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SOME NEW FIXED POINT THEOREMS IN 2-BANACH

SPACES

SAMOIL MALCHESKI, MARTIN LUKAREVSKI, AND KATERINA ANEVSKA

Abstract. S. Ghler ([9]), 1965, defined the 2-normed space, A. White
([3]), 1968, defined the 2-Banach space. Several statements about them
are proven in [7]. P. K. Hatikrishnan and K. T. Ravindran in [5] defined
the contractive mapping in 2-normed space. M. Kir and H. Kiziltunc
in [3] by applying the above theorem, proved the generalizations of R.
Kannan ([6]) and S. K. Chatterjea ([10]) theorem. Further general-
izations of these results are elaborated in [1] and [11]. In this paper
we will generalize the above results by using the class Θ of monotony
increasing functions f : [0, +∞) → R such that f−1(0) = {0} holds
true.

1. INTRODUCTION

Theory of fixed point is rapidly developing last decades. S. Ghler ([9])
and A. White ([2]), 1965 and 1969, defined the 2-normed and 2-Banach
spaces, and certain classical results about this theory, are generalized in
2-normed and 2-Banach spaces. P. K. Hatikrishnan and K. T. Ravindran
defined contractive mapping in 2-normed space.

Definition 1. ([5]). Let (L, ||·, ·||) be a real 2-normed space. Mapping
T : L → L is said to be contraction if there exists λ ∈ [0, 1) such that
||Tx− Ty, z|| ≤ λ||x− y, z||, for all x, y, z ∈ L, holds true.

P. K. Hatikrishnan and K. T. Ravindran in [5] proved that for each
contractive mapping, a unique fixed point in closed and bounded subset of
2-Banach space L, exists.

M. Kir and H. Kiziltunc in [3] proved that if S : L → L satisfies one of
the following conditions

||Sx− Sy, z|| ≤ λ(||x− Sx, z||+ ||y − Sy, z||) (1)

for all x, y, z ∈ L

or

||Sx− Sy, z|| ≤ λ(||x− Sy, z||+ ||y − Sx, z||) (2)
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for all x, y, z ∈ L for λ ∈ (0, 1
2), then it exists a unique fixed point for S in

L. In [11] further generalizations for these results are proven, and in [1],
by using a sequentially convergent mapping, are proved the generalized M.
Kir and H. Kiziltunc theorems. In our further considerations, by using the
class Θ of monotony increasing continuous functions f : [0, +∞) → R such
that f−1(0) = {0}, we will elaborate the generalizations for some of the
stated results. It is necessary to be said that if f ∈ Θ, then f−1(0) = {0}
implies that f(t) > 0, for each t > 0, holds true, and that the proves will
be done by using the sequentially convergent, defined as the following:

Definition 2. Let (L, ||·, ·||) be a 2-normed space. A mapping T : L → L

is said sequentially convergent if we have, for every sequence {yn}, if {Tyn}
is convergence then {yn} also is convergence.

2. MAINS RESULTS

Theorem 1. Let (L, ||·, ·||) be a 2-Banach space, S : L → L, f ∈ Θ and
T : L → L is continuous, injection and sequentially convergent mapping.
If there exists α ∈ (0, 1

2
) such that

f(||TSx− TSy, z||) ≤ α[f(||Tx− TSx, z||) + f(||Ty − TSy, z||)] (3)

for all x, y, z ∈ L, is satisfied, then for S it exists a unique fixed point and
for each x0 ∈ X the sequence {Snx0} converges to the above fixed point.

Proof. Let x0 be any point on L and the sequence {xn} be defined as
the following xn+1 = Sxn, n = 0, 1, 2, 3, .... The inequality (3) implies

f(||Txn+1 − Txn, z||) = f(||TSxn − TSxn−1, z||)

≤ α[f(||Txn − TSxn, z||) + f(||Txn−1 − TSxn−1, z||)]

≤ α[f(||Txn − Txn+1, z||) + f(||Txn−1 − Txn, z||)]

So,

f(||Txn+1 − Txn, z||) ≤ λf(||Txn − Txn−1, z||) (4)

for each n = 0, 1, 2, 3, ... and each z ∈ L, for λ = α
1−α

< 1. The inequality

(4) implies

f(||Txn+1 − Txn, z|| ) ≤ λnf(||Tx1 − Tx0, z||) (5)

for each n = 0, 1, 2, 3, ...and each z ∈ L. Further, (5) implies that for all
m, n ∈ N, n > m and each z ∈ L

f(||Txn − Txm, z||) = f(||TSxn−1 − TSxm−1, z||)

≤ α[f(||TSxn−1 − Txn−1, z||) + f(||TSxm−1 − Txm−1, z||)]

= α[f(||Txn − Txn−1, z||) + f(||Txm − Txm−1, z||)]

≤ α[λn−1f(||Tx1 − Tx0, z||) + λm−1f(||Tx1 − Tx0, z||)].
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holds true. The latter implies that

lim
m,n→∞

f(||Txn − Txm, z||) = 0

, for each z ∈ L. And since f ∈ Θ we get that

lim
m,n→∞

||Txn − Txm, z|| = 0

, for each z ∈ L. Thus, the sequence {Txn} is Caushy, and since L is 2-
Banach space, the sequence is convergent. Further, the mapping T : L → L

is sequentially convergent, and therefore the sequence {xn} is convergent,
i.e. it exists u ∈ L such that lim

n→∞

xn = u, holds true. The continuous of T

implies that lim
n→∞

Txn = Tu. So, for each z ∈ L

f(||TSu− Txn+1, z||) = f(||TSu− TSxn, z||)

≤ α[f(||TSu− Tu, z||) + f(||TSxn − Txn, z||)]

= α[f(||TSu− Tu, z||) + f(||Txn+1 − Txn, z||)].

holds true. For n → ∞, the continuous of f and T and the properties of
2-norm imply that

f(||TSu− Tu, z||) ≤ α[f ||TSu− Tu, z||) + f(0)],
for each z ∈ L, holds true. But, α ∈ (0, 1) and f−1(0) = {0}, therefore,

the latter inequality implies that ||TSu − Tu, z|| = 0, for each z ∈ L, that
is TSu = Tu. Finally, T is injection, therefore Su = u, that is it exists a
fixed point for S. Let u, v ∈ X be two fixed points for S, i.e. Su = u and
Sv = v. Then (3) implies that

f(||Tu− Tv, z||) = f(||TSu− TSv, z||)

≤ α[f(||Tu− TSu, z||) + f(||Tv − TSv, z||)]

= 0,

for each z ∈ L, that is ||Tu − Tv, z|| = 0, for each z ∈ L, i.e. Tu = Tv.
But, since T is injection, we get that u = v, that is T has a unique fixed
point. Finally, the arbitrarily of x0 ∈ L and the above stated, imply that
for each x0 ∈ L the sequence {Snx0} converges to the unique fixed point
for S.

Consequence 1. Let (L, ||·, ·||) be a 2-Banach space, S : L → L,
f ∈ Θ and T : L → L is continuous, injection and sequentially convergent
mapping. If there exists λ ∈ (0, 1) such that

f(||TSx− TSy, z||) ≤ λ
√

f(||Tx− TSx, z||)f(||Ty − TSy, z||)

for all x, y, z ∈ L, holds true, then S has a unique fixed point.
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Proof. The proof is directly implied by the arithmetic-geometric inequal-
ity mean and the Theorem 1, for α = λ

2 .
Consequence 2. Let (L, ||·, ·||) be a 2-Banach space, S : L → L, f ∈ Θ.

If there exists α ∈ (0, 1
2
) such that

f(||Sx− Sy, z||) ≤ α[f(||x− Sx, z||) + f(||y − Sy, z||)] (6)

, (6) for all x, y, z ∈ L, holds true, then S has a unique fixed point and for
each x0 ∈ X the sequence {Snx0} converges to that fixed point.

Proof. The mapping Tx = x, for each x ∈ L is continuous, injection and
sequentially convergent. The statement is directly implied by the Theorem
1 for Tx = x.

Consequence 3. ([1]). Let (L, ||·, ·||) be a 2-Banach space, S : L →
L and T : L → L is continuous, injection and sequentially convergent
mapping. If there exists α ∈ (0, 1

2 ) such that

||TSx− TSy, z|| ≤ α(||Tx− TSx, z||+ ||Ty − TSy, z||)

for all x, y, z ∈ L, holds true, then S has a unique fixed point and for each
x0 ∈ X the sequence {Snx0} converges to that fixed point.

Proof. The function f(t) = t, t ≥ 0 is monotony increasing and
f−1(0) = {0}. The statement is directly implied by Theorem 1 for f(t) = t.
�

Remark 1. For f(t) = t, t ≥ 0 (1) is implied by (6), that is Theorem 1,
[3] is implied by Consequence 2.

Theorem 2. Let (L, ||·, ·||) be a 2-Banach space, S : L → L, f ∈ Θ and
T : L → L is continuous, injection and sequentially convergent mapping.
If there exists α ∈ (0, 1

2) such that

f(||TSx− TSy, z||2) ≤ α[f(||Tx− TSx, z||2) + f(||Ty − TSy, z||2)] (7)

for all x, y, z ∈ L, holds true, then S has a unique fixed point and for each
x0 ∈ X the sequence {Snx0} converges to that fixed point.

Proof. Let x0 be any point in L and the sequence {xn} be defined as the
following xn+1 = Sxn, n = 0, 1, 2, 3, .... The inequality (7), analogously as
the Proof of Theorem 1, implies that

f(||Txn+1 − Txn, z||2) ≤ λf(||Txn − Txn−1, z||
2) (8)

for each n = 0, 1, 2, 3, ... and z ∈ L, for λ = α
1−α

< 1, holds true. Further,

by applying (8) analogously as the proof of Theorem 1, the sequence {xn}
is convergent, i.e. it exists u ∈ L such that lim

n→∞

xn = u. Since T is

continuous, we get that lim
n→∞

Txn = Tu. The inequality (7), analogously

as the proof of Theorem 1, we get that
f(||TSu−Txn+1, z||

2) ≤ α[f(||TSu−Tu, z||2)+f(||Txn+1−Txn, z||2)].,
holds true. For n → ∞, the latter is transformed as the following
f(||TSu− Tu, z||2) ≤ α[f ||TSu− Tu, z||2) + f(0)],
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for each z ∈ L. Analogously, as the ?f Theorem 1 we get that Su = u,
that is S has a fixed point. Let u, v ∈ X be fixed points for i.e. Su = u

and Sv = v. Then, (7) implies

f(||Tu− Tv, z||2) = f(||TSu− TSv, z||2)

≤ α[f(||Tu− TSu, z||2) + f(||Tv − TSv, z||2)]

= 0,

for each z ∈ L. Therefore, we get that u = v, i.e. S has a unique fixed
point. Finally, the arbitrarily of x0 ∈ L and the above stated, imply that
for each x0 ∈ L the sequence {Snx0} converges to the unique fixed point
for S. � Consequence 4. Let (L, ||·, ·||) be a 2-Banach space, S : L → L

and f ∈ Θ. If there exists α ∈ (0, 1
2
) such that

f(||Sx− Sy, z||2) ≤ α[f(||x− Sx, z||2) + f(||y − Sy, z||2)] (9)

for all x, y, z ∈ L, then S has a unique fixed point and for each x0 ∈ X the
sequence {Snx0} converges to that fixed point.

Proof. For Tx = x in Theorem 2, we get the given statement.�
Consequence 5. ([1]). Let (L, ||·, ·||) be a 2-Banach space, S : L → L

and a mapping T : L → L is such that it is continuous, injection and
sequentially convergent mapping. If there exists α ∈ (0, 1

2
) such tahat

||TSx−TSy, z||2 ≤ α(||Tx−TSx, z||2+||Ty−TSy, z||2), for all x, y, z ∈ L,
holds true, then there is a unique fixed point for S and for each x0 ∈ X

the sequence {Snx0} converges to the fixed point. Proof. For f(t) = t in
Theorem 2, we get the given statement. �

Remark 2. For f(t) = t, t ≥ 0 the condition (9) in Consequence 4 is
transformed as the following

||Sx− Sy, z||2 ≤ α[||x − Sx, z||2 + ||y − Sy, z||2],
that is Consequence 7, [1] is implied by Consequence 4.
Theorem 3. Let (L, ||·, ·||) be a 2-Banach space, S : L → L and a

mapping T : L → L be such that it is continuous, injection and sequentially
convergent mapping and f ∈ Θ be such that f(a + b) ≤ f(a) + f(b), for all
a, b ≥ 0. If there exists α ∈ (0, 1

2) such that

f(||TSx− TSy, z||) ≤ α[f(||Tx− TSy, z||)+ f(||Ty − TSx, z||)] (10)

holds true, then there is a unique fixed point for S and for each x0 ∈ X the
sequence {Snx0} converges to the fixed point.

Proof. Let x0 be any point in L and the sequence {xn} be defined as
the following xn+1 = Sxn, n = 0, 1, 2, 3, .... The inequality (10) and the
properties of f imply

f(||Txn+1 − Txn, z||) = f(||TSxn − TSxn−1, z||)

≤ α[f(||Txn − TSxn−1, z||) + f(||Txn−1 − TSxn, z||)]



SOME NEW FIXED POINT THEOREMS IN 2-BANACH SPACES 51

= αf(||Txn−1 − Txn+1, z||)

≤ αf(||Txn−1 − Txn, z||+ ||Txn − Txn+1, z||)

≤ α[f(||Txn−1 − Txn, z||) + f(||Txn − Txn+1, z||)]

So, f(||Txn+1−Txn, z||) ≤ λf(||Txn−Txn−1, z||), for each n = 0, 1, 2, 3, ...
and each z ∈ L, for λ = α

1−α
< 1. Analogously, as the proof of Theorem 1,

we conclude that the sequence {xn} is convergent, i.e. it exists u ∈ L such
that lim

n→∞

xn = u and lim
n→∞

Txn = Tu. Further, for each z ∈ L

f(||TSu− Txn+1, z||) = f(||TSu− TSxn, z||)

≤ α[f(||Tu− TSxn, z||) + f(||Txn − TSu, z||)]

= α[f(||Tu− Txn+1, z||) + f(||Txn − TSu, z||)].

holds true. For n → ∞, the continuous of f and T and the properties of
2-norm imply that f(||TSu − Tu, z||) ≤ α[f ||TSu − Tu, z||) + f(0)], for
each z ∈ L, holds true. Now, analogously as the proof of Theorem 1, we
get that Su = u, that is it exists a unique fixed point for S. Let u, v ∈ X

be two fixed point for S, i.e. Su = u and Sv = v. Then (3) implies that
the following

f(||Tu− Tv, z||) = f(||TSu− TSv, z||)

≤ α[f(||Tu− TSv, z||)+ f(||Tv − TSu, z||)]

= 2αf(||Tu − Tv, z||),

for each z ∈ L, holds true. And since 2α < 1 we get that ||Tu−Tv, z|| = 0,
for each? z ∈ L, holds true. The latter implies that u = v, that is there
exists a unique fix point for S. �

Consequence 6. Let (L, ||·, ·||) be a 2-Banach space, S : L → L, the
mapping T : L → L be such that it is continuous, injection and sequentially
convergent mapping and function f ∈ Θ be such that f(a+b) ≤ f(a)+f(b),
for all a, b ≥ 0. If there exists λ ∈ (0, 1) so that

f(||TSx− TSy, z||) ≤ λ
√

f(||Tx− TSy, z||)f(||Ty− TSx, z||),
for all x, y, z ∈ L, holds true, then there is a unique fixed point for S.
Proof. The proof is directly implied by the arithmetic-geometric mean

inequality and Theorem 3, for α = λ
2
. �

Consequence 7. Let (L, ||·, ·||) be a 2-Banach space, S : L → L and
f ∈ Θ be such that f(a + b) ≤ f(a) + f(b), for all a, b ≥ 0. If there exists
α ∈ (0, 1

2
) so that

f(||Sx− Sy, z||) ≤ α[f(||x− Sy, z||) + f(||y − Sx, z||)] (6)
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, for all x, y, z ∈ L, holds true , then there is a unique fixed point for S and
for each x0 ∈ X the sequence {Snx0}converges to that fixed point.

Proof. For Tx = x in Theorem 3, we get the given statement. �

bf Consequence 8. ([1]). Let (L, ||·, ·||) be a 2-Banach space, S : L → L

and the mapping T : L → L be such that it is continuous, injection and
sequentially convergent. If there exists α ∈ (0, 1

2) so that ||TSx−TSy, z|| ≤
α(||Tx−TSy, z||+||Ty−TSx, z||), for all x, y, z ∈ L, holds true, then there
is a unique fixed point for S and for each x0 ∈ X the sequence {Snx0}
converges to that fixed point.

Proof. For f(t) = t in Theorem 2, we get the given statement.�
Remark 3. For f(t) = t, t ≥ 0 (1) is implied by (6), that is Theorem 1,

[3] is implied by Consequence 2.
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