MULTI-ELEMENT CONTENT CHARACTERIZATION OF COLD PRESS EDDIBLE OILS PRODUCED FROM TWELVE SUNFLOWER VARIETIES

Ivan Donev¹, <u>Biljana Balabanova¹</u>, Sasa Mitrev¹

¹Faculty of Agriculture, Goce Delčev University, , Krste Misirkov No. 10-A, 2000 Stip, Republic of Macedonia

INTRODUCTION

The content of the following isotopes of the 36 elements $(Li^7, Be^9, B^{11}, Na^{23}, Mg^{24}, Al^{27}, P^{31}, Ca^{39}, Ti^{48}, V^{51}, Cr^{53}, Mn^{55}, Fe^{56}, Co^{59}, Ni^{60}, Cu^{63}, Zn^{64}, Ga^{71}, Ge^{74}, As^{75}, Se^{77}, Rb^{85}, Sr^{88}, Mo^{95}, Pd^{106}, Ag^{107}, Cd^{111}, In^{115}, Sn^{120}, Sb^{121}, Cs^{133}, Ba^{137}, Tl^{205}, Pb^{206/207/208}$ and Bi^{209}) in EDIBLE OILS produced from TWELVE SUNFLOWER VARIETIES from Republic of Macedonia were determined.

ANALITICAL METHODS

Inductively-coupled plasma-mass spectrometry (ICP-MS) has been used for determination of the elements content, after microwave digestion, employing nitric acid and hydrogen peroxide in this step. The method has been validated using both an oil reference material and recovery experiments over different oil samples, obtaining satisfactory results in both cases. Interday repeatability lower than 10% was observed for all of the analyzed elements in the analyzed oil samples.

Standard addition method: 10 ppb; R (88.1-112%) 50 ppb; R (85.1-102%) 150 ppb; R (92-105%) 1 ppm; R (75.1-114%)

Certified reference material CRM-TMSO (metals in soybean oil) (High-purity standards, Charleston, CS, USA) For: Ag, Ca, Cu, Fe, Mg, Ni, P, Pb, Zn

Recoveries ranges in 87.5-109%

t- test (p=0.005) no-significant differences were found

			NEBULIZATION DESOLVATION VAPO	RIZATION ATOMIZATION IONIZATION	MASS ANALYSIS	INSTRUMENT	(ICP introduction system)		
		E F F	Liquid Gaseous Sample			Sampler	Cu (standard)		
			Aerosol .	୭ ﷺ ∰	uille	Skimmer	Ni (standard)		
	B		-> Particle> Mole	cule ——→ Atom ———> Ion ———	→ Mass Spectrum	Nebulizer	MicroMist (standard)		
_ "			Solid Sample			Plasma torch	Quartz, 2.5 mm (standard)		
	RF Generator		Nebulizer (liquid) Spray Laser (solid) Chamber	Plasma	Mass Spectrometer	Integration Time			
						(for all analyzed elements)	0.3 sec x 1 point		
the		ON / DEACTTO	200	Replication	3				
			Tune parameters						
d 40 A r 38 A r	⁵¹ V, ⁵³ Cr	, ⁵⁷ Fe, ⁶⁰ Ni, ⁶	³ Cu, ⁶⁶ Zn, ⁶⁹ Ga, ⁷	⁷² Ge, ⁷⁵ As,	⁷⁷ Se	RF power	1500 W		
		nterference removal using He mo	de and Kinetic Energy Discrimination (K	ED)		Sample depth	8.5 mm		
S	Po	Aystomic Interfering polyatomic ions with	Polystomic Bias voltage rej energy (polyato	ects low mic) ions		Carrier gas	0.80 L/min		
		the same mass	Analyter			Makeup gas	0.23 L/min		
			- Analyte			Extract lens 1	-3 V		
			- Polyatomic			Extract lens 2	-150 V		
	en	and polyatomic ion regies overlap. Energy I Energy loss from eac read is narrow, due to ShieldTorch System	th collision By cell exit, ion no longer ow polyatomics are using a bias yeld	energies erlap: rejected use "step"		Energy discriminator	2 V		
		polyatomics are big collide more of Cell Distan	per and so (energy discrim Iten. ce Through Cell Cell	ination)		Reaction gas	He 5.0 mL/min		
		Entrance	Exit			CeO/Ce	0.58% (ref. value < 0.65%)		
						Ce++/Ce	2.05% ((ref. value <3%)		
UCTF) INVF	STIGA	TIONS/P	ERS	PE(CTIVES			

INTERFERENCES in ICP-MS - MOLECULAR (POLYATOMIC) ion at the same nominal mass as the isotope of interest

Quality, assurance

(plasma-based), such as ⁴⁰Ar, ⁴⁰Ar¹⁶O, and ⁴⁰Ar³⁸Ar

(matrix-based), such as ³⁵Cl¹⁶O, and ³²S³²S

Table 1. Basic statistics for elements contents in edible oils

COND

Element	В	Na	Mg	Si	AI	Р	К	Са	Fe	Cu	Zn	Ni	Ва	Cr	Mn
unit	µg/kg	mg/kg	mg/kg	mg/kg	mg/kg	µg/kg	µg/kg								
Med	0.12	27.1	11.5	32.7	0.45	1.64	0.27	25.2	1.32	0.22	0.22	0.29	0.19	48.4	40.8
Min	0.03	4.09	0.48	26.45	0.01	0.12	0.14	0.73	0.56	0.07	0.17	0.10	0.12	30.6	9.64
Max	0.58	47.4	19.5	35.6	0.13	28.4	4.91	63.5	1.82	0.47	0.29	0.55	0.34	59.7	226
SD	0.18	14.1	6.06	2.97	0.04	9.50	1.41	18.6	0.40	0.13	0.03	0.18	0.09	7.96	60.8
CV	92.9	56.5	52.6	9.37	98.9	153	214	72.2	31.8	55.3	14.7	71.7	65.8	17.4	102
Element	Ti	V	Ga	Ge	As	Se	Rb	Cd	Со	In	Sn	Sb	Те	ті	Pb
unit	µg/kg	ua/ka	ua/ka	ua/ka	ua/ka	ua/L	ua/ka	ua/ka	ua/ka	ua/ka	ua/ka	ua/ka	ua/ka	ua/ka	ua/ka
		100	P.9.1.9	F 3.13	Maina	P 9/ -	M9/N9	P.3.1.3	µg/ng	M9/119	1.3.1.3	P.9	P9/N9	μg/ng	1.2.3
Med	5.02	0.72	6.66	0.09	1.24	11.1	6.54	0.94	0.01	1.63	14.7	0.79	0.58	0.01	31.0
Med Min	5.02 0.50	0.72	6.66 0.50	0.09	1.24 0.30	11.1 5.60	6.54 2.13	0.94	0.01 0.01	1.63 0.36	14.7 7.17	0.79	0.58 0.15	0.01 0.09	31.0 3.31
Med Min Max	5.02 0.50 11.3	0.72 0.32 8.55	6.66 0.50 15.5	0.09 0.05 1.21	1.24 0.30 5.00	11.1 5.60 23.2	6.54 2.13 13.5	0.94 0.57 1.69	0.01 0.01 6.20	1.63 0.36 10.83	14.7 7.17 24.64	0.79 0.49 3.90	0.58 0.15 2.11	0.01 0.09 0.20	31.0 3.31 92.56
Med Min Max SD	5.02 0.50 11.3 3.21	0.72 0.32 8.55 2.47	6.66 0.50 15.5 3.99	0.09 0.05 1.21 0.33	1.24 0.30 5.00 1.45	11.1 5.60 23.2 4.48	6.54 2.13 13.5 3.48	0.94 0.57 1.69 0.30	0.01 0.01 6.20 1.86	1.63 0.36 10.83 3.57	14.7 7.17 24.64 5.85	0.79 0.49 3.90 1.25	0.58 0.15 2.11 0.54	0.01 0.09 0.20 0.06	31.0 3.31 92.56 24.7

Studying the multi-elements content, in order to detect tendencies in the oil samples between varieties, principal components analysis was used. Promising groupings were observed using a model with two principal components and retaining 82.3% of the variance.

> Principal components analysis

0.64

0.48

0.32

-0.16

-0.32 -

-0.48

17th CEEPUS Symposium and Summer School on Bioanalysis, July 02-08, 2017, Ohrid, Republic of Macedonia