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Abstract

In this paper we present a construction for S-boxes using quasi-cyclic codes. We
obtain S-boxes with good nonlinearity.
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1 Introduction

S-boxes are key building blocks in the design of the block ciphers. They have
to be chosen carefully to make the cipher resistant against all kinds of attacks.
In particular, there are well studied criteria that a good S-box has to fulfill to
make the cipher resistant against differential and linear cryptanalyses.
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To construct good S-boxes, we use quasi-cyclic codes. A code is said to be
quasi-cyclic if every cyclic shift of a codeword by s positions results in another
codeword (s ≥ 1). There are many construction methods for good QC codes.
Generally, a QC code of length lm and index l may be represented as the row
space of a block matrix, each row of which has the form (G1, . . . , Gl), where Gi

is an m×m circulant. These rows, or the equivalent polynomial vectors, are
conventionally called ”generators”. This form helps to connect quasi-cyclic
codes with S-boxes. More precisely, we consider different (but equivalent)
binary simplex codes of length 2k − 1 and dimension k as quasi-cyclic codes.

2 Vectorial Boolean Functions (S-Boxes)

A vectorial Boolean function S : Fn
2 → F

m
2 (also called (n,m) S-box or shortly

S-box) can be represented by the vector (f1, f2, . . . , fm), where fi are Boolean
functions in n variables, i = 1, 2, . . . , m. The functions fi are called the
coordinate functions of the S-box. Then the m× 2n matrix

GS =

⎛
⎜⎜⎜⎝

TT (f1)
...

TT (fm)

⎞
⎟⎟⎟⎠ ,

represents the considered S-box, where TT (fi) is the Truth Table of the
Boolean function fi, i = 1, . . . , m [4]. An S-box is invertible, if n = m and S is
an invertible function. The following lemma is very important in our research.

Lemma 2.1 An S-box is invertible if and only if n = m and the matrix GS

generates a [2n, n] code equivalent to the extended simplex code Sn (extended
with a zero coordinate).

Recall that Sn = 〈TT (x1), . . . , TT (xn)〉. In order to study the crypto-
graphic properties of an S-box related to the linearity, we need to consider
all non-zero linear combinations of the coordinates of the S-box, denoted by
Sb = b · S = b1f1 ⊕ · · · ⊕ bmfm, where b = (b1, . . . , bm) ∈ F

m
2 . These are the

component functions of the S-box.

To define linearity of an S-box, we need the Walsh coefficients of a Boolean
function f . Let a = (a1, . . . , an) ∈ F

n
2 and fa(x) = a1x1 ⊕ a2x2 ⊕ · · · ⊕ anxn.

The Walsh coefficient fW (a) is defined by

fW (a) =
∑
x∈Fn

2

(−1)f(x)⊕fa(x) = 2n − 2dH(f, fa).

I. Bouyukliev et al. / Electronic Notes in Discrete Mathematics 57 (2017) 67–7268



Linearity of a Boolean function is the maximum absolute value of an Walsh
coefficient of f : Lin(f) = max{|fW (a)| | a ∈ F

n
2}. The Parseval’s Equality∑

a∈Fn

2

(fW (a))2 = 22n gives that Lin(f) ≥ 2n/2 [3]. Functions attaining this
lower bound are called bent functions.

Another important parameter which is closely connected with the linearity
is the nonlinearity.

Definition 2.2 Nonlinearity nl(f) of the Boolean function f is the minimum
Hamming distance from f to the nearest affine function:

nl(f) = min{dH(f, g) | g − affine function}.

The relation between the linearity and nonlinearity of the Boolean function
f is given by the equality Lin(f) = 2n − 2nl(f) [3]. Obviously, the minimum
linearity corresponds to maximum nonlinearity.

The linearity and nonlinearity of the S-box S are defined as

Lin(S) = max
b∈Fm

2
\{0}

Lin(b · S), nl(S) = min
b∈Fm

2
\{0}

nl(b · S).

The nonlinearity and the Walsh spectrum of a Boolean function can be
calculated using linear codes. Actually, the set of the Truth Tables of all affine
Boolean functions coincides with the set of codewords of the Reed-Muller code
of first order RM(1, n), which is a linear [2n, n+1, 2n−1] code with a generator
matrix

G(RM(1, n)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

TT (1)

TT (x1)
...

TT (xn)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and the codewords are all binary linear combinations of the rows ofG(RM(1, n)).
The code RM(1, n) is obtained from the extended simplex code by adding the
all ones vector to its generator matrix. This means that RM(1, n) consist of
the codewords of Sn and their complements, or RM(1, n) = Sn ∪ (1 + Sn).

The nonlinearity of the Boolean function f is nl(f) = dH(TT (f), RM(1, n)).
This means that we can use algorithms for calculating the distance from a vec-
tor to a code (or for minimum distance of a linear code) to find the nonlinearity
and linearity of a Boolean function without having the whole Walsh spectrum.
We compute the nonlinearity of the Boolean function f (which is not affine)
using that nl(f) is equal to the minimum distance of the linear code with
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a generator matrix Gf =

⎛
⎝G(RM(1, n))

TT (f)

⎞
⎠ . This helps us to calculate the

nonlinearity of an S-box as the minimum distance of the linear code generated

by the matrix GS =

⎛
⎝G(RM(1, n))

GS

⎞
⎠. We have in mind that if there is a

coordinate function Sb which is affine then nl(S) = 0.

The differential uniformity of an (n×m) S-box S with n ≥ m, denoted by
δ, is defined as the largest value in its difference distribution table (DDT) not
counting the first entry in the first row. Differential uniformity is define by:

δ = max
α∈Fn

2
\{0},β∈Fm

2

|{x ∈ F
n
2 |S(x)⊕ S(x⊕ α) = β}|

S should have a differential uniformity as low as is possible. It is well
known that δ takes always only even values in the interval [2n−m, 2n]. The
smallest possible value of δ in the case of bijective S-boxes (n = m) is 2.
Summarized results for good S-boxes are presented in [5] and [6].

3 Quasi-Cyclic Codes

Let K = Fqn be a finite field, α be its primitive element, qn − 1 = m · r,
and β = αr. If G = 〈β〉 < K∗ then G is a cyclic group of order m and
G,αG, α2G, . . . , αr−1G are all different cosets of G in K∗.

For a ∈ Zr we define the circulantm×mmatrix Ca = (Tr(αmaβi+j))0≤i,j≤m−1.
When m and r are coprime, the matrices Ca correspond to the different cosets
of G in K∗. The next theorem has been proven in [2] as Lemmas 1 and 2.

Theorem 3.1 If m and r are coprime, the code C(0) whose nonzero code-
words are the rows of the matrix (C0 C1 · · · Cr−1)

T is an irreducible cyclic
code of length m and dimension ordm(q). Moreover, the code whose nonzero
codewords are the rows of the matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

C0 C1 . . . Cr−1

Cr−1 C0 . . . Cr−2

...

C1 C2 . . . C0

⎞
⎟⎟⎟⎟⎟⎟⎠

(1)

is equivalent to the simplex [2n − 1 = mr, n, 2n−1] code Sn.

I. Bouyukliev et al. / Electronic Notes in Discrete Mathematics 57 (2017) 67–7270



Let M be the matrix M extended with one zero column in the beginning,
and C(M) be the code whose codewords are the rows of M , where q = 2.
Then any generator matrix of C(M) can be considered as an invertible S-box.
Since all these S-boxes generate the same code C(M), they have the same
linearity and nonlinearity.

We consider two constructions for S-boxes. For the first construction we
take the first ml rows of the matrix M such that the obtained matrix Gm has
rank n. Then we investigate all S-boxes Gmπ where π ∈ Sr is a permutation
of the circulants C0, C1, . . . , Cr−1. Unfortunately, these S-boxes do not have
good nonlinearity. Therefore we decided to check another construction which
we describe in the next section.

4 A new Construction using Quasi-Cyclic Codes

Take again the matrix Gm. For this construction, we consider the code with
a generator matrix

MR =

⎛
⎝ 1 11 . . . 1

0 Gm

⎞
⎠(2)

This matrix generates a code which is equivalent to RM(1, n) but has the
structure of a quasi-cyclic code. We again use the matrices Gmπ but now we
compute the minimum distance d of the code generated by the matrix⎛

⎜⎜⎜⎝

1 11 . . . 1

0 Gm

0 Gmπ

⎞
⎟⎟⎟⎠ .

If σ is a permutation which maps the Reed-Muller code RM(1, n) to the
code with a generator matrix MR then d is the nonlinearity of the S-box
represented by the matrix σ−1(Gmπ).

Using such constructions, we can compute the distance distribution of the
codes easier. Moreover, we can check most S-boxes of this type for n ≤ 8 (all
S-boxes for r ≤ 15) and to take only those which have good (for cryptography)
parameters. The algorithms are implemented in CUDA C and realized in par-
allel using NVIDIA GPUs with compute capability 3.0 and higher [7]. We have
described several algorithms for computing the Walsh spectrum implemented
in CUDA for parallel execution on GPU in the manuscript [1].
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We investigate the S-boxes, constructed in the above method, for n = 4
and 8. In these cases 24 − 1 = 3 · 5, 28 − 1 = 15 · 17 = 5 · 51 (= 3 · 85).
For n = 4 we obtain three optimal S-boxes (Lin = 8, δ = 4). We have done
the exhaustive search for m = 17, r = 15, and have concluded that there
are 15 S-boxes with nonlinearity 112, and 601 S-boxes with nonlinearity 108.
The most important parameters (see [6]) of these 15 S-boxes are presented
in the following table. Note that the computed parameters coincide with the
parameters of the S-box used in the block cipher AES. The calculations for
the case m = 15, r = 17 are still in progress but we have already obtained one
S-box with good nonlinearity. Its parameters are listed in the table.

QC S-box for n = 8 Lin nl δ - uniformity deg(S) AC(S)max

m = 17, r = 15 32 112 4 7 32

m = 15, r = 17 32 112 16 5 48

References

[1] Bikov D., and I. Bouyukliev, Parallel Fast Walsh Transform Algorithm and its

Implementation with CUDA on GPUs, preprint.

[2] Bouyuklieva S., and I. Bouyukliev, On the binary quasi-cyclic codes,
Proceedings of the Intern. Workshop OCRT, Albena, Bulgaria, (2013), 59–64.

[3] Carlet C., ”Boolean Functions for Cryptography and Error Correcting Codes”,
in Boolean Models and Methods in Mathematics, Computer Science, and

Engineering, Crama, Hammer, (Eds.), Cambridge University Press, 2010.

[4] Carlet C., ”Vectorial Boolean Functions for Cryptography”, in Boolean Models

and Methods in Mathematics, Computer Science, and Engineering, Crama,
Hammer, (Eds.), Cambridge University Press, 2010.

[5] Hussain I., T. Shah, M. A. Gondal, and W. A. Khan, Construction of

Cryptographically Strong 8 × 8 S-boxes, World Applied Sciences Journal 13

(2011), 2389–2395.

[6] Ivanov G., N. Nikolov, and S. Nikova, Reversed genetic algorithms for generation

of bijective S-boxes with good cryptographic properties, Cryptography and
Communications 8 (2016), 247–276.

[7] CUDA C Programming Guide, Availaible on:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

I. Bouyukliev et al. / Electronic Notes in Discrete Mathematics 57 (2017) 67–7272


	Introduction
	Vectorial Boolean Functions (S-Boxes)
	Quasi-Cyclic Codes
	A new Construction using Quasi-Cyclic Codes
	References

