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Abstract: A friction clutch is mechanical assemblies built between the engine and transmission, that with friction transfers torque from 

the driving part to the driven (working) part (engine gearbox and other transmission). A diaphragm spring is one of the key component of a 

clutch assembly. A diaphragm spring is piece to high stress concentration in driving condition, this is often the cause of cracks and crashes 

spring. The stress of a diaphragm spring is analyzed by finite element method, measurement of stress and performed compare to stress 

obtained by expressions on Almen-Laszlo. 
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1. Introduction 

By pressing on diaphragm spring, it creates the   pressing force 

between driving disc, flywheel and  pressure plate. With sufficient 

pressing force, a torque is transmitted  from the flywheel to the 

transmission through the clutch. The centre portion of the 

diaphragm spring is slit into numerous fingers that act as release 

levers (unblock). When the clutch is disengagement the fingers  are 

moved forward by the release bearing,  it is occurs separation of the 

driving disc and pressure plate from flywheel and thus prevents 

rotation of the driving disc.(Fig.1) 

Diaphragm spring has not-linear characteristics between load 

(force) and deflection, compared to the helical compressed springs 

(hat a straight-line characteristic), this allows one compact 

assembly. The change to pressing force is in certain limits by 

wearing of the friction linings, at helical compressed springs force 

declines. Excluded force is smaller in comparison with helical 

compressed springs (Fig 2), [2], [5], [4] 

 

 

Fig.1. Clutch components :1.Flywheel 2.Clutch cover 3.Driving disc 4, 

Pressure plate 5. Diaphragm spring  6. Release bearing  
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Fig.2. Pressing force and excluded force 

 

 Diaphragm spring is exposed to dynamic loads, increasing the 

number of changes the dynamic strength of the spring decreases. 

Dynamic strength of the spring is determined by Weller. Specimens 

are examined of the exactly same shape, size and quality. They 

undergo different variables loadings at break of the material. Thus 

obtained Weller curve from which can be determined dynamic 

strength. 

The stress distribution across the radial width (tangential 

stresses) of the diaphragm spring is shown in Fig.3, [3]. 
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Fig.3. Stress-deflection 
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Fig. 3a. Stress-deflection/height of diaphragm spring. Curve 1 for the 

upper edge of the inner circumference. Curve 4 for the upper edge of 

the outer circumference. 
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Fig. 3b. Stress-deflection/height of diaphragm spring. Curve 2 for the 

lower edge of the inner circumference. Curve 3 for the lower edge of 
the outer circumference. 

2. Research  
The purpose of this research is to calculate the stresses at static 

and dynamic loads on diaphragm spring. This calculation would 

have performed by expressions on  ALMEN-LASZLO, calculation 

by finite element method and measurement of  force and stress with 

suitable measuring equipment.  

 

2.1 Calculation of force and stress with expressions 

of Almen and Laszlo’s theory 
Calculation of the stresses of the diaphragm spring were 

conducted with expressions of Almen and Laszlo's theory for 

calculation of diaphragm springs (Fig.4) [7], [6], [1]: 

 
Fig.4. Forces of the spring 

-Angle bending: 

180
1


        (rad)                (1) 

where :  - angle bending, degree,  1-angle bending, radian 

 

- Height of diaphragm spring: 

εtan
2

DD
h ia     (mm)                                 (2) 

where : Da- outside diameter,  Di-inner diameter     

 

-Relationship of diameters diaphragm spring: 

 = Dа/Di                   (3) 

  

- Coefficients , k1k2, k3 are defined as follows : 
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fmax=(3h+p)/3   (mm)            (4g) 

fmin=(3h-p)/3     (mm)             (4j) 

The variable in equation (4) are as follows: 

α  - Coefficient of elasticity of the spring material, N/mm2,                    

E-Module of elasticity, N/mm2, μ- Poison number of spring steel, 

Di1-internal diameter of the diaphragm spring with supporting 

points, Da1-outside diameter of the diaphragm spring with 

supporting points, f-deflection,  fmax and fmin - deflection for extreme 

values of F(f); 

 

- Calculation of stress for the corresponding positions (N/mm2): 






















3

i

2

i

2

a1

2

i,1
k

s2

ff

s

h
k

s

ff

Dk

s
ασ

        (5.1)

 

























3

i

22

i

2

a1

2

i,2
k

s2

ff

s

h
k

s

ff

Dk

s
ασ

                  (5.2)

 

  





















 323

1

2

1

2

,3
2

2
1

k
s

ff

s

h
kk

s

ff

Dk

s i

a

i



 

(5.3)
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where s - spring thickness.  

 

-Pressure force on the diaphragm spring with supporting points is : 
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The diagram of change on pressing force of spring and spring with 

supporting points depending of deflection has been shown in Fig.5.   

 



Fig.5. Diagram of the spring force (- - - -) and the clutch force (______) 

- Calculation of dynamic spring stress 

Deflection at disengagement of clutch-control point fпis is a sum 

of the height of diaphragm spring-h and the deflection from flat 

position on the spring to position disengagement of the clutch - δf       

fп=h+δf    (mm)               (7) 

where l
dDa

DiDa
δ f 




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 and l is path of clutch disengaging         

 

- stress in point 3 

-upper stress (OFF-deflection fp) is : 
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Lower stress (stress in point 3 at deflection f =h)  

 

- d=3,2                       (9) 

 

-Dynamic stress is : 

tsdt σ
7

4
σσ 

                           (10)

  

 

The calculation is performed on diaphragm spring for vehicles, 

from material (50CrV4-1.8159) and with next parameters:  

Di = 313[mm]-internal diameter of diaphragm spring,  

Da= 395[mm]-outer diameter of diaphragm spring,  

s = 5.21[mm]-spring thickness,     

E = 206000[N/mm2]-Module of elasticity of the steel 

μ = 0,3-Poison number of spring steel, 

Di1 =336[mm]-internal diameter of the diaphragm spring with 

supporting points  

Da1 = 392[mm]-outer  diameter of  the diaphragm spring with 

supporting points,    

𝓁=12[mm]-path of clutch  disenganging,   

d=120 [mm] released  bearing diameter,    

kz=0,95- efficiency coefficient. 

The static stress is largest in point 1 and dynamic stress is 

largest in point 2 or 3, where plastic deformations of material   

occurs. In which point will has greater stress, it will depend on the 

ratio Da/Di and ho/s1.4. 

The results are given in the Table 1, 2 and 3. 

 

Table 1: Pressing force and stress on the spring 

 Ffi 

 (mm) 

FFi 

(N) 
1,i 

(N/mm2) 
2,i 

(N/mm2) 
3,i 

(N/mm2) 
4,i 

(N/mm2) 

f=fmax   12,16 18590 -1736    497 1415 -354 

f=h   9,01 21070 -1534    135 1260 -  62 

f=fmin -6,02 23550 -1172  -67,4   968    93 

 

Table 2 : Pressure force on spring support 

ft min= fmin//k4 4.109 Ftmax=F(f min)k4 34477 

fth=h/k4 6.207 Fth = F(h)k4 30846 

ftmax=fmax//k4 8.306 Ftmin =F(fmax)k4 27215 

mm N 

 

Table 3: Dynamic stress 

point 2 3 

Upper stress 571,8 1428 

Lower stress 137,8   1260,6 

Dynamic stress 449,8    707,7 

Durability 

dynamic strength 

 

770 N/mm2 

 

 

  

2.2 Estimate on stresses of the diaphragm spring 

with Finite Element Method (FEM) 

 
         In the used software package are included: drawing from the 

spring, dimensions, material, heat treatment (hardness) in the past 

two days of work the software package. A calculation is made  with 

FEM, with 123845 nodes, the system gives the results of the change 

in stress from deflection[5]. 

Table 4 gives the results on the change on the stress dependence 

from deflection with finite elements. 

 

 Table 4: Results from calculated stress with FEM 

   f (mm) 2,72 5,44 8,16 9,1 10,9 12,6 13,6 

(N/mm2) 375 740 1020 1055 1140 1140 850 

 

 

Fig.
6.  Network of spring calculation. The network of the spring is divided into 

21 parts and  for each part is measured the stress on the underside of the 

spring. 
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Fig.7.Stress change depending on the deflection, calculated by KE for Ø275 

 

 

Fig.8a. The stress distributing of the lower surface of the spring 

 

 
Fig.8b. The tangential stress of the lower surface of the finger   

 



2.3 Estimate on stresses of the diaphragm spring 

with experimental measurement 

 
Measurement of the force is made on the exam table (Fig.9) and 

with adding to the measured system is measured stress on the 

diaphragm spring (Fig.10a and 10b) 

 
Fig.9. Diaphragm spring in disengagement position of the spring 

 
Measuring tapes are mounted on spring 6mm of outer and inner 

diameter, ie 383mm (measured tangential stress) and 325mm. 

 

 
Fig.10a. Diaphragm spring with measuring tapes 

 

 
Fig.10b. Diaphragm spring with measuring tapes and test table 

 

 
Fig.11.   Diagram stress - time 

Changing on measurement stress in a period of time is the 

ordinate and the time is the abscissa of the diagram. 

Table 5: Value of stress. 3cal. 375AL-stress calculated using 

expressions of Almen Laszlo’ theory,  3est.,375FEM-stress estimated 

with Finite Element Method, 3meas,375EXP-stress estimated with 

experimental measurement. All tree values for the stress are 

expressed in N/mm2 

t(s) 4,17 4,27 4,37 4,47 4,52 4,57 

f(395) mm 2,72 5,44 8,16 10,9 12,6 13,6 

f(375) mm 2,06 4,12 6,16 8,23 9,53 10,3 

3cal., 375 AL 319 719 984 1191 1290 1336 

3est., 375 FEM 375 740 1020 1140 1140 850 

3meas, 375EXP 356 903 1231 1252 1253 1211 

 

 

Table 6 deflection the calculated in relative to the measured stresses 

 Fi (mm) 2,72 5,44 8,16 9,1 10,9 12,6 13,6 

Ri 1,09 0,79 0,80 0,85 0,95 1,03 1,1 

Rk 1,04 0,82 0,83 0,88 0,91 0,91 0,70 

 

From the results shown in the table can be determined 

deviations from the calculated stresses in relation to the measured 

stresses: 
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3. Analysis of resultants and conclusions 
 

From the deviations shown in the table can be concluded: there 

is  deflection. Important is at higher loadings, and that's when the 

clutch is mounted in the vehicle (the spring is in a flat position - 

deflection 9,1mm) and when the clutch is disengaged, (spring has a 

maximum `deflection 12,6mm), the deviations  on the stress that is 

measured there is deviations 0,8%. Deviations  of the calculated 

values in the expressions Almen-Laszlo in relation to the measured 

value of stress is (- 15 ÷ +3)%, it is considered to be relatively good. 

Deviations of the calculated stresses by the method of finite element 

in relation to the measured value of stresses  are (-12 ÷ -9) %, these 

results are quite satisfying. 

Figure 12 shows a diagram of the change of the stress 

depending on the deflection of measured, calculated stresses after 

the expression ALMEN-LASZLO and calculated stresses method 

finite element. 

The curve obtained by Almen-Laszlo equation deviates from 

the curve obtained by measuring. There is  no similarity between 

these two curves because the stress increases  gradually,  according 

to the Almen-Laszlo equation,  depending from the deflection. 

Deflection in a flat position is -15%, and when the deflection  is  

maximum deviation is + 3%.  

There is similarity between the curve obtained by  FEM and  the 

measurement curve, and it is good, but there are certain derogations. 

Deviation in flat position is -12% and in position at maximum 

deflection deviation is +9%. Reason for this derogation  can be:  the 

number of finite elements used in FEM, the quality of the spring 

(the material, its strength, hardness, quality workmanship, shot 

penning on the surface of the upper and /or lower side, dimensional 

derogation etc.). More of these parameters on the quality of the 

spring can not be taken in consideration when  the calculation is 

performed by FEM.  
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Fig. 12. Stress change depending on the deflection of calculated and 
measured stress. Series 1-after the calculating AL; Series 2-after  the 

calculating FEM; Series 3-measured EXP 
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