

УНИВЕРЗИТЕТ "ГОЦЕ ДЕЛЧЕВ" ШТИП



International Atomic Energy Agency

# INTRODUCTION TO RADIOBIOLOGY

Ass. Prof. Katarina Smilkov, PhD

25.01.2017, Stip, Republic of Macedonia

# Radiobiology

effects of ionizing radiations on living systems

- mechanism of radiation damage
- radiosensitivity of cells and tissues
- different types of effect on living matter
- risks of cancer and genetic effects from radiation exposure



## Sources of ionizing radiation

#### AVERAGE ANNUAL EFFECTIVE DOSE OF IONIZING RADIATION TO INDIVIDUALS AS IN YEAR 2000

| Source                    | Dose (mSv) | Range (mSv)             |
|---------------------------|------------|-------------------------|
| Natural background        |            |                         |
| External exposure         |            |                         |
| Cosmic                    | 0.4        | 0.3 - 1.0               |
| Terrestrial               | 0.5        | 0.3 – 0.6               |
| Internal Exposure         |            |                         |
| Inhalation (mainly radon) | 1.2        | 0.2 - 10.               |
| Ingestion                 | 0.3        | 0.2 - 0.8               |
| Total                     | 2.4        | 1 - 10                  |
| Man-made (artificial)     |            |                         |
| Medical                   | 0.4        | 0.04 - 1.0              |
| Nuclear Testing           |            | 0.15 – decreasing trend |
| Chernobyl accident        | 0.002      | 0.04 – decreasing trend |
| Nuclear power production  | 0.0002     | Decreasing trend        |
| Total                     | 2.8        | 1 - 10                  |

# Physics and chemistry of radiation interactions with matter

- Types of radiation (arbitrary)
  - Ionizing

 $\alpha$ ,  $\beta$ ,  $\gamma$ , X-rays

 $\Rightarrow$ electromagnetic radiation (X-rays and  $\gamma$  rays)

 particulate radiation (neutrons, alpha and beta particles).

Nonionizing (visible, IR- light, radiowaves, microwaves, etc. )



#### Radiation dose and units

### Exposure

- ability to produce ionization in air under standard temperature and pressure
- SI unit Coulombs/kg in air
   (old unit: Roentgen, 1 R = 2.58 x 10-4 C/kg air)
   cannot be used to describe dose to tissue

## Absorbed dose

- The amount of energy absorbed per mass energy absorbed per unit mass of tissue
- SI units Gray 1 Gy = 1 J/kg

(old unit rad, 100 rad = 1 Gy)

#### Radiation dose and units

#### Equivalent dose

- to compare the biological effectiveness of different types of radiation to tissues
- SI dose equivalent in Sievert (Sv) is the product of the absorbed dose in the tissue multiplied by a radiation weighting factor, (quality factor)

includes the effects of irradiation of tissue by more than one type <u>of radiation</u>

- Unit rem (radiation equivalent man) was used to compare doses received by different types of radiations (100 rem = 1 Sv). In low LET radiations 1 Sv = 1 Gy.
- *Effective dose* Unit *Sv,* to estimate the risk of radiation in humans
- **Collective dose** dose received per person in Sv multiplied by the number of persons exposed per year i.e. man-sievert per year<sup>6</sup>

#### Water radiolysis



Free radicals of biomolecules can be restituted by hydrogen donating compounds, such as thiols and cysteine = repair

Alternatively, they can be fixed by reaction with oxygen or oxygen mimicking compounds = permanent damage
7

## **Biological effects of ionizing radiation**

 Biological effects of ionizing radiation depend on several factors that make them variable and inconsistent

- The effects are classified based on their nature and timing after exposure
  - early or delayed (stochastic or deterministic)
  - somatic or hereditary



# Molecular and cellular radiobiology

### Radiation lesions in DNA

- Loss of a base
- Cleavage of the hydrogen bond between bases
- Breakage of one strand of the DNA molecule in the phosphodiester linkage (single strand)
- Breakage of both strands of the DNA molecule in opposing sites (double strand)
- Crosslinks (protein-DNA, protein-protein) involving nuclear proteins such as histones and non-histone proteins.

# **Radiation lesions in DNA**

The number of mutations increases with increasing radiation exposure

- In low-dose exposures, the breaks are single stranded and can be repaired by joining the broken components in the original order.
- In higher exposures, double strand breaks occur and the odds for repair decrease.

high-LET radiations cause more damage

#### How are changes repaired?



### **Outcomes after cell exposure**



## **Influence to chromosomes**

#### **Chromosomal aberrations**

- Chromatid aberrations, irradiation occurs after DNA synthesis prior to mitosis and only one chromatid is affected.
- Chromosome aberrations, irradiation occurs after mitosis prior to DNA synthesis and the broken chromatids are duplicated producing daughter cells with damaged chromosomes.



**Outcome?** 

Repair

Genetic mismatch



Normal human lymphocyte: chromosomes uniformly distributed

#### Apoptotic cell: Chromosomes and nucleus fragmented and collapsed into apoptotic bodies





## **Repair of chromosomes after irradiation**

Depends on:

- sites of break in the DNA/ chromosome
- total radiation dose
- the dose rate
- LET of the radiation

## **Radiosensitivitiy of cells**

- Undifferentiated cells that are undergoing active mitosis are most sensitive to radiation (law of Bergoniè and Tribondeau)
- Differenttiated and mature cells are least effected (loss of cellular function)

| Types of cells <sup>a</sup> |                                                                    | Radiosensitivity         |  |
|-----------------------------|--------------------------------------------------------------------|--------------------------|--|
| VIM                         | Mature lymphocytes<br>Erythroblasts<br>Spermatogonia               | Highly sensitive         |  |
| DIM                         | Myelocytes<br>Intestinal crypt cells<br>Basal cells of epidermis   | Relatively sensitive     |  |
| MCT                         | Osteoblasts<br>Spermatocytes<br>Chondroblasts<br>Endothelial cells | Intermediate sensitivity |  |
| RPM                         | Spermatozoa<br>Granulocytes<br>Erythrocytes<br>Osteocytes          | Relatively resistant     |  |
| FPM                         | Nerve cells<br>Muscle cells<br>Fibrocytes                          | Highly resistant         |  |

<sup>a</sup> *VIM* vegetative intermitotic, *DIM* Differentiating intermitotic, *MCT* multipotential connective tissue, *RPM* reverting postmitotic, *FPM* fixed postmitotic.

## **Cell survival curve**



## **Cell survival and dose rate**



Dose-rate effect is very important in radiation therapy

When a total dose is given to a patient in fractions over a period of time, it should be kept in mind that the interval between fractional doses should be short enough to keep repair of damage to abnormal cells to a minimum 19

## Chemicals influencing radiosensitivity

#### Radiosensitizers

<u>Oxygen</u>: hypoxic cells are resistant to radiation, and oxygenated cells are highly radiosensitive (oxygen effect)

#### **Pyrimidines**

Halogenated pyrimidines, 5-chlorodeoxyuridine (ClUDR), 5bromodeoxyuridine (BUDR), and 5-iododeoxyuridine (IUDR)

<u>Other substances</u>: actinomycin D, puromycin, methotrexate, and 5-fluorouracil, metronidazole, mesonidazole, etanizadole

#### Radioprotectors

- Substances containing <u>sulfhydryl groups (-SH)</u>, such as cysteine and cysteamine
- WR-638 and WR-2721 (amifostine) the -SH group is protected by a phosphate group

# Stage of cell cycle and radiosensitivity

The stage of the cell cycle determines the extent of radiation damage.

- Radiation damage mostly occurs during the period of mitosis, the M phase
- Least damage occurs during the DNA synthesis, the S phase.

Exposure of cells to

- 100–1000 rad (100–1000 cGy) causes delay in the G2 phase to M phase transition.
- 1000 rad (1000 cGy) inhibits the progression of the S phase cells by 30 %, whereas the S phase to G2 phase transition is not affected by such an exposure



*S* - DNA synthesis phase.

M - mitosis

G1 - is the period between the

- telophase and S,
- G2 is the period
- between S and the prophase.

## **Classification of cell damage**

Based on the degree of lethality induced by radiation:

- 1. Lethal damage, which causes irreversible death
- 2. Sublethal damage (SLD), which normally repairs in hours, and thus avoids cellular death, unless followed by another sublethal damage

*Important in radiation therapy* (radiation therapy is given in intervals)

- 4 mechanisms of SLD repair : repair, redistribution, regeneration, and reoxygenation
- **3. Potentially lethal dose (PLD)**, which can potentially kill the cell but can be modified to repair under specific physicochemical conditions.

## **Radiation effects on biological systems**

#### **Stochastic effects**

- ✓ Occur randomly
- 1 probability with increasing dose *without a threshold*
- e.g. radiation-induced hereditary effects, cancer

## **Deterministic (non-stochastic) effects**

Induced by high radiation doses
 severity of the damages increases with the dose
 threshold dose (below which no damage is evident)
 e.g. cataracts, skin erythema, sterility

# Stochastic (delayed) effects of ionizing radiation





## **Stochastic effects of ionizing radiation**



### Variation of Cancer Incidence with time following the A-Bombs



# **Deterministic (early) effects**



# **Deterministic Effects**



Threshold dose is the absorbed dose that is needed to create a clinically observed injury in the most radiosensitive individual

#### Threshold doses for deterministic effects

• Cataracts of the lens of the eye 0.5 Gy

[ICRP statement on tissue reactions
 (http://www.icrp.org/docs/icrp%20statement%20on%20ti
 ssue%20reactions.pdf)]

- Permanent sterility
  - males 3.5-6 Gy
  - females 2.5-6 Gy
- Temporary sterility
  - males 0.15 Gy
  - females 0.6 Gy



## Note on threshold values

- Depend on dose delivery mode:
  - single high dose most effective
  - fractionation increases threshold dose in most cases significantly
  - decreasing the dose rate increases threshold in most cases
- Threshold may differ in different persons

# **Systemic effects**

- Effects may be morphological and/or functional Factors:
  - Which Organ
  - How much Dose

Effects

- Immediate (usually reversible): < 6 months e.g.: inflammation, bleeding.</li>
- Delayed (usually irreversible): > 6 months e.g.: atrophy, sclerosis, fibrosis.

Categorization of dose

- < 1 Gy: LOW DOSE
- 1-10 Gy: MODERATE DOSE
- > 10 Gy: HIGH DOSE
- Regeneration means replacement by the original tissue while Repair means replacement by connective tissue.

# **Skin effects**

 Following the RS laws (Bergonie and Tribondeau), the most RS cells are those from the basal stratum of the epidermis.

• Effects are:

- Erythema: 1 to 24 hours after irradiation of about 3-5 Gy
- Alopecia: 5 Gy is reversible; 20 Gy is irreversible.
- Pigmentation: Reversible, appears 8 days after irradiation.
- Dry or moist desquamation: traduces epidermal hypoplasia (dose  $\approx$  20 Gy).
- Delayed effects: teleangiectasia, fibrosis.

Histologic view of the skin



From "Atlas de Histologia...". J. Boya

Basal stratum cells, highly mitotic, some of them with melanin, responsible of pigmentation.

# **Skin reactions**

| Injury                   | Threshold<br>Dose to | Weeksto |  |
|--------------------------|----------------------|---------|--|
|                          | Skin (Sv)            | Onset   |  |
| Early transient erythema | 2                    | <<1     |  |
| Temporary epilation      | 3                    | 3       |  |
| Main erythema            | 6                    | 1.5     |  |
| Permanent epilation      | 7                    | 3       |  |
| Dry desquamation         | 10                   | 4       |  |
| Invasive fibrosis        | 10                   |         |  |
| Dermal atrophy           | 11                   | >14     |  |
| Telangiectasis           | 12                   | >52     |  |
| Moist desquamation       | 15                   | 4       |  |
| Late erythema            | 15                   | 6-10    |  |
| Dermal necrosis          | 18                   | >10     |  |
| Secondary ulceration     | 20                   | >6      |  |



Skin damage from prolonged fluoroscopic exposure

# **Skin Effects**

By handling unshielded syringes and vials containing radioactive material the threshold dose of skin erythema will be reached in a short time.

#### e.g.

1. The dose rate at the surface of a vial containing 30 GBq Tc-99m is of the order of 2 Gy/h meaning that the threshold dose will be reached after 2 h of exposure. This corresponds to 36 s per working day in a year.

2. After an extravascular injection of 500 MBq of a Tc-99m radiopharmaceutical, the locally absorbed dose at the injection site might be as high as 5-20 Gy!

# **Skin injuries**



# **Skin injuries**



# **Effects in eye**

#### Histologic view of eye:



Eye lens is highly RS, moreover, it is surrounded by highly RS cuboid cells.

- Eye lens is highly RS.
- Coagulation of proteins occur with doses greater than 2 Gy.
- There are 2 basic effects:

| Effect                             | Sv single brief<br>exposure | Sv/year for many years |
|------------------------------------|-----------------------------|------------------------|
| Detectable opacities               | 0.5-2.0                     | > 0.1                  |
| Visual<br>impairment<br>(cataract) | 5.0                         | > 0.15                 |

# **Eye injuries**



# Whole body response: adult



LD 50/30 – Radiation dose which would cause death to 50% of the population in 30 days. 2-3 Gy for humans for **whole body irradiation**.

#### **Acute Effects of Total Body Irradiation**

#### Hemopoietic

#### Gastrointestinal

#### Cerebrovascular

 Appear at a total body dose of 250– 500 rad (2.5–5 Gy)
 RBC↓WBC↓PLT: Immunosupression, Infection, Hemorrhage

- death in 10–21 days
- Total body dose of 500–1000 rad (5–10 Gy) nausea, vomiting, and diarrhea
- intestinal crypt cells/ mucosal lining (villi) are destroyed
- death in 3–10 days after radiation exposure
- Minutes after radiation exposure at a total body dose of more than 10,000 rad (100 Gy)
- malfunction of the neuron motor pump giving rise to motor incoordination, intermittent stupor, coma, and ultimately
- death in two to three days

# **Long-Term Effects of Radiation**

- SOMATIC: they affect the health of the irradiated person. They are mainly different kinds of cancer (leukemia is the most common, with a delay period of 2-5 years, but also colon, lung, stomach cancer...)
- **GENETIC**: they affect the health of the offspring of the irradiated person. They are mutations that cause malformation of any kind (such as mongolism)



# Somatic Effects

- Establishment of dose-response relationships for carcinogenesis
- ✓ risks at low doses are primarily estimated by extrapolation of the data from high-dose experiments
- Scientific Committee of the Effects of Atomic Radiations (UNSCEAR)
- Committee on the Biological Effects of Ionizing Radiations (BEIR)
- International Commission on Radiological Protection (ICRP)

# Somatic Effects

- Carcinogenesis
  - › Leukemia
  - > Breast cancer
  - > Other cancers
- Radiation damage to skin
- Radiation damage to reproductive organs
- Nonspecific life-shortening
- Cataractogenesis
- Radiation damage to embryo and fetus



# **Carcinogenic Effects**

An assessment of the atomic bomb survivors showed:

- the leukaemia risk peaked at 10 years after exposure
- thyroid cancer was the first solid cancer reported
- the incidence of breast cancer was higher in young women than older women
- other cancer, with a latent period of up to 30 years, included lung, stomach, colon, bladder and oesophagus

## **Radiation Damage to Embryo and Fetus**

- Fetus/embryo is more sensitive to ionizing radiation than the adult human
- Increased incidence of spontaneous abortion a few days after conception
- Increased incidence
  - Mental retardation
  - Microcephaly (small head size) especially 8-15 weeks after conception
  - Malformations: skeletal, stunted growth, genital
- Higher risk of cancer (esp. leukemia)
  - Both in childhood and later life

#### TYPES OF EFFECTS FOLLOWING IRRADIATION IN UTERO

| Time after conception | Effect                                                    | Normal incidence<br>in live-born |
|-----------------------|-----------------------------------------------------------|----------------------------------|
| First three weeks     | No deterministic or stochastic effects in live-born child | -                                |
| 3rd through 8th       | Potential for malformation of                             | 0.06                             |
| weeks                 | organs <sup>a</sup>                                       | (1 in 17)                        |
| 8th through 25th      | Potential for severe mental                               | 5 x 10 <sup>-3</sup>             |
| weeks                 | retardation <sup>b</sup>                                  | (1 in 200)                       |
| 4th week throughout   | Cancer in childhood or in adult                           | 1 x 10 <sup>-3</sup>             |
| pregnancy             | life <sup>c</sup>                                         | (1 in 1000)                      |

- <sup>a</sup> Deterministic effect. Threshold ~ 0.1 Gy
- <sup>b</sup> 30 IQ units shift: 8-15th week; <30 IQ units shift: 16 25th week
- c Risk in utero ~ risk < 10 years of age</p>

# Approximate fetal whole body dose (mGy) from common nuclear medicine procedures done in early and late pregnancy

| Procedure            | Activity (MBq) | Early | 9 months |
|----------------------|----------------|-------|----------|
| Tc-99m               |                |       |          |
| Bone scan            | 750            | 4.7   | 1.8      |
| Lung V/Q scan        | 240            | 0.9   | 0.9      |
| Liver colloid        | 300            | 0.6   | 1.1      |
| Thyroid scan         | 400            | 4.4   | 3.7      |
| Renal DTPA           | 750            | 9.0   | 3.5      |
| Red Cell             | 930            | 6.0   | 2.5      |
| I-123 Thyroid uptake | 30             | 0.6   | 0.3      |
| I-131 Thyroid uptake | 0.55           | 0.04  | 0.15     |

## **Genetic Effects**

- Spontaneous mutations (chance of spontaneous mutation is 1 in 100,000): radiation does not produce any new mutations and simply increases the frequency of spontaneous mutations
- Doubling dose: the amount of radiation dose that doubles the spontaneous mutations in one generation in a species (in humans, it is considered to be of the order of 100 rad (100 cGy)
- Genetically significant dose: the dose that, if received by everyone of the entire population, would cause the same genetic damage as the gonadal dose (now being received by a limited number of individuals of the population through medical procedures, natural radiations, TV viewing, flying at high altitudes, etc)

# Genetic Effects



#### Hormesis

- Bimodal effect of radiation
- below a certain threshold level radiation is protective, and harmful effects are seen only when this threshold is exceeded.
- Rationale radiation at low levels induces protective cellular mechanisms which prevent DNA damage occurring spontaneously or due to other stresses
- stimulatory response at low doses and an inhibitory response at higher doses.

# Acknowledgement and further reading

- Saha, GB. Physics and Radiobiology of Nuclear Medicine.
   4<sup>th</sup> Ed. Springer New York Dordrecht Heidelberg London, 2013.
- Radiation biology: A handbook for teachers and students. Training course series No. 42 IAEA Vienna, 2010.
- Elgazzar AH (Ed) Patophysiological bases of Nuclear Medicine 3<sup>rd</sup> Ed. Springer Cham Heidelberg New York Dordrecht London, 2015.
- IAEA Training Material on Radiation Protection in Radiotherapy. Part 3: Biological Effects, IAEA.
- IAEA Training Material on Radiation Protection in Nuclear Medicine. Part 1: Biological Effects. IAEA, V. 2004

