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SP.086. Prove that if a, b, c are the lengths’s sides in triangle ABC
then:

sin2 a+ sin2 b+ sin2 c ≥ 4 sin s sin(s− a) sin(s− b) sin(s− c)
Proposed by Daniel Sitaru - Romania

SP.087. Let z1, z2, z3 be the affixes of A,B respectively C in acute-
angled ∆ABC.
Prove that:∏(∣∣∣z2 − z3
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Proposed by Daniel Sitaru - Romania

SP.088. Let a, b, c > 0 such that ab+ bc+ ca+ abc = 4.
Prove that
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Proposed by Nguyen Ngoc Tu – HaGiang –Vietnam

SP.089. Let ra, rb, rc be the exradii of a triangle ABC, ha, hb, hc

the altitudes and let R, r, s denote the circumradius, inradius and
semiperimeter respectively. Prove that
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Proposed by Martin Lukarevski – Skopje - Macedonia

SP.090.If u, v > 0, with 2u − v > 0 and α, β, γ are the measures
of the angles of triangle ABC, then∑
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Proposed by D.M. Bătinet,u – Giurgiu; Neculai Stanciu – Romania
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UP.076. Evaluate:
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)
Proposed by Shivam Sharma – New Delhi – India
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