SP.086. Prove that if a, b, c are the lengths's sides in triangle $A B C$ then:

$$
\sin ^{2} a+\sin ^{2} b+\sin ^{2} c \geq 4 \sin s \sin (s-a) \sin (s-b) \sin (s-c)
$$

Proposed by Daniel Sitaru - Romania

SP.087. Let z_{1}, z_{2}, z_{3} be the affixes of A, B respectively C in acuteangled $\triangle A B C$.
Prove that:

$$
\begin{array}{r}
\prod\left(\left|\frac{z_{2}-z_{3}}{z_{2}+z_{3}}\right|+\left|\frac{z_{3}-z_{1}}{z_{3}+z_{1}}\right|\right) \geq \frac{32 s r^{3}}{\left(s^{2}-(2 R+r)^{2}\right)^{2}} \\
\\
\text { Proposed by Daniel Sitaru - Romania }
\end{array}
$$

SP.088. Let $a, b, c>0$ such that $a b+b c+c a+a b c=4$. Prove that

$$
\begin{gathered}
(a+1) \sqrt{(b+1)(c+1)}+(b+1) \sqrt{(c+1)(a+1)}+(c+1) \sqrt{(a+1)(b+1)} \geq \\
\geq a+b+c+\mathbf{9} \\
\text { Proposed by Nguyen Ngoc Tu - HaGiang -Vietnam }
\end{gathered}
$$

SP.089. Let r_{a}, r_{b}, r_{c} be the exradii of a triangle $A B C, h_{a}, h_{b}, h_{c}$ the altitudes and let R, r, s denote the circumradius, inradius and semiperimeter respectively. Prove that

$$
\frac{r_{a}^{2}}{h_{a}}+\frac{r_{b}^{2}}{h_{b}}+\frac{r_{c}^{2}}{h_{c}} \geq \frac{2 s^{2}}{3}\left(\frac{1}{r}-\frac{1}{R}\right)
$$

Proposed by Martin Lukarevski - Skopje - Macedonia

SP.090.If $u, v>0$, with $2 u-v>0$ and α, β, γ are the measures of the angles of triangle $A B C$, then

$$
\begin{gathered}
\sum_{\text {cyc }} \frac{\sin \alpha}{u \sin \boldsymbol{\beta}+\boldsymbol{v} \sqrt{\sin \boldsymbol{\alpha} \sin \boldsymbol{\beta}}} \geq \frac{\mathbf{3}}{\boldsymbol{u}+\boldsymbol{v}} \\
\text { Proposed by D.M. Bătinețu - Giurgiu; Neculai Stanciu - Romania }
\end{gathered}
$$

UNDERGRADUATE PROBLEMS

UP.076. Evaluate:

$$
S=\sum_{n=1}^{\infty}\left(\frac{\boldsymbol{H}_{2 n+1}}{n^{2}}\right)
$$

Proposed by Shivam Sharma - New Delhi - India

