) = \alpha + \beta + \mu z(2\alpha + \beta),$$

meaning that the subordination (6) is equivalent to

$$\left|\alpha \cdot f'(z) + \beta \cdot \frac{f(z)}{z} - (\alpha + \beta)\right| < \mu \cdot |2\alpha + \beta| = \delta, \quad z \in \mathbb{D},$$

and so equivalent to (7). Therefore, (8) follows directly from Lemma 1.2 and the definition of subordination.

Further, for all $z \in \mathbb{D}$,

$$\left|\alpha \cdot f'(z) + \beta \cdot \frac{f(z)}{z} - (\alpha + \beta)\right| = \left|\alpha \cdot [f'(z) - 1] + \beta \cdot \left[\frac{f(z)}{z} - 1\right]\right|$$

and

$$|\alpha| \cdot |f'(z) - 1| \le \left| \alpha \cdot [f'(z) - 1] + \beta \cdot \left[\frac{f(z)}{z} - 1 \right] \right| + \left| \beta \cdot \left[\frac{f(z)}{z} - 1 \right] \right|$$
$$< \delta + |\beta| \cdot \mu = |\alpha| \cdot \lambda,$$

since $|w_1| \le |w_1 + w_2| + |w_2|$. Therefore, the implications of this corollary holds. Both implications are sharp as the function $f_*(z) = z + \mu z^2$ shows, since

$$\begin{vmatrix} \alpha \cdot f'_*(z) + \beta \cdot \frac{f_*(z)}{z} - (\alpha + \beta) \end{vmatrix} = \mu \cdot |2\alpha + \beta| \cdot |z| = \delta \cdot |z|, \quad z \in \mathbb{D},$$
$$\begin{vmatrix} \frac{f_*(z)}{z} - 1 \end{vmatrix} = \mu \cdot |z|, \quad z \in \mathbb{D},$$
$$|f'_*(z) - 1| = 2 \cdot \mu \cdot |z|, \quad z \in \mathbb{D},$$

and $2\mu = \lambda$ if (i) or (ii) hold.

3. Results on the real part of (1)

In this section we study the real part of the expression (1) and obtain criteria that ensure that a function $f \in A$ is in the class R.

THEOREM 3.1. Let $f \in \mathcal{A}$, $\mu > 0$ and $\alpha, \beta \in \mathbb{C} \setminus \{0\}$ be such that $\alpha + \beta = 0$ or $\alpha + \beta = 1$. Also, when $\alpha + \beta = 1$ let $\operatorname{Re} \frac{1}{\alpha} > 0$. If

(9)
$$\alpha \cdot f'(z) + \beta \cdot \frac{f(z)}{z} \prec (\alpha + \beta) \left(1 + \frac{2\mu z}{1 - z} \right) + \frac{2\alpha \mu z}{(1 - z)^2} \equiv h_2(z)$$

then

(10)
$$\operatorname{Re}\left[\frac{f(z)}{z}\right] > 1 - \mu, \quad z \in \mathbb{D}.$$

This implication is sharp, i.e., in the inequality (10) μ cannot be replaced by a bigger number so that the implication still holds.

PROOF. The implication of this theorem follows directly from Lemma 1.2 for $q(z)=\frac{2\mu z}{1-z}$. Condition $\operatorname{Re}\frac{1}{\alpha}>0$ stands in place of $\operatorname{Re}\frac{1}{\alpha}>-1$ in order for (5) to hold. The result is sharp, as can be seen from the function $f_*(z)=z+z\cdot q(z)$ for which

$$\alpha \cdot f'_*(z) + \beta \cdot \frac{f_*(z)}{z} = (\alpha + \beta) \left(1 + \frac{2\mu z}{1 - z} \right) + \frac{2\alpha\mu z}{(1 - z)^2}$$

and Re
$$\frac{f(z)}{z} = 1 - \mu$$
 for $z = -1$.

In the case when $\alpha + \beta = 1$ we obtain the following corollary.

COROLLARY 3.2. Let $f \in A$, $\alpha > 0$ and $\mu > 0$. If

$$(11) \qquad \operatorname{Re}\left[\alpha\cdot f'(z)+(1-\alpha)\cdot\frac{f(z)}{z}\right]>1-\mu\cdot\left(1+\frac{\alpha}{2}\right),\quad z\in\mathbb{D},$$

then

$$\operatorname{Re}\left[\frac{f(z)}{z}\right] > 1 - \mu, \quad z \in \mathbb{D}.$$

If, additionally,

- (i) $\alpha > 1$ and $\mu < 1$; or
- (ii) $\alpha < 1$ and $\mu \ge 1$;

then

(12)
$$\operatorname{Re} f'(z) > 1 - \frac{3}{2} \cdot \mu, \quad z \in \mathbb{D}.$$

These results are sharp.

PROOF. Let $\alpha + \beta = 1$. Then, for the function h_2 defined in (9) we have

$$h_2(z) = 1 + \frac{2\mu z}{1 - z} + \frac{2\alpha\mu z}{(1 - z)^2},$$

237

 $h_2(0) = 1$ and

$$h_2(e^{i\theta}) = 1 - \frac{\mu\alpha}{2}(1 + t^2) - \mu + \mu ti,$$

where $t = \text{ctg}(\theta/2)$. Therefore,

$$X = \operatorname{Re} h(e^{i\theta}) = 1 - \mu \left(\frac{\alpha}{2} + 1\right) - \frac{\alpha}{2\mu} \cdot Y^2,$$

where

$$Y = \operatorname{Im} h(e^{i\theta}) = \mu t$$

attains all real numbers. This leads to

$$h_2(e^{i\theta}) = \left\{ x + iy : x = 1 - \mu \left(1 + \frac{\alpha}{2} \right) - \frac{\alpha}{2\mu} \cdot y^2, y \in \mathbb{R} \right\}.$$

From here, bearing in mind the definition of subordination, the inequality (11) and the fact that

$$\left\{x+iy: x>1-\mu\left(1+\frac{\alpha}{2}\right), y\in\mathbb{R}\right\}\subseteq h_2(\mathbb{D}),$$

we obtain the subordination (9). Therefore, from Theorem 3.1 it follows that

$$\operatorname{Re}\left[\frac{f(z)}{z}\right] > 1 - \mu, \quad z \in \mathbb{D}.$$

Further, in the case when (i) or (ii) holds we have

$$\operatorname{Re} f'(z) = \frac{1}{\alpha} \cdot \left\{ \operatorname{Re} \left[\alpha \cdot f'(z) + (1 - \alpha) \cdot \frac{f(z)}{z} \right] - (1 - \alpha) \cdot \operatorname{Re} \left[\frac{f(z)}{z} \right] \right\}$$
$$> \frac{1}{\alpha} \cdot \left[1 - \mu \left(1 + \frac{\alpha}{2} \right) - (1 - \alpha)(1 - \mu) \right] = 1 - \frac{3}{2} \cdot \mu,$$

for all $z \in \mathbb{D}$.

The results are sharp in view of the function $f_*(z) = z + \frac{2\mu z^2}{1-z}$ for which $f_*(z)/z = 1 + \frac{2\mu z}{1-z} \equiv g(z), \ g(\mathbb{D}) = \{x+iy: x>1-\mu, y\in\mathbb{R}\},$

$$\alpha \cdot f_*'(z) + (1 - \alpha) \cdot \frac{f_*(z)}{z} = h_2(z)$$

and

$$\operatorname{Re} f'_*(z) = \operatorname{Re} h_2(z) = 1 - \frac{3}{2} \cdot \mu \quad \text{for} \quad z = -1.$$

In a similar way to Corollary 3.2, for the case $\alpha = -\beta = 1$ we obtain

COROLLARY 3.3. Let $f \in A$ and $\mu > 0$. If

(13)
$$\operatorname{Re}\left[f'(z) - \frac{f(z)}{z}\right] > -\frac{\mu}{2}, \quad z \in \mathbb{D},$$

then $\operatorname{Re}\left[\frac{f(z)}{z}\right] > 1 - \mu$, $z \in \mathbb{D}$, and $\operatorname{Re}f'(z) > 1 - \frac{3}{2} \cdot \mu$, $z \in \mathbb{D}$. If, additionally, $\mu \leq \frac{2}{3}$, then $\operatorname{Re}f'(z) > 0$, $z \in \mathbb{D}$, i.e. $f \in R$. Both implications are sharp.

REFERENCES

- [1] T. Bulboaca, Differential subordinations and superordinations. New results, House of Science Book Publ., Cluj-Napoca, 2005.
- [2] P.L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
- [3] S.S. MILLER P.T. MOCANU, Differential subordinations, Theory and Applications, Marcel Dekker, New York-Basel, 2000.
- [4] S.S. MILLER P.T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), pp. 157-171.
- [5] S.S. MILLER P.T. MOCANU, On some classes of first-order differential subordinations, Michigan Math. J. 32 (1985), pp. 185-195.
- [6] R.W. IBRAHIM M. DARUS, Extremal bounds for functions of bounded turning, Int. Math. Forum 6 (33) (2011), pp. 1623–1630.
- [7] J. Krzyz, A counter example concerning univalent functions, Mat. Fiz. Chem. 2 (1962), pp. 57–58.
- [8] N. Tuneski, Some simple sufficient conditions for starlikeness and convexity, Appl. Math. Lett. 22 (2009), pp. 693–697.
- [9] N. Tuneski M. Obradovic, Some properties of certain expression of analytic functions, Comput. Math. Appl. 62 (2011), pp. 3438–3445.

Manoscritto pervenuto in redazione il 17 Aprile 2013.